How Banzhaf Makes a Victor: Curing a Distortion Paradox in
Weighted Voting

JAKOB DE RAAIJ, Harvard University, USA
MOON DUCHIN, University of Chicago, USA
ARIEL D. PROCACCIA, Harvard University, USA
JAMIE TUCKER-FOLTZ, Yale University, USA

Political scientist John Banzhaf brought power indices into the legal and political spotlight in the United
States by highlighting problems with naive weighting, like the possibility of "dummy players" who are never
pivotal in any coalition. He argued that weighted voting should be framed as an optimization problem, with
the objective that the probability of a representative casting a decisive vote is proportional to the size of their
constituency. Today, there are examples (such as county government in New York State) where representatives
vote with weights derived from exactly this heuristic optimization.

Though there is a massive literature on power indices for weighted voting games, real-world instances
also suggest a new kind of problem not frequently discussed in research papers: with supermajority voting
quotas, achieving close agreement between populations and powers can require weight vectors starkly out
of proportion to both. For instance, not only contrived examples but also realistic ones can force a medium-
sized player—like the Town of Victor in Ontario County, NY—to receive an "undeserving" veto, which could
undermine the public legitimacy of the system.

We introduce a new power index, built by having players vote yes with a probability equal to the voting
quota rather than by flipping a fair coin as in ordinary Banzhaf. Among variants where players independently
vote with fixed probability, this choice uniquely avoids systematic weight distortions while retaining the
policy-aligned interpretation of Banzhaf power.

CONTENTS
Abstract 0
Contents 0
1 Introduction 1
2 Preliminaries 5
3 Propensities and the Adaptive Banzhaf Power Index 7
4 Powers in Large Weighted Voting Games 7
5 Veto Distortion 12
6 Empirical Results 14
7 Discussion 18
References 19
A Additional Related Work 21
B Missing Proofs 22

C  Full Empirical Results 31



Jakob de Raaij, Moon Duchin, Ariel D. Procaccia, and Jamie Tucker-Foltz 1

1 Introduction
1.1 The measurement of voting power and the inverse power problem

The European Economic Community, formed in 1958, consisted of six Western European countries:
Belgium, France, (West) Germany, Italy, Luxembourg, and the Netherlands. It was governed by the
Council of Ministers, which included one minister from each member country. When a proposal
was sent to the Council from the European Commission, it would be voted on using weighted votes,
with weights assigned in a way that was commensurate with population—4 for France, Germany
and Italy, 2 for Belgium and the Netherlands, and 1 for Luxembourg—and an overall weight quota
of 12 required for a resolution to pass [Mayer, 2018]. The effectiveness of this design depends on
whether each country has the power it deserves based on its population, where power is commonly
understood to be based on playing a pivotal role in collective decisions. From this viewpoint, the
Council of Ministers is a textbook design failure: Luxembourg is a "dummy player," meaning that
their vote can never change an outcome, no matter how the other countries vote.

Having made the observation that the voting power may be very different from the (relative)
voting weight, the inverse power problem arises: How do we choose voting weights so that the
voting powers match a desired distribution as closely as possible?

The ability to align powers with a target hinges on how voting power itself is quantitatively
defined. In the literature, this question is addressed using two canonical measures, one due to
Banzhaf [1965]—already implicitly defined by Penrose [1946]—and the other due to Shapley and
Shubik [1954]. Underlying both measures is the idea that voter i is pivotal in a coalition if the
overall weight of the coalition is under the quota without i and meets or exceeds the quota with
i. Under Banzhaf’s definition, the power of a voter i is the probability that they are pivotal in a
uniformly random coalition that includes i. This is equivalent to assuming that every voter except
i votes YEs with probability 1/2, and asking if i’s YES or NO vote matters. By contrast, under the
Shapley-Shubik power index, it is the size of the coalition that is selected uniformly at random.
Equivalently, a uniformly random permutation of the voters is selected; the power of a voter i is the
probability that i is pivotal in the coalition that includes all their predecessors.

Both power indices have theoretical justifications; in particular, both lend themselves to reason-
able axiomatic characterizations [Dubey, 1975, Dubey and Shapley, 1979]. The most significant
theoretical distinction was pointed out by Felsenthal and Machover [1998], based on an argument
by Coleman [1968], arguing that the two power indices measure different types of power. If the
voting agents are policy-seeking, they form an opinion of the bill at hand and vote accordingly. Their
I-power, power to influence the outcome of the election, is the probability with which their opinion
will be pivotal. They argue that by the Principle of Insufficient Reason, any split of the other voters
into YEs and No should be assumed a priori to be equally likely—as is the case in the Banzhaf power
index. In contrast, office-seeking voting agents do not hold an intrinsic attitude towards the bill; the
winning coalition gains a prize that will be split between them. Their P-power is their bargaining
power in forming a winning coalition—as is measured by Shapley value for cooperative games
with transferable utilities (and the Shapley-Shubik power index, its restriction to weighted voting).
Felsenthal and Machover [1998] argue that based on the nature of the voting body, either approach
may be warranted. The question of which power index is supported by empirical evidence (if any)
is more contentious—we elaborate on it in Appendix A.

Our goal is not to settle (or even advance) the Banzhaf vs. Shapley-Shubik debate. Rather,
motivated by a case study from New York State, we focus on the Banzhaf power index. We draw
attention to a practical shortcoming of the ordinary (i.e., standard) Banzhaf power index that
deserves to be called a "paradox": Like the classic "Alabama paradox" of apportionment rules, it
produces results that would make many observers cry foul. We introduce a novel variant that
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we call adaptive Banzhaf that alleviates these issues while preserving the advantages of ordinary
Banzhaf over Shapley-Shubik. If one is persuaded that the policy-seeking voter behavior justifies
the choice of the Banzhaf power index, then our variant is a strict improvement, especially in
the setting of the voting quota being fixed and the weights being optimized — the inverse power
problem.

1.2 A case study with real-world significance

New York State contains 62 counties, whose local governing structures vary. Some counties elect
representatives using equal-population districts, whereas others employ a structure called a Board of
Supervisors, with one member from each constituent geographical piece, although the populations
may not be equal. Ontario County, located just southeast of Rochester, NY, is one of the latter
category. Its 21-member Board consists of one member from each of the 16 smaller towns, while the
Cities of Canandaigua and Geneva are subdivided by ward into two and three pieces, respectively
(see Table 1). From now on, we will use "town" to refer to the geographic area that receives a single
representative.!

Each town has a different population, yet is represented by a single elected supervisor. To comply
with the constitutional principle of "One Person, One Vote,' Boards of Supervisors are required to use
weighted voting. Today, the legal requirements for implementing weighted voting are surprisingly
complex, thanks to a 1967 appeals court decision in Iannucci vs. Board of Supervisors [New York
Court of Appeals, 1967]. Recognizing the pitfalls of weighted voting—and citing Banzhaf’s seminal
work specifically—the court ruled:

"The principle of one man-one vote is violated, however, when the power of a repre-
sentative to affect the passage of legislation by his vote...does not roughly correspond
to the proportion of the population in his constituency."

In other words, voting power, rather than weight, must be calibrated to population. This standard
explicitly calls for solving the inverse power problem. On that subject, the court further elaborated:

"...[measuring power] is impossible without computer analyses, and, accordingly, if
the boards choose to reapportion themselves by the use of weighted voting, there is no
alternative but to require them to come forward with such analyses and demonstrate
the validity of their reapportionment plans.”

From then until today, every county using towns as districts does exactly that. In their charter or
in local law, they specify language like the following: "The voting power of a supervisor shall be
measured by the mathematical possibility of his casting a decisive vote on a particular matter... In
preparing each reapportionment, the board of supervisors shall employ an independent computer-
ized mathematical analysis and such other method or methods as shall most nearly equalize the
percentage of voting power of each town and city to its percentage of the total county population.'

Indeed, we became aware of this state of affairs when one of the authors of this paper was
commissioned by Ontario County to generate four sets of voting weights: one to be used for votes
requiring a simple majority, and three others for votes requiring supermajority thresholds of 2/3,
3/5, and 3/4. Here, as in many real-world cases, the quota is set by law or constitution to regulate
how easy or difficult it is for a voting body to initiate action and pass legislation. Figure 1 shows
the results for the 3/4 threshold, which are so bizarre that they rise to the level of a paradox.

INew York is one of 12 "township states" that is tiled by its cities, towns, and townships—what the Census Bureau refers to
as minor civil divisions, or MCDs—and those have active local governments. By contrast, many other states have much more
limited municipal coverage. In New York it is therefore possible for townships to serve as districts for county government.
This has seemed appealing because they are well known to residents and fundamentally hard to gerrymander.

This language is drawn from the Nassau County Charter, quoted in law.justia.com.


https://law.justia.com/cases/federal/district-courts/FSupp/818/509/1491685/
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Fig. 1. Populations, (heuristically) optimal weights, and resulting Banzhaf power indices for each of the 21
towns in Ontario County, for a voting quota of 3/4. These weights were found by a randomized local-search
algorithm described in Section 6.3.

The Town of Victor, despite only having 14.1% of the overall population—not much larger than
the next largest town at 12.6% of the population—was apportioned 26.5% of the weight. This might
give any reasonable observer pause, especially because at threshold 3/4, a player with weight over
25% holds the power to unilaterally veto a measure: without their support, it cannot pass. From
Banzhaf’s perspective, this is not a problem, as the plot shows power shares align almost perfectly
with population shares—a veto does not in itself contribute to the measurement of power. That a
veto player may not be especially powerful is perhaps surprising, and in any event this distribution
of weights will likely seem intuitively unfair.

We will use the term weight distortion for situations like this in which there is low discrepancy
between population and power, but this is achieved with a weight vector far out of proportion to
power. A particular kind of weight distortion is veto distortion, in which a player’s voting weight
crosses the veto line while the power lags behind.

1.3 Our proposal: Adaptive Banzhaf

We view the Victor paradox in Ontario County as a symptom of a more fundamental issue with
the Banzhaf power index at high voting quota. By effectively assuming that every voter is equally
likely to vote YEs or No, the power computation conditions on the rare event that enough YEs votes
are cast to reach a threshold much higher than 1/2.

We propose a simple alternative model of voting behavior under which this event is not rare: For
a matter requiring a supermajority quota of g > 1/2, we suppose each voter has a propensity to vote
YEs with probability p = g, rather than 1/2. The adaptive Banzhaf power index follows Banzhaf’s
construction exactly, but uses this alternative model of random, independent votes. (There will be
many probabilities discussed here, so we will reserve the word "propensity” for the probability of a
positive vote.)
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Conceptually, we feel that our variant index has multiple advantages. To see why, assume there
are many players in a weighted voting game, all voting with equal propensity p. If each votes YEs
independently with propensity %, then the distribution of positive weight is tightly concentrated
around half. But pivotality occurs when positive weight is near the quota g, so for high quotas,
each voter has a negligible chance of being pivotal. The same is true for any propensity p far from
q- The setting p = q is the only choice for which elections will likely be on the knife-edge. This
was recognized already in Banzhaf’s original paper, where he writes that "it would seem that the
test of a legislator’s power comes only when the other representatives are closely divided and the
individual legislator is able to cast a deciding number of votes" [Banzhaf, 1965].

Thus, the adaptive Banzhaf power index hypothesizes a model of voting behavior that is built
to emphasize this test of power. In addition, we will provide rigorous proofs that adaptive power
is the unique form of propensity-based voting that asymptotically eliminates the Victor paradox,
together with empirical evidence that it reduces weight distortion in real New York counties.

1.4 Results and outline

We formally define weighted voting games and power indices following standard conventions in
Section 2. We introduce the class of p-propensity Banzhaf power indices, in which every voter is
assumed to vote YEs independently with probability p, in Section 3. We define the adaptive Banzhaf
power index as the p-propensity case where propensity equals voting quota (p = q).

In Section 4, we investigate p-propensity Banzhaf powers in various limiting regimes. First,
in Section 4.1, we consider a large family of weighted voting games G,, with the number of
players going to infinity and each individual player’s weight going to 0. Under mild assumptions,
Theorem 4.2 gives a complete solution for the limiting ratio of powers of any two players, in terms
of p and q. Computing this ratio in the special case p = 1/2 (the ordinary Banzhaf power index) has
been an open problem since it was posed in Lindner and Machover [2004]. When p = g, we find
that the ratio of the powers of any two players tends to the ratio of their weights. We prove that
adaptive Banzhaf is the only member of a large class of power indices including the Banzhaf power
index (semivalues with independent voters) for which this weight-to-power proportionality holds.
This is a desirable property of a power index known as the Penrose Limit Theorem.

Section 4.2 studies a distinct class of infinite games known as oceanic games, where some large
players hold a fixed share of the weight each, while the remaining weight is split evenly among a
growing "ocean" of small players. We give a precise calculation of the players’ powers in the limit
in Theorem 4.5. This gives another setting in which the p = q case is special: it is the only choice
of propensity for which the power of the large players is non-zero (besides a finite list of quota
"pitfall points").

In Section 5, we give some negative results on the veto distortion of any propensity Banzhaf
power indices. Theorem 5.1 states that for any supermajority quota g and any propensity p, there
exist examples where a voter of arbitrarily small population share has a veto under an exactly
optimal set of weights. However, for p =~ g, these examples rely on delicate constructions that are
unlikely to arise in real-world instances. We conjecture that weight-to-power proportionality is
generic for adaptive Banzhaf power.

We close with empirical results in Section 6, for both synthetic and real-world examples. The
predictions made by the theory can be observed with satisfying clarity in the experiments. In partic-
ular, at supermajority quotas, the adaptive Banzhaf index leads to significantly more proportional
weights than the ordinary Banzhaf power index, resolving the paradox of undeserving veto players
that we find to be widespread in real instances.
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1.5 Related Work

Below we survey the work most closely related to the current project; additional literature review
is found in Appendix A.

Power indices in the limit. Shapiro and Shapley [1978] first considered power indices in the limit,
for the Shapley-Shubik index of games with some players of fixed weight and an infinite number
of players with negligible weight. Dubey and Shapley [1979] extend their results to the Banzhaf
power index. Neyman [1982] studies the Shapley-Shubik index when the weights of all players go
to 0. Lindner and Machover [2004], based on unproven claims due to Penrose [1946], define the
Penrose Limit Theorem (PLT) as the property that the ratio of two players’ powers approaches
the ratio of their weights, given that all weights are bounded by a constant. They find that under
mild assumptions, this holds for the Shapley-Shubik index, and for the Banzhaf index at quota 1/2.
Chang et al. [2006] empirically, and Lindner and Owen [2007] theoretically, show that the PLT does
not hold for the Banzhaf index at quotas other than 1/2, but leave the question of the actual limit of
the ratio of powers open. We resolve this open question.

Distortion for optimized weights. The weight distortion phenomenon seen in Ontario County
has been observed elsewhere: Leech [2002c] notes that in weighted voting among the executive
directors of the International Monetary Fund at the supermajority quota g = .85, the United States
has only a 6.5% share of the Banzhaf power, despite holding 17.5% of the voting weight. He estimates
that the weight share of the US must be set to 67.5% so that their Banzhaf power hits the target of
17.5%. Leech and Machover [2003] use heuristics to argue that in the Council of Ministers of the
European Union at supermajority quotas, Germany’s weight would need to be set disproportionally
high, converging to 100% as the quota goes to 1, to achieve proportional Banzhaf powers. (We
revisit their motivating example of the International Monetary Fund in Appendix C.5 and verify
that adaptive Banzhaf cures the weight distortion.)

Voter propensity. The idea of generalizing the Banzhaf power index with independent voting
probabilities originates, to the best of our knowledge, with Owen [1972]. Straffin [1977] considers a
setting where the p; (probability of YEs vote from voter i) are random variables drawn independently
or dependently from a uniform distribution on [0, 1] and shows that this leads to the Banzhaf
and the Shapley-Shubik indices, respectively. Puente del Campo [2000] refers to unnormalized
power indices where all players vote YEs independently all with the same probability p as binomial
semivalues and studies them as a basis of the space of semivalues (which will be defined below).
Amer and Giménez [2007] give an axiomatic justification for binomial semivalues based on the
delegation of power between players. We have not found a theoretical or practical justification in
the computational literature for using any propensity other than 1/2, which seems to be preferred
due to its impartial and entropy-maximizing nature. The idea of adaptive Banzhaf, where propensity
equals quota, does not appear to have been studied before.

2 Preliminaries
2.1 Weighted voting games

A weighted voting game (WVG) is a tuple W = (w; q) consisting of the player weightsw € A"
(the n-dimensional standard simplex) and a quota q € [0, 1). A coalition C is a subset of the voter
set N = [n]. A coalition C is winning if the weight of the players voting YEs exceeds the quota,
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Sicc Wi > g, else it is losing.> We say that a player i is pivotal for a coalition C with i ¢ C if C is
losing but C U {i} is winning and let piv., (i, C) be the corresponding indicator function.

2.2 Semivalues and power indices

Following Felsenthal and Machover [1998], we use the term power measure for any function ¢ that
assigns an unnormalized power vector ¢(‘W) € R" to any WVG ‘W with n players, for all n € N.
We call the function ¢ a power index if the power vectors are normalized, that is ¢ (‘W) € A" for
any WVG ‘W with n players, for alln e N

A semivalue [Weber, 1979] is a power measure ¢P (‘W) that assigns the voting power of a player
i in the WVG ‘W as the probability with which i is pivotal for a random coalition C € N\{i}. It is
assumed that the probability of a coalition arising depends only on the size of the coalition but is
independent of the labels of the players in the coalition. In particular, for a WVG with n players, a
probability vector p = (po, ..., pn—1) such that 37 ("lfl)pi = 1 assigns a probability of p|c| to each
coalition C € N\{i} based on its size. The semivalue of player i in WVG W is

PrW)= > pivay(i.0) - piey.
CCN\{i}
The corresponding normalized semivalue is the power index
Pi(W)
2 jEN ‘pj ((W) ’
The Banzhaf power measure ﬁ (‘W) [Banzhaf, 1965, Penrose, 1946] is the semivalue in which

every coalition C € N\{i} is assumed to be equally likely. Equivalently, each voter in N\{i} is
assumed to vote YEs independently with probability 1/2. Consequently, p;' = 1/2n~! so that

Bi(W) = Z pivqy (i, C).

CCN\{ }

pi(W) =

The Banzhaf power index B(“W) is the Banzhaf power measure normalized to sum to 1, i.e.,
(W)
2Zjen Bi(W)
Example 2.1. Consider ‘W = ((0.25,0.25,0. 5) 0.6). The first player, i = 1, is pivotal for one
coalition, {3}, so their Banzhaf power measure is ﬁl(W ) = 1/4; analogously, ﬁg (‘W) = /4. The third

player, i = 3, is pivotal for three coalitions, {1}, {2} and {1, 2}, so their Banzhaf power measure is

B3 (‘W) = 3/4. This gives normalized powers § = (1/5,1/5,3/5).

pi(W) =

2.3 Inverse power problem

In the inverse power problem, we are given a target distribution of power m € A", a quota q € [0, 1),

and a desired power index ¢. For a weight vector w € A", we define its discrepancy as
discrm,q,(p(w) = |lm - @((w; )l -

The goal is to find one or all weight vectors

w* € W*(m,q, @) = arg miAn discr g, (W)
weA"

31t seems to be more common in the literature to denote a coalition as winning when it meets the quota (and not necessarily
exceeds), that is }};cc w; > q. However, we require the coalition to exceed the quota as this seems to be more common in
practice. We note that our theoretical results and proofs hold true regardless of which of the two definitions of winning is
employed, except when noted otherwise.
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that minimize discrepancy. In the inverse power problem, the quota is prescribed exogenously.

3 Propensities and the Adaptive Banzhaf Power Index
We study a generalization of the Banzhaf power index that we call p-propensity Banzhaf index.
Definition 3.1. The p-propensity Banzhaf power measure B, also known as binomial semivalue

with value p, is the semivalue in which each voter in N\{i} is assumed to vote YEs independently
with probability p. Consequently, p}! = Pp*(1 = p)" k1 s0 that

Brewy= > pivay(i,0) - pl€l (1 - p)r 1L,
CSNV{i}

The p-propensity Banzhaf power index BP (W) is the p-propensity Banzhaf power measure
normalized to sum to 1

WW>_
Yjen BL(W)

The adaptive Banzhaf power index (measure) p is the g-propensity Banzhaf power index (measure),
where q is the quota of the WVG ‘W = (w, q). That is,

pi(W) = BI(W)  (and p;(‘W) = B1(W)).

B (W) =

Of course, the 1/2-propensity Banzhaf power index (measure) is simply the Banzhaf power index
(measure).

Example 3.2. We return to the WVG ‘W = ((0.25,0.25,0.5); 0.6) from Example 2.1. While the
players are still pivotal for the same coalitions, the respective weighting of the coalitions changed;
in particular, larger coalitions are assumed to be more likely now. We get that g, (‘W) = po(‘W) =
p(1—p) =q(1-q) =0.24 while p3(‘W) =2 - q(1 - q) + ¢* = 0.84. This gives normalized powers
p = (2/11,2/11,7/11).

One reason why setting the propensity equal to the quota has not been formally considered so far
may be that in this setting, two WVGs with the same set of winning coalitions but different quotas
can have different powers. In any finite WVG, the quota g can be slightly increased and/or decreased
without changing the set of winning coalitions. For example, one can quickly check that the sets
of winning coalitions for WVGs ‘W = ((0.25,0.25,0.5);0.6) and ‘W’ = ((0.25,0.25,0.5);0.7) are
identical. However, p(‘W) # p(‘W’)—the players are assigned different powers in the two WVGs,
even though the winning coalitions have not changed!

That said, as we will see in subsequent sections, this apparent shortcoming is of no concern
in the settings we consider. In the inverse power problem the quota is an exogenous parameter.
Furthermore, as the number of players grows, the ‘wiggle room’ of the quota—and thus that of
the powers— goes to 0. Therefore, the adaptive Banzhaf index powers are well-defined in the limit
setting.

4 Powers in Large Weighted Voting Games

It is a desirable property of a power index to assign powers proportional to weights in games
that are sufficiently ‘smooth’ We argue that the fact that the intuitive assumption that voting
powers equal voting weights does not hold stems from the discrete nature of the setting: Only a
finite number of powers are achievable with coalitions of a finite number of players, so a player’s
weight cannot in general perfectly correspond to their power. However, this discrete noise should
reduce as the number of players grows, given that the weights of all players are of the same order
of magnitude. In particular, we posit that in such a setting, the powers of the players should be
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proportional to their weights—a deviation from proportionality in a smooth, limiting case may be a
symptom of an underlying bias towards larger or smaller weight players by the power index.

In this section, we examine this claim in two different scenarios of weighted voting with an
infinite number of players. First, we consider a setting where an infinite number of players with
fixed, finite, bounded voting weights are added to a WVG (with weights then normalized to sum to
1). We analytically solve for the p-propensity Banzhaf powers of players in the limit, resolving a
long-standing open question by Lindner and Machover [2004] for p = 1/2, i.e., normal Banzhaf. We
find that the adaptive Banzhaf power index is the unique p-propensity Banzhaf power index that
has the desired property of being proportional in the limit.

We then consider a different setting, in which a finite number of players have a fixed amount
of weight each, with the remaining weight being split up equally among an infinite number of
players. While we cannot expect perfect proportionality in this setting as the discrete noise due
to the fixed-sized players persists, we show that the adaptive Banzhaf power index is the unique
p-propensity Banzhaf power index that has the property that the powers of the fixed-sized players
are always bounded away from 0, except for a finite number of unstable pitfall points.

4.1 The Penrose Limit Theorem

Suppose we fix an infinite sequence w = wy, wy, ... and a quota g € [0, 1), where the weights w;
are positive integers bounded above by some constant W. Let W,, = 3, w; be the partial sums of
the weights. For all n € N, we consider the WVG defined by the first n weights in the sequence,
normalized to 1:
— (X Yn,
Gn = (Wn, e Wn,q)-
A much-studied question asks whether the powers assigned to the players by a power index ¢
are proportional to their weights, as n grows large. Since all weights of individual players go to 0
in G, as n — oo, it is natural to look at the ratios of the powers of players.

Definition 4.1 ([Lindner and Machover, 2004, Penrose, 1946]). The Penrose Limit Theorem (PLT)
holds for a power index ¢, a quota g, and a weight sequence w if for all players i, j,

i 0i(Gn) _ Wi
im = —

n—oo q)j(gn) Wj.

Remark. Since the Penrose Limit Theorem is concerned with ratios of powers, it does not matter
whether we normalize the weights or not—the definitions and theorems in this section could
equivalently be stated for power measures.

Let us define two useful properties of infinite weight sequences: We say that w is primitive if the
greatest common divisor of all weights that appear infinitely often is 1. We say w is regular if every
weight has a well-defined natural density: For all w € [W], there are values

do = 1 €[ 2w = )]
n—co n

Lindner and Machover [2004] showed that the PLT holds with respect to the ordinary Banzhaf
power index (q = 1/2) for any primitive w. They then ask whether this holds at other quotas and
conjecture that the answer is positive. This was disproved by Lindner and Owen [2007] by giving
a class of primitive weight sequences w and a quota q # 1/2 for which the PLT fails. However, no
general formula for the Banzhaf powers at g # 1/2 or explanation for the behavior of the Banzhaf

power index at quotas other than 1/2 was known. We resolve this open problem.
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THEOREM 4.2 (CONVERGENCE FOR PROPENSITY BANZHAF). The Penrose Limit Theorem holds for
any primitive weight sequence w with respect to the adaptive Banzhaf power index.
Furthermore, ifw is both primitive and regular, then for all players i, j,

B (Gn) (é ’“) (1=p+pr™)

im — = o
n—oo ﬂj (gn) (2{4 rk_l)
k=1

bl

(1—p+pr¥)
. . . . w pwr™ _ w
where r is the unique positive solution to szl(dWW) =q - 2 e (duww).

Remark. If p = g, it follows that r = 1 and thus that the limiting ratio is w;/w;. Consequently, the
first part of the theorem (PLT if p = g) for primitive, regular weight sequences follows from the
second.

We defer the proof to Appendix B.1. On a high level, we show that what determines the powers
under the p-propensity Banzhaf power index in the limit is the limiting behavior of the distribution
of the weight of a random coalition (where each voter joins with probability p) around the quota g.
In particular, applying a theorem due to Petrov [1975] that was also used by Lindner and Machover
[2004], we show that this distribution is "flat" around g whenever p = ¢, which implies that the
PLT holds. In all other cases, we determine the exponential decay rate of the coalitional weight
distribution around g, corresponding to Inr. We apply a technique called exponential tilting to
the distribution to transform it to a distribution to which we can meaningfully apply, again, the
theorem due to Petrov [1975], to show that it is flat around q. This allows us to describe the limiting
behavior of the original distribution in terms of r, which is used to obtain the formula in the
theorem statement.

We can solve for r in Theorem 4.2 to get insights into how the ratio of player’s powers behave in
the limit.

COROLLARY 4.3 (TRENDS OF POWER RATIOS). Assumew is a primitive, regular weight sequence.
. . . ) D . .
Let i and j be two players so that w; < wj. Then nh_r)rgo B; (gn)/ﬁj (Gn) as a function of the quota q is

"U-shaped": It has a unique minimum qmin in (0, 1) and non-zero derivative at all other points. The
derivative of the function at q = p is positive when p > 1/2, negative when p < 1/2, and zero at p = 1/2.

The proof can be found in Appendix B.1. To make the statement easier to parse, we illustrate
limy, 0 ﬁf(gn)/ﬁ‘;(gn) > w;/w; as a function of g in Figure 2.

Corollary 4.3 offers an explanation for why veto players are a frequent occurrence if g > p > 1/2.
Since we know that at ¢ = p, the limiting ratio is w;/w;, we know that for ¢ > p > 1/2 it holds that
limy—co B (Gn)/ ,Bf (Gn) > wi/wj: Players with large weight have disproportionally little power.
Thus, if their power share is required to match their population target, their weight share needs to
be far greater than this target. Conversely, we get that for p > 1/2 and q slightly smaller than p,
it holds that lim,_,c ,Bf (Gn)/ ,Bf (Gn) < wi/wj: Players with large weight have disproportionally
high power, so in the inverse power problem their weight share will be smaller than their target.
We confirm that these trends also hold for weighted voting games with a finite number of players
in Section 6.

Corollary 4.3 also highlights that adaptive Banzhaf is the only p-propensity Banzhaf power index
for which the powers converge to weights in our setting. Since every semivalue that is anonymous
to the voters and assumes they are voting independently is a p-propensity Banzhaf index for some
p, this implies that:
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Fig. 2. An illustrative plot of the convergence of the 2/3-propensity Banzhaf powers for a player of weight
w; = 1and a player of weight w; = 2 for the repeating weight sequencew =1,1,2,1,1,2,1,1,2,.... At g = p,
the power ratio limits to the weight ratio. Because the plot is U-shaped, there is a second value § < p with
the same limiting ratio w;/w; = 1/2. This turns out to occur when r = 1/2, which gives g = 5/12.

COROLLARY 4.4 (UNIQUENESS OF ADAPTIVE BANZHAF). The adaptive Banzhaf power index is the
only normalized semivalue that assumes voters are voting independently and satisfies the Penrose
Limit Theorem for all primitive, regular weight sequencesw and all quotas q.

The proof of Corollary 4.4 can be found in Appendix B.1.

To conclude the section, we consider if there is hope to relax the conditions of primitivity and
regularity for the weight sequence. Lindner and Machover [2004] already point out that without
primitivity, the PLT can fail. For example, consider the weight sequence w; = 1 and w; = 2 for all
i > 2 with quota 1/2. For any odd number of players, player 1 is pivotal in no coalition, so their
power is 0. For any even number of players, it is not hard to verify that player 1 is pivotal if and
only if any of the players of weight 2 is pivotal, so the powers of all players are equal. Thus, the
limit ﬂf (Gn)/ ﬁ‘g (Gn) does not exist, as the ratio jumps between 0 and 1.

Let us now consider regularity. If the limits of the fraction of voters that have a given weight,
i.e., the natural densities, do not exist and ¢ # p, the limit ﬂf (Gn)/ ﬂf (Gn) may not exist either.
We give an informal argument: Consider the finite weight sequences v; = 1,2, 1 and v, = 1,2,2,
quota 4/5, and the standard (i.e., 1/2-propensity) Banzhaf power index. By Theorem 4.2, the ratio
ﬁf /B, i.e., of powers of a player with weight 1 to a player with weight 2, approaches 1 : 1.662... for
w = vy, vy, ... and approaches the different ratio 1 : 1.754... for w = v,,v,, .... We can now create a
weight sequence w consisting of alternating blocks of just vy and just v, with the blocks increasing
in size. By making each block sufficiently much longer than all preceding blocks, we know that
after the end of each v; block, ﬂf / ﬁ‘g is arbitrarily close to 1 : 1.662..., while after each v, block,
ﬁf / /3’20 is arbitrarily close to 1 : 1.754.... Thus, ﬁf / ﬁ‘g does not converge, the limit as n — oo does
not exist. Note that in this example, the natural densities do not exist: At the end of a v; block, d;
will be arbitrarily close to 2/3, while after a v, block, it will be arbitrarily close to 1/3. Also, note that
this argument does not work if g = p, since both under w = v1, 01, ... and w = v, v, ..., the ratio of
powers p1/ps approaches 1 : 2.

4.2 Oceanic games

A second setting of weighted voting in the limit that has been extensively discussed in the literature
is the setting where some large players have a fixed weight while the remaining weight is split up
evenly among a growing number of small players. In particular, we can fix weights wy, ..., w, of £
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large players summing to no more than 1 and a quota g € (0,1). Let @ = 1 — X./_, w; be the leftover
weight. We now consider the WVGs

a a
gn = (W],...,W[, _s""_;q)’
n n
————
n

defined for n = 1,2,. .., where the small players divide up the leftover weight. In slight abuse of
notation, n here denotes the number of small players in the game, so that the total number of
playersis [N| =n+¢.

THEOREM 4.5 (OCEANIC PROPENSITY BANZHAF). Fori € [{],

BP(GY) ifg—ape[0,1-a]\ A

0 else,

lim f7(Gy) = {

where G = (£, ..., 2205 L2°2) s a game restricted to the large players and Ay = {¥;cs wi | S C [€]}

1-a’ " 1-a’ 1-a

are the weights achievable by large players.

The special case of Theorem 4.5 for the standard Banzhaf power index (p = 1/2) was established
by Dubey and Shapley [1979]. The formal proof of this generalization is given in Appendix B.2 and
follows the same proof strategy.

The theorem states that there are two different scenarios for the powers of the large players,
i € [£], in the limit, depending on the relation of the quota to a, p,and Ag. If ap < g < 1—-a+ap
and q — ap ¢ Ay, the total power of the large players approaches 1; in all other cases, the total
power of the large players goes to 0. It is noteworthy that the latter case stems from two regimes
that differ in their stability: Following Dubey and Shapley [1979], we define a set of pitfall points for
the quota as P = ap + Ay. A quota taking a value at the pitfall points leads to the limit of the game
being unstable: A small perturbation to g, p or the large player weights will change the behavior in
the limit so that the total large player power goes to 1 (instead of 0). By contrast, for q outside the
range [a, 1 — a + ap], the limit is stable: the fact that the total power of the large players goes to 0
is robust to perturbations. We illustrate these regions in Figure 3.

ap ap +wq ap +wp ap +wy +wp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 p 0.8 0.9 1

Fig. 3. The different regions for q that determine player power in the oceanic limit with £ = 2 large players of
weight wi = 0.2 and wy = 0.3 at propensity p = 3/4. Here, @ = 0.5 is the share of weight made up by the small
players. The blue regions correspond to the interval ap + [0,1 — a]. The weights achievable by large players
are Ap = {0, w1, wz, w1 +wa} and the "pitfall points" P = ap + Ag are marked in red. As long as the quota
falls in the blue region, the large players retain power as the small players shrink.

A key observation to understand these cases is that in the limit, the fraction of small voters who
vote YES is tightly concentrated around p, so the weight that they contribute to the coalition is
tightly concentrated around ap. Now, if the quota is between ap and ap + (1 — @), some large
players are going to be pivotal at these most-likely weight sums. If there exists a coalition of large
players S C [£] so that ¢ = ap + X ;cs wi (ie., if ¢ € P), then small players become pivotal as well
in the limit. In the proof, we show that in both the case that g € P (where both large and small
voters are pivotal in the most-likely coalitions) and q ¢ (ap, 1 — a(1 — p)) (where neither large nor
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small voters are pivotal in the most-likely coalitions), the sum of pivotal probabilities is dominated
by the small players, causing the large players to have shrinking power, going to 0 in the limit.

At all other quotas, where only large players are pivotal in the most-likely coalitions, the sum of
pivotality probabilities for all small players goes to zero, while the pivotality probability of each
large player tends to the limit derived from the reduced WVG g{; = (&, .. L ql__og’) . This
particular weighted voting game arises from assuming that p share of the small players always
vote YES and the remaining small players always vote No.

In this family of games, we see the special position that the quota-equals-propensity case occupies
in the family of propensity-Banzhaf power indices. In particular, it is not hard to verify that p = g
is the only value of p for which 0 < g —ap < 1—aforall @ € (0,1). Thus, p = g is the only value
of p for which the large players retain non-zero power for all « € (0, 1) (besides the unstable pitfall
points). Furthermore, we note that p = q is the only value of p for which the quota q:ff in the
reduced game Qé’ is equal to the original quota g. Thus, only at p = g are the powers as if the small
players didn’t exist and all large-player weights were scaled up equally to sum to 1, with the quota
unchanged:

COROLLARY 4.6 (ADAPTIVE BANZHAF IN THE OCEANIC CASE). It holds that
lim pi(Gn) = pi((£25, - 7255 9);
unless there exists S C [1] for which };cs wi = q(1 — ).

We conclude this section with two remarks: First, note that there are obstructions to obtaining a
result in the style of the Penrose Limit Theorem (see Definition 4.1) for the ratio of the players’
powers. In the first case of Theorem 4.5, ¢ € [ap, 1 —a(1—p)] \ P, pairs of large players will violate
the PLT, while in the second case, a pairing of large player and small player will violate the PLT
(with their power ratio converging to a constant). Finally, we note that in the literature the term
"oceanic" games is used for the greater class of WVGs where the weight of all small players goes
to 0, but they are not necessarily all equal. However, Dubey and Shapley [1979] show that in this
more general setting, the powers of the large players under the (1/2-propensity) Banzhaf power
index do not necessarily converge, even at quota 1/2. Therefore our narrower definition of oceanic
games is a reasonable place to look for positive results.

5 Veto Distortion

A player i ina WVG W = (w, q) is called a veto player if w; > 1 — g, or equivalently, i is included
in every winning coalition.* Intuitively, veto players have great power: Since no coalition of voters
excluding them is winning, their approval is necessary for any motion to pass.

As observed in Section 1.2, it can happen in an instance of the inverse power problem that the
discrepancy-minimizing weights for a power index include a veto player. Generally, this is not
necessarily concerning: If a player’s target power m; (for example, their population share) exceeds
the veto threshold of 1 — g, it is not unexpected that also their weight w; (in an optimal weight
distribution w* € W*(m, q, ) for power index @) exceeds the veto threshold, making them a veto
player. In contrast, it is concerning if a player whose target power m; is far below the veto threshold
becomes a veto player. We call such a player i with m; < 1 — g but w} > 1 — q an undeserving veto
player.

In this spirit, it is natural to investigate how undeserving a veto player is: How small can the m;
of a player be that receives a veto for some optimal weights w*? To answer this question, we define
the veto distortion of an inverse power problem instance with target distribution m, quota g, and

“In the case of a non-strict quota, the veto player condition becomes w; > 1 — q.
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power index ¢ as the ratio between the veto threshold of 1 — g and the smallest target distribution
value m; of a player i that ended up as a veto player in some discrepancy-minimizing weight vector
w*. If this fraction is less than one, no undeserving player of weight less than 1 — g was made a
veto player in any discrepancy-minimizing weight vector, so we set the distortion to 1.° That is,

1-—
veto-dist(m, ¢, ¢) = max { - q , 1}-
MiNy*eW* (m,q,¢) MNieN:w; >1-q M
We let the veto distortion of power index ¢ for fixed quota g be the worst-case veto distortion of
this power index for any target distribution m. With a slight abuse of notation, we write

veto-dist, (¢) = max veto-dist(m, g, ¢).
meAN

THEOREM 5.1 (ARBITRARY VETO DISTORTION). For any q € (1/2,1) and any p € (0, 1), the veto
distortion veto-disty(pP) is unbounded.

The key idea of the proof is to construct, for any quota g and propensity p, a family {G,} of
WVGs with weights {w”} and quota q that all have a veto player whose p-propensity Banzhaf
power can be made arbitrarily small for sufficiently large n. We then define the target distributions
{m™} to be precisely the p-propensity Banzhaf powers of those WVGs {G,,}. Now, since m" are
the p-propensity Banzhaf powers of WVG G,, we know that by definition the weights w™ are
going to have discrepancy 0 and thus be optimal. However, this already implies Theorem 5.1: By
our assumption on {G,}, we can make the power of the veto player ﬂf (Gn), and thus their target
distribution value m, arbitrarily small, while ensuring that the weights w" for which i is a veto
player are optimal weights. We can make the denominator of the expression defining veto distortion
arbitrarily small, leading to unbounded veto distortion. We give the construction of these {G,},
which is based on Theorem 4.5, and a formal proof in Appendix B.3.

For g = 1/2 and a non-strict quota, the veto distortion behaves a lot more nicely:

THEOREM 5.2. For any p € (0,1), if the quota is not strict (so that weights > q are winning), then
there is no distortion at simple majority: veto-dist, ;,(B?) = 1.

The proof of Theorem 5.2 can be found in Appendix B.3. The key idea is that for non-strict quota
1/2, any veto player is also a dictator: Any coalition that includes them is winning. From this, we
can deduce that the power of any veto player is 1, so it suffices to prove that the power distribution
(1,0, ...,0) is never optimal if no player’s target distribution value exceeds the veto threshold.

There remains the case ¢ = 1/2 with strict quota (i.e., weights > g are winning). That situation
can be distinguished from the non-strict case by an example. For the target distribution m =
(5/12,5/12, 2/12), one can easily confirm that in this case, veto-dist;/, () > ¢/s.

The results in this section may at first seem bleak. However, the proof of Theorem 5.1 relies on
engineering games that put p, g in an unstable "pitfall” relationship from Theorem 4.5. Due to this
instability, we conjecture that for ¢ = p, a random target distribution will have little to no veto
distortion with probability 1. As partial confirmation, the empirical results below in Section 6 show
that undeserving veto players are frequent for ¢ < p or q¢ > p, while they are rare in p = g cases.

SWe only focus on the issue of a player that does not deserve a veto (as m; < 1 — q) becoming a veto player. A related
question is whether it can happen that a player that would deserve a veto ends up without a veto in the optimal weights. We
believe the latter phenomenon is significantly less concerning; it is conceivable that some player of large target distribution
(e.g., population share) may need to forgo their veto for a discrepancy-minimizing power distribution.
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6 Empirical Results
6.1 Predictions from theory

As we have seen, the objective to minimize the discrepancy of the normalized vectors m and B can
lead to optimized weights w with w # B. In particular, Corollary 4.3 suggest that at large quotas
(larger than the propensity), the power of the largest player will lag far behind their weight. Thus,
to get the power to hit a target will require the allocation of a large weight. This is exactly what
has been observed for the ordinary Banzhaf power index (p = 1/2) at supermajority quotas: this
was noted for the United States at the IMF at g = 85% [Leech, 2002c], for Germany in the Council
of Ministers of the EU at quotas exceeding 75% [Leech and Machover, 2003], and in our consulting
work for Ontario County.

On the other hand, our theoretical results from Section 4.1 tell us that in several limiting
constructions, the adaptive Banzhaf power index leads to proportional optima

m=w=p.

We now design a range of experiments to test whether the asymptotic predictions are already
observable in small finite games.

6.2 Experiment setup

In the experiments, we focus on two forms of distortion: In an instance of the inverse power problem
with target distribution m such that m; < ... < m,, quota g, and power index ¢, the largest-player
distortion of a weight vector w is the (signed) difference between the weight and target of the
largest player:®

large-player-distortion,, , ,(w) = wy — my,.

Similarly, we define the total distortion to be the L! distance between the weights and the target
distribution,

total-distortion, g, (W) = [lw —ml||; .

We study these notions of distortion for optimized weights in real-world instances: counties in
New York State, especially Ontario, and executive directors of the International Monetary Fund.

Unless otherwise noted, we find optimized weights giving powers close to the desired target
using a simple Markov chain method. Weights are initialized to be proportional to populations.
Then, in every iteration, we sample a player with probability proportional to the absolute difference
between that player’s power index and population share (the power target). The weight of that
player is then adjusted in the direction that would reduce the discrepancy by a small, random
step size. The search terminates after 1000 consecutive steps in which the L! discrepancy did
not improve. We empirically observe that this approach stabilizes, with multiple runs eventually
converging to roughly the same near-optimal solution, with tiny values for the objective function,
often with |m — ¢| < .001 for vectors with entries summing to 1. Figure 8 in Appendix C.2 shows
the progression of one such run as it converged to optimized weights for quota 3/4 and propensity
1/2 (i.e., the exact setting described in Section 1.2).

To confirm that the results are not just artifacts of our heuristic algorithm, we employ an integer
linear programming (ILP) approach due to Kurz [2012] to find globally optimal weights for small
instances, confirming our findings. Exact results are presented in Appendix C.3.

%It is not hard to check that this largest-target player will also be the player with the largest weight in an optimal solution.
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6.3 Ontario County

Data. Recall that there are 21 members of the Board of Supervisors in Ontario County, who pass
measures by weighted voting. The sizes of the populations they represent, as well as the weights
optimized for quotas 1/2,3/s, 2/3,3/4, and 4/5, can be found in the supplementary material in Table 1.
The largest player in this weighted voting game is the Town of Victor with a population share of
14.1%.

Experiments. For every combination of propensity p and quota q in the set {50%, 51%, ..., 99%},
we found heuristically optimized weights under p-propensity Banzhaf power index with a Markov
chain local search as described above. Victor’s weight distortion is shown in Figure 4, while the
heatmap showing the total distortion is deferred to Appendix C.

Weight of Largest Player

40

HEeE

20

PR SV

Threshold (t)
3
°
(%) YBIaM SSa9%3

1
1
1
1
1
1
1

525 758596061 172737475767778798081828384858687888990919293949596979899
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Fig. 4. Largest-player distortion for the Town of Victor, where m is the (fixed) vector of population shares
in Ontario County and w has been heuristically optimized for each (p, q) pair. Outlined boxes represent
situations where the weight boost makes Victor a veto player. The dashed line represents the threshold at
which Victor would be a veto player with naive weights w = m.

These results empirically confirm that the predictions of Corollary 4.3 hold in a 21-town instance,
rather than merely asymptotically. In particular, the U-shape of the limiting ratio is visible. When
the quota is much larger than the propensity, the largest town has power lagging far behind weight,
so a near-optimal solution calls for massively high weights so that the power can hit its target.
When the propensity is roughly equal to the quota, the weight of the largest town is roughly
proportional. For quotas less than the propensity, the optimized weight of the largest player first
decreases, before increasing again in the bottom right corner. We note that the line of zeroes, where
weight and power match, is not exactly along the main diagonal p = g (adaptive Banzhaf) as the
asymptotic theory predicts. However, along this main diagonal, Victor becomes a veto player right
around the line g = 1 — m where its population is large enough to "deserve" it.
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- - - Victor’s population
veto threshold

Victor’s weights from
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Victor’s weight from
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Fig. 5. In Ontario, adaptive Banzhaf causes Victor’s weight to stay close to proportional until they become a
deserving veto player, after which their weight grows quickly.

By contrast, ordinary Banzhaf is observed along the left-hand edge of the square, at propensity
p = 1/2. There, the optimized weight of Victor increases almost linearly with the quota, for quotas
greater than 70%. Figure 5 shows another view.

6.4 Counties in New York State

Data. In each of the 16 counties in New York State that use weighted voting, we obtain the voting
weights for the Board of Supervisors from the local laws in the counties; the populations of the
towns they represent are pulled from the 2020 Decennial Census [U.S. Census Bureau, 2020].
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Fig. 6. For each of the 16 counties in New York State that use weighted voting, we show the largest player’s
population and their weight in the optimized weights under the Banzhaf power index and adaptive Banzhaf
power index at quota q = 3/4.
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Experiment and Results. For each county, we find optimized weights under both the ordinary
Banzhaf index and the adaptive Banzhaf index at quota ¢ = 75%. We find that in all 16 counties, the
largest player distortion is negative for the adaptive Banzhaf index and positive for the ordinary
Banzhaf index, with the latter dominating in magnitude. In seven counties, thus almost half
of the analyzed counties, the largest player has a population share (i.e., target) below the veto
threshold, but under the Banzhaf power index receives weight above the veto threshold, making
them an undeserving veto player. In some cases, the largest player’s weight is more than twice their
proportional share. In one county, Hamilton, the largest town’s population just exceeds the veto
threshold, while their optimized adaptive Banzhaf weight is just below: a town "deserving" of a veto
does not get one. We plot the largest player population and weight, from which the largest player
distortion can easily be inferred, in Figure 6. Furthermore, in all 16 counties, the total distortion of
the Banzhaf index is significantly larger than that of the adaptive Banzhaf index. We plot this in
Figure 7.

total distortion total distortion
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Fig. 7. For each of the 16 counties in New York State that use weighted voting, we show the total distortion,
the L! distance between optimized weights and populations, under the Banzhaf power index and the adaptive
Banzhaf power index at quota g = 3/4.

6.5 Additional experiments

We analyze voting in the International Monetary Fund in Appendix C.5. Weight distortion for
the largest player (the United States) at supermajority quotas was identified as paradoxical and
problematic in Leech [2002c]. Here again, optimizing weights for the adaptive Banzhaf index works
in practice, alleviating the distortion paradox.

Heatmaps displaying the total distortion and largest-player distortion for all combinations of
propensity p and quota q in the set {50%, 51%, . .., 99%} for Ontario County, Livingston County, and
a set of synthetic examples can be found in Appendix C.4. We consider two synthetic populations
that resemble a finite version of the oceanic case and find that the pitfall points are clearly visible
from the optimized weight vectors.



Jakob de Raaij, Moon Duchin, Ariel D. Procaccia, and Jamie Tucker-Foltz 18

7 Discussion

We have argued that the properties of the adaptive Banzhaf power index make it an appealing
alternative to the ordinary Banzhaf power index, leading to more proportional weights in the inverse
power problem while still abiding by the essential assumptions that players vote anonymously and
independently. Due to the independence of the voters, it is a policy-seeking power index in the
formulation of Felsenthal and Machover [1998], measuring a fundamentally different notion of
power than the office-seeking Shapley-Shubik index. Thus, it conserves the known conceptual and
theoretical advantages of the Banzhaf index over the Shapley-Shubik index for measuring voting
power.

There is another body of work giving signs in favor of the adaptive Banzhaf index over the
ordinary Banzhaf index and Shapley-Shubik index. Leech [2002a] argues that shareholders in
publicly traded companies offer real-world approximations to oceanic games, with few large
players and a large number small players present. Drawing on classic work from Berle and Means
[1932], Leech argues that a knowledgeable analysis of the powers should indicate that the practical
control over decisions (i.e., the power) of the large players greatly exceeds their voting weight.
Therefore, a power index that reflects this reality, when applied to publicly traded companies,
should in most cases assign disproportionately much power to the few players with large voting
weight. Analyzing data from publicly traded companies in the UK, Leech [2002a] finds this is the
case for the Banzhaf index but not for Shapley-Shubik index, at a quota of 1/2. In the light of our
results for oceanic games (Theorem 4.5), this is not surprising: Unless the large player weights
lead to a (very unlikely) pitfall point, the ordinary Banzhaf power index at quota q = /2 will lead
to the large players having disproportionally high power. Interestingly, this no longer holds for
the Banzhaf power index at any quota other than 1/2, when « is sufficiently close to 1. Instead, by
Theorem 4.5, we see that the adaptive Banzhaf power index is the only p-propensity Banzhaf power
index that satisfies Leech’s criterion for all quotas q and any a. We see this as intriguing evidence
on the side of adaptive Banzhaf.

Let us close where we started, in Victor, New York. Our results show that the seeming necessity of
the Victor veto for supermajority voting is merely a byproduct of contestible modeling assumptions.
Adaptive Banzhaf power can serve as a tool for institutional design, aligning mathematical notions
of power with normative expectations and avoiding distortions that undermine the legitimacy of
real-world voting systems.
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A Additional Related Work

Voting power. The formal study of voting power was initiated by Penrose [1946] studying the
probability that a voter is on the ‘winning side’ of a YEs/NO vote, when all other voters vote
independently and uniformly at random. Independently, Shapley and Shubik [1954] developed the
first power index, now known as the Shapley-Shubik index, by applying the Shapley value from
cooperative game theory to weighted voting. After Banzhaf’s paper made a splash in the 1960s,
Weber [1979] generalized both the Shapley-Shubik and the Banzhaf index to a class of anonymous,
probabilistic power indices called semivalues. Some less-well-known power indices, which do not
fall into the class of semivalues, were defined by Deegan and Packel [1978] and Johnston [1978].
More information about these power indices and their respective justifications and shortcomings
can be found in the survey by Felsenthal and Machover [1998].

Law and political science. Banzhaf’s investigation of voting power came in the wake of major
U.S. Supreme Court decisions in Baker v. Carr (1962) and Reynolds v. Sims (1964) interpreting the
constitution to mandate equalization of voting weight with a strong basis in raw population. He
argued against naive weighting (with weights presumed to be proportional to power) in [Banzhaf,
1965], with a follow-up in [Banzhaf, 1968]. Subsequent coverage in law reviews and political science
journals has not been extensive but includes at least work by Brenner [1978], Gelman et al. [2004],
Grofman [1981], and Ostrow [2016].

Complexity of computing the Banzhaf power index. Matsui and Matsui [2001] show that deciding
whether a voter’s Banzhaf (and Shapley-Shubik) power is non-zero is NP-complete, thus proving
the problems of computing the Banzhaf power index or measure, and of even getting an multi-
plicative approximation to them, to be intractable. Many papers propose algorithms for additive
approximations to the Banzhaf power index or measure in large instances [Bachrach et al., 2010,
Leech, 2003, Matsui and Matsui, 2000].

The inverse power problem. The problem of finding weights giving powers close to a desired
distribution is as old as the question of how to measure voting power. While the problem is known
to be intractable [Diakonikolas and Pavlou, 2019], there exist many approximation algorithms [Aziz
et al., 2008, Diakonikolas et al., 2022, Leech, 2002b]. Alon and Edelman [2010] prove that there exist
certain power distributions for which no weighted voting game, no matter the number of players,
leads to Banzhaf powers close to it. Kurz [2012] extends this analysis to the Shapley-Shubik index
and proposes an approach based on integer linear programming for solving the inverse problem
exactly.

Empirical evidence for Banzhaf vs. Shapley-Shubik. Clearly, we cannot expect either power index
to actually coincide with observed coalitions in real-world settings. Since the power indices aim
to make an a priori measurement—the power distribution in a voting body without consideration
of the players’ nature—they must be agnostic to ideological similarities between voters. Gelman
et al. [2004] examine which of the two indices’ assumptions on the distribution of coalition sizes
matches data from states in U.S. presidential elections by looking at the vote share the winning
party received. They find that while coalition sizes around the threshold of 1/2 are more likely
than extreme coalition sizes (which provides evidence against the Shapley-Shubik assumption), the
distribution of the winning party’s relative vote share around the threshold seems to be independent
of the number of voters (which conflicts with the Banzhaf assumption). Leech [2002a] investigates
the voting among shareholders in publicly traded companies in the UK and finds that the Banzhaf
power index aligns with the qualitative comparison of practical power described in the literature
much better than Shapley-Shubik.
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B Missing Proofs
B.1 The Penrose Limit Theorem

An important building block is the following local limit theorem for lattice distribution, proved in
Petrov [1975]. For us, it plays the role of a lemma.

Lemma B.1 (Locar LiMIT FOR LATTICE DISTRIBUTION). Let {D;};cw) be a finite number of
distributions over the integers, each with finite variance. The span H; of distribution D; is the smallest
integer h for which there exists an integer a so that Pry.p,[x = a (mod h)] = 1. Let X;,X;, ... bea
sequence of independent random variables where each X is distributed according to one of the D;. Let
Dy, ..., Dy, be all distributions according to which infinitely many X; in the sequence are distributed
and let their spans be Hy,..H;,.. If ged (Hj, ..., H;,.) = 1, then the distribution is asymptotically

normal:
n 2
1 1(x—pn
EX-:x — ——exp|——
! Var p( 2( On ))

j=1
where j1 = E[Z;?:l Xj] and o, = Var(z;-lzl XJ-).

n—oo
— 0,

sup |0, Pr

xX€Z

Proor oF THEOREM 4.2. Without loss of generality, we’ll assume that players i, j are players of
weight w; (‘player 1’) and of weight w; (‘player 2°), and that w; < w,. Going forward, we’ll thus
reuse i and j as variables, no longer to denoting the 2 players in question. Furthermore, we’ll refer
to the WVGs in their unnormalized form Q(”) = (wl, oo, Wi qW(”)) since this simplifies notation
(note that this does not change which coalitions are winning and thus doesn’t change the powers).

Fori € {3,...,n}, we let X; ~ Bernoulli(p) be independent random variables representing how
the ith player votes. Thus, S, = )1, w;X; denotes the weight of a random coalition, conditioned
on excluding the first two voters.

Welet T, = |_qW(”)J be the integer voting threshold: Any coalition with more than T, weight is
winning, any coalition with T;, or less weight is losing.” Thus, we can observe:

e Player 1 is pivotal if and only if S, € {T,, — w1 — wa + 1,..., T,, — w} and player 2 votes YES or
Sy € {T, — w1 + 1,..., T,,} and player 2 votes No. Thus,

B2 (Gn) = pPr[Sy € {Tn — w1 — wa + 1,0, Ty — wo}] + (1= p) Pr[S, € {Tp —wy +1,... T,,}].

e Player 2 is pivotal if and only if S,, € {T, — w; — w2 + 1,..., T, — wy} and player 1 votes YEs,
Sp € {T, — w2 + 1,.., T, — wy } regardless of player 1’s vote, or S,, € {T,, —w; + 1,...,T,,} and
player 1 votes No. Thus,

BE(Gn) = pPr[Sy € {Tn —wi —wp + 1,.., T — wo} ]+
+Pr[S, e {T, —wo+1,...,T,, —wi}]+(1=p)Pr[S, € {T, — w1 + 1,.... T, }].

p1(Gn) _ BL(Gn) _ BL(Gn) .
P2(Gn) = TG~ (g").To calculate the limit

Let’s first consider adaptive Banzhaf. Note that

of
wi+wy—1 wp—1
R Pr[S, =T, - il +(1— Pr[S, =T, —i
ﬁ;](gn) ~ p i:z:wz I'[ n l] ( p) Eo I'[ l] .
ﬁQ(g ) - wi+wy—1 wy—1 w—1 ’ ( )
2 p X Pr[Sy=Th—il+ X Pr[Sp =T, —il+(1-p) X Pr[S,=T,—i]
i=wy i=wy i=0

Note that the proof works identically if we set T;, = |—qW(")-| — 1, corresponding to the case when a coalition is winning if
it meets the quota (but does not necessarily need to exceed it).
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we’ll first determine the ratio Pr[S, = T,, — ¢]/Pr[S,, = T,,] for n — oo and a constant c.

The X; are independent random variables from at most W different distributions (one for each
possible value of w; in [W]). The distribution of X; has finite variance and span w;. Thus, primitivity
of the weight sequence implies that the greatest common divisor of the span of all distributions
that appear infinitely often as distributions of X; is 1, so we can apply Lemma B.1 to get that we

can write
1 1 1(x -\
Pr[S,=x] = — (_\/ﬂ exp (—5( . ) )+§n(x))

for i, = gq(W™ —wi—wy), 0, = 4 |25 q(1 — g)w?, and some error &, (x) where sup, . |&,(x)| — 0

as n — oo. Thus,

_1 Th—c—fin 2 _
Pr[S, =T, —c] _ eXp( 2( On ) )+§"(Tn ¢)

Pr[S, =T, exp(_%(ng_ﬁ)Z)ﬁn(Tn)

Since both |T,, — py| and |T,, — ¢ — np| are bounded above by a constant independent of n but

2 2
0, — 0 asn — oo, we get that both exp —%(T"_n”) ) and exp (—1(T"_C_"”) ) goto e’ =1as

o\n 2 ovn
n — oo. In particular, since the limit of the denominator is non-zero, we get that for any constant c,
Pr[S, =T, —c]
e 1
Pr[S, = Tp]

as n — oo. This is the key finding for the proof of the first part of the theorem: The distribution of
the weight of a random coalition, S,, is flat around the threshold T,,. Thus, the players powers are
proportional to the size of their corresponding interval of pivotality, i.e. their weight. Formally,
plugging into Equation (1), this tell us that

Bl (Gn) pwi + (1= pwy) W

BL(Gn) - pwi+ (wa—wi))+(1=p)wi Wy
Thus, the PLT holds for adaptive Banzhaf at any quota g € (0, 1).

Let’s now assume that the weight sequence is regular, i.e., that all the natural densities d,,
for w € [W] are well defined, and consider the general case where p € (0, 1), not necessarily
equal to the quota. We cannot directly use the same trick as in the p = q case, since the ratio
Pr[S, =T, —c|/Pr[S, = T,] as n — oo will not be 1 for all constant ¢ (in terms of n) but instead
depend on c. To overcome this, we use a technique that is standard in probability theory called
exponential tilting, modifying S, to make its expectation equal to gW (™: Let

n n
ks, (s) = InB[e*] = D B[] =} xx, (5)
i=3 i=3
be the cumulant generating function of S,,, where kx,(s) = In (1 —p + pe*™) is the cumulant
generating function of X;. We let s;, be the unique solution to

n wis*

’ * pwie ™ (n)

ks, (s,) = — =qgW'".
" Z; 1—p+pewish

n  (-p)pwie™is

i=3 (prpein? > 0

Note that there exists exactly one such s;, since k¢ (s) is continuous, kg (s) =
n n

for all s, lim,_, K;n (s) =0, and lim_,, K;n (s) =wm,
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We define the exponentially tilted random variables X! for i € {3,...,n} by

Pr[X! = x] = %%~ () Pr[X; = x],

and S;, = }' 5 X/ so that

Pr[S) = x| = en* s (0) Pr[s, = x].
It are well-known facts about exponential tilting that the X; and S, are well-defined random
variables and that E[S;,] = KS (i) = gW™ and Var(S),) = K (sn)

B (Gn) _ PY(Gn)
Bz (Gn) B (Gn)

We can now write

witwp—1 | wi—-1
p X erPrlS, =T, —i]+(1-p) _Z‘z) en Pr[S, =T, —i]
Sl i=
wy+wy—1 . wy—1 - w;—1 . (2)
p Z esnPr[S, =T, —il+ Y enPr[S,=T,—-i]l+(1—-p) X esnPr[S, =T, —i]

i=w i=0

Now we can apply the same technique as in the previous case of p = g to determine the ratio
Pr[S; =T, — c]/Pr[S; = T,] for n — oo and any constant c: The X] are still independent random
variables from at most W different distributions (one for each possible value of w; in [W]); the
distribution of X/ has finite variance and span w;. Thus, primitivity of the weight sequence implies
that the greatest common divisor of the span of all distributions that appear infinitely often as
distributions of X! is 1, so we can apply Lemma B.1 to get that we can write

11 1(x—u\°
Pr[S, =x] = —|— - ) +¢,
115, = %) a;,(@exp( (=) ) ¢ (x))
for yi = E[S,] = qW™, o/, = [ke, (s5), and some error &,(x) where sup, 7 [£,(x)| — 0 as
n — oo. By the exact same argument as above, we get that for any constant c,
Pr[S, =T, —c]
L - N |
Pr[S, = T]

as n — oo, We get that

BG) P e (1 - p) Ty e
nl—r>l;lc P _nh—I}go witwy =1 sk we—1 Jis, wi=1 g
P (Gn) pIi e p et 4+ (1-p) T e

To simplify notation, we set r, = e*n. Recall from the definition of s’ that r, thus is the unique
i wj . c w

1p;+;,rw,- — qw;), which converges to .7, dw(%

is not hard to Verlfy that convergence also holds for the unique positive root so that r = lim,_,c 7.

Plugging into Equation (3), we get that when r # 1

ACHN prv i + (1-p) _(=r")(1-p+pr)

o ‘Bp(gn prwz lzz‘r"l W 17r(1‘:2r‘wl) +(1-p) 1;1”:1 (1-rw)(1—-p+prw)

®)

positive root of 2 37 4 ( —gw) asn — oo. It

and whenr =1,
PG pwir(-pwm _w
n—eo ,Bf(gn) pwi+(wy —w))+(1=p)w;  wy
To finish the proof, we note that it holds that r = 1if p = g. Since x§_(In(r)) is strictly monoton-
ically increasing in r and p, it follows that r = 1 if and only if p = q. O
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ProoF oF COROLLARY 4.3. To depart from the informal term"U-shaped", we will say that a func-
tion f is strictly negatively unimodal on an interval I if there exists a value r* € I such that f is
strictly monotonically decreasing on (ico, r*] NI and strictly monotonically increasing on [r*, co) NI
Thus, to prove the corollary it suffices to show that nlgrolo /3{) (Gn)/ ﬁf (Gn) as afunction of q is strictly

negatively unimodal on (0, 1).

First, note that if g : I — ] is strictly increasing and its image is all of J, then by the chain rule f
is strictly negatively unimodal on J if and only if f o g is strictly negatively unimodal on I.

As established in the proof of Theorem 4.2, for any fixed p € (0, 1) the right-hand side of the

equation defining r, namely K.';.n (In(r)) = vavzl d is strictly increasing in r on Ry. Thus,

r\«v'
w 1_p+Prw >
the equation 3."V_, dw% =q- > d,w has a unique solution r = r(q) and r(q) is a strictly
increasing function of g. Furthermore, r : (0,1) — R, has image R since limg 0 r(q) = 0 and

limg_,1 7(g) = co. Therefore, we get that to prove the theorem, it suffices to show that the function

U k-1 _ wj
R ﬂf(g»:(%r )“ p+or)
A (kwé rk—l) (1—p+pr™)

is strictly negatively unimodal on R .
Now, note that we can equivalently write

(1-r")A—p+pr™)
1) =5 -

(1=r")(1=p+pr)
with (1) = w;/w; being a smooth discontinuity. In this notation, it becomes evident that we can
use the composition of functions trick one more time: Using g(r) = /™, with g : Rog — Ry
and image R, we get that it suffices to show that f is strictly negatively unimodal on R, when
w; =1 (forall pand w; = w > 1).

To prove this, we look at its derivative

(p-1) X5 jr +p X (w = jyrvi !

(1-p+przyer)

For r € R, the denominator is strictly positive, so the sign of f’(r) is equal to the sign of the
numerator. The numerator is a polynomial with a single sign switch in the coefficient series, thus
Descartes’ rule of signs implies that f” has exactly one positive root, we’ll denote it 7*. One can
quickly check that lim,_,o f’(r) < 0 to get that f'(r) < 0 when r € (0,r*) and f’(r) > 0 when
r € (r*, 00). This implies that f is strictly negatively unimodal on R,.

Finally, when q = p it holds that r = 1. It is easy to confirm that f"(1) = (2p — 1) Z]W:_ll j. Thus,
f'(1) > 0 when p > 1/2, f’(1) < 0 when p < 1/2, and f’(1) = 0 when p = /2. Since r(q) is strictly
increasing in g, this implies the stated sign of the derivative at g = p from the corollary. O

)=

PrOOF OF COROLLARY 4.4. As pointed out in the paper, any semivalue in which players are
assumed to vote independently is a p-propensity Banzhaf power measure: If players vote indepen-
dently, they each have a probability p; of voting YEs. Since semivalues are anonymous, all p; are
the same. Thus, any normalized semivalue where players vote independently is a p-propensity
Banzhaf power index.

By Corollary 4.3, we know that for any fixed propensity p and primitive, regular weight sequence
w, the PLT holds for quota g = p and for at most one other quota which we’ll denote G(p,w) as a
function of p and w. If we can show that for any p, there exist two weight sequences w; and w,
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(that are regular and primitive) so that g(p,w;) # G(p,ws), it follows that for no g there exists a
value of p other than p = g such that the PLT hold with respect to the p-Propensity Banzhaf power
index for all w (fulfilling our assumptions).

It remains to show this claim. We consider the two weight sequenceswy =1,2,1,1,2,1,1,2,1, ...
andw,; = 1,2,2,1,2,2,1,2,2, ... Assume towards a contradiction that §(p,w;) = §(p,w,) and denote

. . . : 1_pn 2 2 12
this value as q. Let r; be the unique positive solution to 31— o T3 —— q(3+2-%)andlet

. ey . 2 pn 1 Zpr2 _ 2 1
rz be the unique positive solution to § oot 3 1—p+;1)rf =q(3+2-3).
Let’s first consider the case r; = r, and denote this value as r. It holds that

1_pr 2 _2pr 2_pr 1_2pr?
31-ptpr * 3 1-p+pr? 3 1-ptpr = 3 1—p+pr?
5 - 4 ’
3 3
which implies that
pr Zpr2

2 =
l—p+pr 1-—p+pr?
or equivalently
(1-pyr(r-1)=0.
We know that r # 0, so it follows that r = 1. However, we know from the proof of Theorem 4.2 that
r = 1if and only if g = p, a contradiction.
Thus, there remains the case r; # r,. However, since g # p, we know that ry, r, # 1. This implies

v

that there are 3 values r1, 73,1 > 0 at which f(r) = lim, ﬁ;gg”; takes the value 1/2. This is a
j n

contradiction to f being strictly negatively unimodal on R as shown in the proof of Corollary 4.3.

This finishes the proof. O

B.2 Oceanic games

Dubey and Shapley [1979] proved Theorem 4.5 for p = 1/2. They also proved a version of Theorem 4.5
for general p for unnormalized Banzhaf powers but do not consider normalized Banzhaf powers
for p # 1/2. Conceptually, our proof of Theorem 4.5 is identical to the proof by Dubey and Shapley
[1979] for normalized Banzhaf at p = 1/2, with modifications to work for any p.

For the proof, we will rely on a handful of well-known facts about the asymptotic behavior of
binomial coefficients, which we restate here for the reader’s convenience.

LEMMA B.2 (FACTs ABOUT BINOMIAL DISTRIBUTIONS). Let p € (0, 1). Define b(n, p,k) = p*(1 -
p)nk (7) to be the probability that a binomial random variable with n trials and success probability p
takes on value k. AllO(1) and o(1) are in terms of n.

(1) It holds that
1+0(1)

\2mnp(1 —p).

(2) For anys # p and sequence (sp)neN Such that s, = sn + O(1), it holds that

b(n,p,np +0(1)) =

> bl p k) = O(b(n.p.sn)) ifs < pand > b(np.k) = O(b(n,p.s) ifs > p.

k=0 k=sn
(3) Foranyr <s < p orr > s > p and sequences (sp)nen and (ry)nen such thats, = sn + 0O(1)
(sn)nen andry, = rn + O(1), it holds that
b(n,p,sp) _ o)
———L =",
b(n>p’ rn)
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(4) Foranyr < p < s and sequences (sp)neN and (rp)nen such that s, = sn = O(1) (sp)nen and
r, = rn = O(1), it holds that

Sn

lim b(n,p, k) =1.

n—oo

k=rp
Proor. (1) This follows directly from the Central Limit Theorem for binomial distributions,
see for example Grinstead and Snell [1998].
(2) Let’s first assume s < p. For any k € {0, ..., s, } and n large enough, it holds that
Sn

< b(n, p, k) —L

_ 1=p * —n
b(n,p,k —1) = b(n,p, k) b nok+l FEEETEE

Sn

1-p
pns

We denote ¢, = 7 and note that lim, e ¢, = I_Tp £~ € (0,1). Thus, we get that for

1-s
n large enough

Z b(n, j22 k) < b(n, P sn)z (cn)k < b(n, y22 Sn) 1 _1 = O(b(n’ 2 Sn))-
k=0 k=0 n

The case s > p can be proved analogously.
(3) By Stirling’s formula, we get that

b(np,sn) _ r(1=1) w(D(rlp)-Dislp) _ L0
b0, 1) =(1+0(1)) s1=s) ) =e ",

where D(r||p) — D(s||p) > Osincer <s < porr >s > p.
(4) From part (2), we know that

rn—1
lim b(n,p, k) = lim O(b(n,p,r,) =0,
n—oo k:0 n—oo
n
lim b(n,p,k) = lim O(b(n,p,sy)) =0.
n—oo k:Sn+1 n—oo

Since Y.;_, b(n, p, k) = 1, the claim follows.
O

Proor oF THEOREM 4.5. We'll first calculate the unnormalized propensity Banzhaf powers of
the players. We then examine whether the total power of the large players, ;[ ﬁ (Gn), or the

total power of the small players, 57| ﬁ‘f (Gn), dominates as n goes to infinity. In the cases where

the large player power dominates, we’ll then solve for the relative powers of the players.
4

Let S C [£] be any subset of large players. We let rs = , so that a coalition of S

and rs small players is losing but a coalition of S and rs + 1 small players is winning. Thus, the
unnormalized Banzhaf powers of the large players are

ﬂﬁ(gn) — Z Z ) k+\5|(1 )(n+{’—1)—(k+\5|)
Scle]\{i} k= rsu{iytl

rs

= > D bk -p s
SlT\i) kersom+1
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where b(n, p, k) = p*(1-p)** (7) and we define binomial coefficients with negative bottom entries

as 0. We let ﬁ]arge(gn) = Diele] ﬁf (Gn) be the total power of large players. Similarly, we can get
the total power of the small players as

{+n
Bsmall(gn) = Z ﬁf’(gn) =n Z (n - l)prs+|5(1 _p)(n+t’—l)—(rs+\5|)
i={+1 Scle] Ts
= Z (n— T’s)( n)prs+|5 (1 _p)(n+f—1)—(rs+\5|)
scre] 'S
= ) (n=rs)b(np.rs)p!®l(1 = p) 7L,
Scle]

Let’s now examine how the ratio of the total power of large players to the total power of small
players, B]arge (Gn)/ Bsmau(gn), is going to behave in the limit:

e First, assume there exists a coalition S* such that lim,_,« % = p. This case applies precisely
if there exists a coalition S* C [¢] such that p = lim,ers-/n = (@ — Djes) /@, 1€, q =
ap + Yies- Wi, or equivalently, g € P. By Lemma B.2, part (1), there thus exists a term of the
form !J(n, p,np + O(1)) in the sum of the total powers of the small powers. We thus know
that Boman(Gn) 2 (n - rs)g(\%g) = ©(~/n). However, Bi(Gn) < 1foralli, so ﬁlarge(gn) <t

It follows that flarge (Gn)/Bsmall(Gn) — 0 and therefore lim,_,« fi(G,) — 0 for all i € [¢].

o Next, we consider the case of the quota g being such that lim,,_,. rg/n < p (thuslim, e rs/n <
p for all S) or lim, e, r[)/n > p (thus lim,_,. rs/n > p for all S). This case applies precisely
when q < paorq > ap+W = 1—-a(1-p). Let’s focus on lim,,_,, r9/n < p first. By Lemma B.2,
part (2), we know that ,BAlarge(Qn) =0O(b(n,p,rp)) and ﬁsmau(g,,) =O(nb(n,p,rp)). It follows
that Blarge (Gn) / Bsmanl(Gn) — 0 and therefore lim, e, f;(Gn) — 0 for all i € [£]. The case
lim,, o r[7]/n > p is analogous.

o There remains the case g € [ap,1— a(1—p)] \ P. Note that due to S = @ and S = [¢], ap and
1—a(1—p)] are always in P, so we may exclude these values from the interval. By definition
of P, we know that in this case no binomial coefficient (r"S) with lim,_,« rs/n = p appears
in Esman(gn). Thus, we know by Lemma B.2, part (2), that Bsmau(g,,) = O(nb(n,p,s,) +
nb(n, p,s;)) for sequences (s,)nen and (s;,)neny With s, = sn+ O(1) and s;, = s'n+ O(1) so
thats < p <s'.

In contrast, we know that ([n';]) has to appear in some ﬁlarge (Gn). In particular, assume

WLOG that wy > wy, ..., we—1. For some j € [£ — 1], it holds that }};c[;; wi + ap < q but

2ic[j+1] Wi + ap > q (equaling g is not possible since we know g ¢ P). Since wy is the

largest weight, it follows that X ;c[;) wi + @p < q but X;c[jju(ey Wi + @p > q. Therefore,

P € [limye0 7[jjufey /1 limy oo 71 /n]. This implies that Blarge (Gn) = Q(b(n, p, [np])).

By Lemma B.2, part (3), it follows that ﬁlarge (Gn)/ Pomatl (Gn) > €™ /n — 00 as n — co.
What remains is to determine f;(G,) in the third case. By Lemma B.2, part (4), we know that

hm i b(n,p, k) _ 1 lfllmn—>oo rSU{i}/n < p < llmn_mo rg/n .
n—s00 ko 1 0 iflim, e Fsuqiy/n > porp > lim, o rs/n

Since we know that in this case lim,_, rs/n # p for all S, we don’t need to be concerned about
the other cases. Now, observe that for any coalition S, rs/n < p implies }} ;e w; > q — ap while
lim, o rs/n > p implies 3} jcs wi < q — ap. Thus, the above expression converges to 1 exactly if
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coalition S is less than a threshold but coalition S U {i} is exceeding this threshold—this is exactly
definition of i being pivotal for a coalition S. We can write

BGn= D, pivgn (9 plla-p 7 = oG,

Sclel\{i}
where Q;O) = (F5s o Tt q_ufp) as defined in the theorem statement. O

B.3 The Emergence of Veto Players
Proor oF THEOREM 5.1. Following the proof outline from Section 5, we first show how to con-
struct, for any g € (0,1),p € (0,1), a family of WVGs {G,,} where G, = (w";q) so that w] > 1—¢q
for all n (i.e., player 1 is a veto player in G,) but lim,,_,c ﬁf (Gn) =0.
We start by considering the cases where g < HTP We let
Gn=(wiwa, 5.0, 539),

——
n

where w; = 1/2, a = =Y 2 and wy = 1 — wy — a. Note that the WVG is well-defined: By definition

P
w1 +wy+a = 1; furthermore, a € (0, 1) since % <qg< HTP and w, € (0, 1) since wi+a = W <
% = 1. As desired, player 1 is a veto player since w; > 1 — q. Since q = ap + wy, we get by

Theorem 4.5 that lim,,_,c, ﬂf (Gn) =0.
Next, consider the remaining cases q > HTP. Note that for p € (0,1), g € (1/2, 1), this implies
q > p. We let

gn = (le %""> %;q)’
N—————
n
where w; = % and a = i:—g. Note that the WVG is well-defined: w; + « = 1, and w; > 0 since

q > p and a > 0 since g < 1. Furthermore, we get that w; > 1 — g, since g >1-q& zqfq_l > p,

which follows from ¢ < 1 and p < 2q — 1, by the case assumption. Since ¢ = ap + wy, we get by
Theorem 4.5 that lim,,_, ﬂf (Gn) =0.

Now, for {G,} chosen according to which case of p and g we are in, let m" = p#(G,) and let w"
be the weights in G,,. We know, by construction, that

discrpn g pr (") = [Im — B2 (W";q)))||, = Im —ml|; = 0.

Thus, w" € W*(m™", q, p'). We get that
1-q

e
Since limy, o m} = limy 00 ﬁ‘f (Gn) =0, it follows that veto-disty(B”) is unbounded. O

veto-disty (B?) > veto-dist(m", ¢, B*) >

Proor oF THEOREM 5.2. A player is called a dictator if any coalition they are in is winning, that
is if w; > q (for a non-strict quota). Since w; > 1 — q = /2 implies w; > g, any veto player is also a
dictator. If a player is a dictator and a veto player, every coalition they are in is winning and any
coalition they are not a part of is losing. Thus, they are pivotal for any coalition without them,
while no other player is pivotal for any coalition. Thus, in this setting, if there exists a veto player,
this player has power 1 while all other players have power 0.

WLOG, assume the population target m is sorted from largest to smallest. A weight vector w
with player i as a veto player will lead to discrepancy 2(1 — m;), so any weight vector with a veto
player has discrepancy at least 2(1 — my). In contrast, the weight vector w = (1/2,1/2,0,...) does
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not induce a veto player and leads to powers p? = (1/2,1/2,0,...). ff m; < %, i.e., player 1 is not a
deserving veto player, the discrepancy of w = (1/2,1/2,0, ...) is exactly 2(1 — m; — m;), so strictly
less than the discrepancy achievable with a veto player (since my > 0if m; < 1). If my > %, player
1is a deserving veto player, so the discrepancy of any weight vector with a veto player is at least
2(1 — my). The discrepancy of w = (1/2,1/2,0,...) is exactly 2(1/2 — my), so strictly less than the
discrepancy achievable with a veto player.

It follows that in no case a weight vector inducing an undeserving veto player will be optimal.
Thus, the veto distortion is 1. O
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C Full Empirical Results
C.1 Ontario weight table

31

Table 1. Weighted voting under the Banzhaf power index. Towns, populations, optimized weights, and
powers for ordinary Banzhaf (propensity 1/2).

‘ FIxeD P ‘ Town name ‘Pop.share . T=1/ . =3 . =2 . T =31
weight power | weight power | weight power | weight power
Town 1 | Town of South Bristol 001459 | 1487 001459 | 1484 001460 | 1438 001459 | 1229  0.01457
Town 2 | Town of Canadice 001483 | 1511 001484 | 1510  0.01485 | 1460  0.01483 | 1247  0.01482
Town 3 | Town of Bristol 002031 | 2105 002031 | 2063 002031 | 1999  0.02031 | 1711  0.02032
Town 4 | Town of Naples 002137 | 2210 002136 | 2172 002137 | 2104  0.02137 | 1802  0.02137
Town 5 | Town of Seneca 002351 | 2421 002351 | 2388 002351 | 2313 002351 | 1987  0.02352
Town 6 | Town of West Bloomfield | 0.02437 | 2505  0.02436 | 2476  0.02436 | 2397  0.02436 | 2058  0.02437
Town 7 | Town of Richmond 0.02988 | 3123  0.02988 | 3029  0.02988 | 2939 002983 | 2522  0.02987
Town 8 | Town of Geneva 0.03083 | 3203 003087 | 3132  0.03088 | 3042  0.03088 | 2607  0.03088
Town9 | Town of East Bloomfield | 0.03237 | 3340 0.03237 | 3282 0.03237 | 3192 0.03237 | 2732  0.03236
Town 10 | City of Geneva (5,6) 003272 | 3372 003272 | 3320 003272 | 3223 003271 | 2760  0.03273
Town 11 | City of Geneva (3,4) 0.03487 | 3582  0.03487 | 3534  0.03487 | 3435 003487 | 2939  0.03487
Town 12 | Town of Hopewell 0.03496 | 3588  0.03495 | 3544  0.03496 | 3442 003495 | 2948  0.0349%
Town 13 | Town of Gorham 0.03651 | 3741 003651 | 3698  0.03651 | 3599  0.03652 | 3080  0.03652
Town 14 | City of Canandaigua (2,3) | 0.04571 | 4684 004572 | 4625 004571 | 4505 0.04571 | 3855  0.04572
Town 15 | City of Geneva (1,2) 0.04633 | 4741 004634 | 4686  0.04632 | 4565  0.04634 | 3903  0.04634
Town 16 | City of Canandaigua (1,4) | 0.04834 | 4932 004834 | 4892 004833 | 4767  0.04834 | 4076  0.04835
Town 17 | Town of Phelps 0.05902 | 6001  0.05901 | 5948  0.05901 | 5823  0.05902 | 4985  0.05902
Town 18 | Town of Manchester 0.08362 | 8381  0.08363 | 8356  0.08362 | 8318  0.08362 | 7045  0.08362
Town 19 | Town of Canandaigua 0.09879 | 9750  0.09879 | 9829  0.09878 | 9808  0.09878 | 8339  0.09878
Town 20 | Town of Farmington 0.12600 | 12093 0.12600 | 12320 0.12599 | 12710 0.12600 | 11576  0.12600
Town 21 | Town of Victor 0.14103 | 13230 014103 | 13712 014102 | 14921 0.14104 [12659971 0.14103
[ SUM ] \ [ 100,000 1 100,000 1 [100,000 1 [100,000 1
[ L' error | \ \ 0.00013 0.00011 \ 0.00008 \ 0.00012
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C.2 Convergence of heuristic algorithm

See Figure 8 for the convergence plot as discussed in Section 6.2.

(Weight Share - Population Share)/Population Share

Excess Weight Shares Over Optimization Steps (q=75, p=50)

Optimization Step

1000

Town 20
Town 21

32

Fig. 8. Weights of each of the 21 towns/wards in Ontario County over the course of a heuristic optimization
run. Only the steps where an improvement was made are shown. The largest town, Victor (Town 21), ended

up with a weight that was inflated beyond its population share by an extra 88.6%.
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C.3 Optimal Weights for Hamilton County

All the optimized weights used in Section 6 were obtained using the random local search algorithm
described. To ensure that the observed behavior is not due to this algorithm getting stuck in a local
optimum, we use an algorithm due to Kurz [2012] to solve for the exact (globally) optimal weights.

The algorithm is based on modeling the inverse power problem as a mixed integer linear program.
For the Banzhaf power index, we can check for any fixed a € Q whether weights with discrepancy
less than a to a given target power distribution exist. Thus, with binary search on a, we can identify
weights giving near-optimal discrepancy up to an arbitrarily small margin. It is not difficult to
adapt the MILPs to correspond to the p-propensity Banzhaf power index or the adaptive Banzhaf
power index. It is furthermore straightforward to impose as a constraint that no undeserving veto
player may be induced by the optimal weights.

Unfortunately, the number of binary optimization variables used in the MILP increases exponen-
tially with the number of players. Thus, this approach only works well for small n. In particular,
we find that within reasonable time, n ~ 12 are the largest instances for which we can determine
exactly optimal weights, while n ~ 14 are the largest instances for which we can solve a single
MILP to check for a single discrepancy whether it is achievable.

Luckily, there is one county in New York State with only 9 Towns: Hamilton County. The
populations of the towns are 92, 221, 292, 355, 413, 683, 791, 897, and 1363. For quota 75%, we plot
the heuristically optimized weights and the globally optimal weights in Figure 9. The heuristically
optimized weights give a discrepancy of 0.0287, while truly optimal weights achieve a discrepancy
of 0.0237. Most importantly, not only are the discrepancies close, but the weights themselves are
close. In particular, optimal weights over-weight Indian Lake as predicted, with the algorithm
outputs actually underestimating the magnitude.

. weight weight
populatlon (heuristic algorithm) (optimal)
I N
0.40 ——
0.35 ——
0.30 —/—
0.25 —] VETO THRESHOLD
0.20 —
0.15 —
0.10 —
0.05 —
S & N x&é & $e§° N %%& ¥
g @'Q ?$~ *2» V e‘bf \)
s A o ¥ &
8 J oy &
$\ > ¥ BN\

Fig. 9. The weights found by the randomized optimization algorithm and the optimal MILP algorithm under
the Banzhaf power index for Hamilton County at quota 75%.
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We run the same experiment with adaptive Banzhaf power. For quota 75%, we plot the weights
the optimization algorithm found and the optimal weights in Figure 10. The heuristic achieved
population-power discrepancy of 0.06427, while the global minimum is 0.06184. And again, the
heuristic correctly tracks the key feature: m ~ w ~ p.

lati weight weight
population (heuristic algorithm) (optimal)
I NS (—

040 ——
0.35 ——
0.30 ——
0.25 —
0.20 —
0.15 —
0.10 —
0.05 —

VETO THRESHOLD

Fig. 10. The weights found by the randomized optimization algorithm and the optimal MILP algorithm under
the adaptive Banzhaf power index for Hamilton County at quota 75%.

C.4 Additional Heatmaps

Here we show all plots of the excess weight of the largest player and L! distortions for Ontario
County, Livingston County, and four synthetic instances:
Linear. 21 towns with evenly-spaced populations.
Big-Small-1. 2 large towns with equal populations, and 19 small towns with equal populations.
Big-Small-2. 2 large towns with slightly different populations, and 19 small towns with slightly
different populations.
Anti-Ontario. The largest and smallest population in Ontario sum to 17,501. Anti-Ontario is
constructed by subtracting all their populations from that total, so that there are two smallest
towns and a large number of nearly-equal large ones.

Note that for the distortion plots, a "++" indicates a distortion of 100% or greater.

We believe that the two "lines" of low distortion, that are very clear in Big-Small-1 and slightly
diluted but still clearly visible in Big-Small-2, are especially noteworthy: They align very well with
the pitfall points predicted by Theorem 4.5.
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[1641, 1668, 2284, 2403, 2644, 2740, 3360, 3473, 3640, 3679,

3921, 3931, 4106, 5140, 5210, 5436, 6637, 9404, 11109, 14170, 15860]

Ontario County. Populations
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[725, 765, 1157, 1464, 1583, 2087, 2292, 2322, 2695, 3187,

10ns:

ivingston County. Populati
4156, 4158, 4452, 5341, 6945, 7508, 10242]
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Distortion (L1 Pop Share vs Weight Share x100)
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[1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000,

13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000]

C.4.3 Linear. Populations

Distortion (L1 Pop Share vs Weight Share x100)
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C.4.4 Big-Small-1. Populations: [2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000,
2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 20000, 20000]

Distortion (L1 Pop Share vs Weight Share x100)
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C.4.5 Big-Small-2. Populations: [1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100,
2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 19000, 20000]

Distortion (L1 Pop Share vs Weight Share x100)

4340 40 30 30 31 26 29 39
403533 3232272727 3541
46 42 37 31 28 25 26 26 25 25 34
6 43 40 37 34 28 25 23 23 23 23 26 34 45,
46434138353229262221212123293544 44
46 44 41 39 36 33 30 28 25 23 22 19 19 21 23 32 3939 42 41 42 43
4442 39,37 34 31 28 26 24 22 21 21 21 17 22 25 32 37 38 37 39 41 42 44.

45 43 42 40 37 35 32 30 27 24 22 21 20 20 20 19 20 24 29 33 33 36 38 40 44 45 47 46 45 43 42 40
4543 42 39 38 35 33 31 28 25 23 21 20 19 19 18 18 19 23 27 31 31 34 36 40 41 42 43 44 44 44 41 39 44 36
45 43 4140 38 36 33 31 29 27 24 22 20 19 18 18 17 17 18 22 26 30 30 32 36 37 38 40 40 41 41 41 41 41 41 39 34 33
4543 4139 38 36 34 3230 27 25 23 21 19 18 18 17 17 16 17 21 24 27 28 31 33 34 35 36 37 37 38 38 38 3038 38 34 35 29 28
46 44 43 41 39 38 36 34 32 30 28 26 24 21 19 18 18 17 17 16 16 17 20 23 24 28 29 31 32 33 34 34 35 35 35 35 35 35 35 34 34 30 31 30 29)
4543 42 41 39 38 36 30,32 31 2927 25 22 20 18 17 17 16 16 16 15 16 19 22 24 26 27 29 30 31 31 32 32 33 33 33 33 33 32 31 31 31 29 26 26 20 20
= 144 42 40 39 37 36 34 33 31 29 27 25 23 21 19 17 17 17 16 15 15 15 16 19 20 23 25 26 27 28 29 30 31 31 31 31 31 31 30 30 29 28 27 27 26 26 25 23 16 16
T 76{39383634323129 26 26242220 16 171716 16 15 15 14 16 16 21 22 24 25 26 27 28 2929 30 30 31 31 31 302928 27 252423 22212017 1920 12 o
S 75 {3532 31 29 28 26 24 23 21 191717 16 16 15 15 14 14 16 18 20 21 23 24 25 26 27 28 28 292929292929 282827 252321201918 17 16 131015 9 Z
G 74 12928 26 24 23 21 19 18 17 16 16 15 15 14 14 14 16 18 19 21 22 23 24 25 26 26 27 27 27 27 27 2727 2626 2524 232220171614 14141612 5 5 2 E
© 73 426 23 2120 18 17 16 16 15 15 14 14 13 14 15 17 19 20 22 23 23 24 25 25 26 26 26 26 26 26 25 2524232221 2018171413111010 9 11 3 1 1 1 S
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Fig. 11. Leech [2002c] observed that in the IMF weighted voting game explained above, the United States
receives disproportionally much weight at high quotas. At the quota of 85%, which is actually being used by
the IMF, the US would need to receive over 60% of the weight to get their fair share of . Here we see that the
use of adaptive Banzhaf power mitigates the problem significantly.
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