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Political scientist John Banzhaf brought power indices into the legal and political spotlight in the United
States by highlighting problems with naive weighting, like the possibility of "dummy players" who are never
pivotal in any coalition. He argued that weighted voting should be framed as an optimization problem, with
the objective that the probability of a representative casting a decisive vote is proportional to the size of their
constituency. Today, there are examples (such as county government in New York State) where representatives
vote with weights derived from exactly this heuristic optimization.

Though there is a massive literature on power indices for weighted voting games, real-world instances
also suggest a new kind of problem not frequently discussed in research papers: with supermajority voting
quotas, achieving close agreement between populations and powers can require weight vectors starkly out
of proportion to both. For instance, not only contrived examples but also realistic ones can force a medium-
sized player—like the Town of Victor in Ontario County, NY—to receive an "undeserving" veto, which could
undermine the public legitimacy of the system.

We introduce a new power index, built by having players vote yes with a probability equal to the voting
quota rather than by flipping a fair coin as in ordinary Banzhaf. Among variants where players independently
vote with fixed probability, this choice uniquely avoids systematic weight distortions while retaining the
policy-aligned interpretation of Banzhaf power.

Contents

Abstract 0
Contents 0
1 Introduction 1
2 Preliminaries 5
3 Propensities and the Adaptive Banzhaf Power Index 7
4 Powers in Large Weighted Voting Games 7
5 Veto Distortion 12
6 Empirical Results 14
7 Discussion 18
References 19
A Additional Related Work 21
B Missing Proofs 22
C Full Empirical Results 31



Jakob de Raaij, Moon Duchin, Ariel D. Procaccia, and Jamie Tucker-Foltz 1

1 Introduction
1.1 The measurement of voting power and the inverse power problem
The European Economic Community, formed in 1958, consisted of six Western European countries:
Belgium, France, (West) Germany, Italy, Luxembourg, and the Netherlands. It was governed by the
Council of Ministers, which included one minister from each member country. When a proposal
was sent to the Council from the European Commission, it would be voted on using weighted votes,
with weights assigned in a way that was commensurate with population—4 for France, Germany
and Italy, 2 for Belgium and the Netherlands, and 1 for Luxembourg—and an overall weight quota
of 12 required for a resolution to pass [Mayer, 2018]. The effectiveness of this design depends on
whether each country has the power it deserves based on its population, where power is commonly
understood to be based on playing a pivotal role in collective decisions. From this viewpoint, the
Council of Ministers is a textbook design failure: Luxembourg is a "dummy player," meaning that
their vote can never change an outcome, no matter how the other countries vote.
Having made the observation that the voting power may be very different from the (relative)

voting weight, the inverse power problem arises: How do we choose voting weights so that the
voting powers match a desired distribution as closely as possible?

The ability to align powers with a target hinges on how voting power itself is quantitatively
defined. In the literature, this question is addressed using two canonical measures, one due to
Banzhaf [1965]—already implicitly defined by Penrose [1946]—and the other due to Shapley and
Shubik [1954]. Underlying both measures is the idea that voter 𝑖 is pivotal in a coalition if the
overall weight of the coalition is under the quota without 𝑖 and meets or exceeds the quota with
𝑖 . Under Banzhaf’s definition, the power of a voter 𝑖 is the probability that they are pivotal in a
uniformly random coalition that includes 𝑖 . This is equivalent to assuming that every voter except
𝑖 votes yes with probability 1/2, and asking if 𝑖’s yes or no vote matters. By contrast, under the
Shapley-Shubik power index, it is the size of the coalition that is selected uniformly at random.
Equivalently, a uniformly random permutation of the voters is selected; the power of a voter 𝑖 is the
probability that 𝑖 is pivotal in the coalition that includes all their predecessors.

Both power indices have theoretical justifications; in particular, both lend themselves to reason-
able axiomatic characterizations [Dubey, 1975, Dubey and Shapley, 1979]. The most significant
theoretical distinction was pointed out by Felsenthal and Machover [1998], based on an argument
by Coleman [1968], arguing that the two power indices measure different types of power. If the
voting agents are policy-seeking, they form an opinion of the bill at hand and vote accordingly. Their
I-power, power to influence the outcome of the election, is the probability with which their opinion
will be pivotal. They argue that by the Principle of Insufficient Reason, any split of the other voters
into yes and no should be assumed a priori to be equally likely—as is the case in the Banzhaf power
index. In contrast, office-seeking voting agents do not hold an intrinsic attitude towards the bill; the
winning coalition gains a prize that will be split between them. Their P-power is their bargaining
power in forming a winning coalition—as is measured by Shapley value for cooperative games
with transferable utilities (and the Shapley-Shubik power index, its restriction to weighted voting).
Felsenthal and Machover [1998] argue that based on the nature of the voting body, either approach
may be warranted. The question of which power index is supported by empirical evidence (if any)
is more contentious—we elaborate on it in Appendix A.
Our goal is not to settle (or even advance) the Banzhaf vs. Shapley-Shubik debate. Rather,

motivated by a case study from New York State, we focus on the Banzhaf power index. We draw
attention to a practical shortcoming of the ordinary (i.e., standard) Banzhaf power index that
deserves to be called a "paradox": Like the classic "Alabama paradox" of apportionment rules, it
produces results that would make many observers cry foul. We introduce a novel variant that
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we call adaptive Banzhaf that alleviates these issues while preserving the advantages of ordinary
Banzhaf over Shapley-Shubik. If one is persuaded that the policy-seeking voter behavior justifies
the choice of the Banzhaf power index, then our variant is a strict improvement, especially in
the setting of the voting quota being fixed and the weights being optimized— the inverse power
problem.

1.2 A case study with real-world significance
New York State contains 62 counties, whose local governing structures vary. Some counties elect
representatives using equal-population districts, whereas others employ a structure called a Board of
Supervisors, with one member from each constituent geographical piece, although the populations
may not be equal. Ontario County, located just southeast of Rochester, NY, is one of the latter
category. Its 21–member Board consists of one member from each of the 16 smaller towns, while the
Cities of Canandaigua and Geneva are subdivided by ward into two and three pieces, respectively
(see Table 1). From now on, we will use "town" to refer to the geographic area that receives a single
representative.1

Each town has a different population, yet is represented by a single elected supervisor. To comply
with the constitutional principle of "One Person, One Vote," Boards of Supervisors are required to use
weighted voting. Today, the legal requirements for implementing weighted voting are surprisingly
complex, thanks to a 1967 appeals court decision in Iannucci vs. Board of Supervisors [New York
Court of Appeals, 1967]. Recognizing the pitfalls of weighted voting—and citing Banzhaf’s seminal
work specifically—the court ruled:

"The principle of one man-one vote is violated, however, when the power of a repre-
sentative to affect the passage of legislation by his vote. . . does not roughly correspond
to the proportion of the population in his constituency."

In other words, voting power, rather than weight, must be calibrated to population. This standard
explicitly calls for solving the inverse power problem. On that subject, the court further elaborated:

". . . [measuring power] is impossible without computer analyses, and, accordingly, if
the boards choose to reapportion themselves by the use of weighted voting, there is no
alternative but to require them to come forward with such analyses and demonstrate
the validity of their reapportionment plans."

From then until today, every county using towns as districts does exactly that. In their charter or
in local law, they specify language like the following: "The voting power of a supervisor shall be
measured by the mathematical possibility of his casting a decisive vote on a particular matter... In
preparing each reapportionment, the board of supervisors shall employ an independent computer-
ized mathematical analysis and such other method or methods as shall most nearly equalize the
percentage of voting power of each town and city to its percentage of the total county population."2
Indeed, we became aware of this state of affairs when one of the authors of this paper was

commissioned by Ontario County to generate four sets of voting weights: one to be used for votes
requiring a simple majority, and three others for votes requiring supermajority thresholds of 2/3,
3/5, and 3/4. Here, as in many real-world cases, the quota is set by law or constitution to regulate
how easy or difficult it is for a voting body to initiate action and pass legislation. Figure 1 shows
the results for the 3/4 threshold, which are so bizarre that they rise to the level of a paradox.

1New York is one of 12 "township states" that is tiled by its cities, towns, and townships—what the Census Bureau refers to
as minor civil divisions, or MCDs—and those have active local governments. By contrast, many other states have much more
limited municipal coverage. In New York it is therefore possible for townships to serve as districts for county government.
This has seemed appealing because they are well known to residents and fundamentally hard to gerrymander.
2This language is drawn from the Nassau County Charter, quoted in law.justia.com.

https://law.justia.com/cases/federal/district-courts/FSupp/818/509/1491685/
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Fig. 1. Populations, (heuristically) optimal weights, and resulting Banzhaf power indices for each of the 21
towns in Ontario County, for a voting quota of 3/4. These weights were found by a randomized local-search
algorithm described in Section 6.3.

The Town of Victor, despite only having 14.1% of the overall population—not much larger than
the next largest town at 12.6% of the population—was apportioned 26.5% of the weight. This might
give any reasonable observer pause, especially because at threshold 3/4, a player with weight over
25% holds the power to unilaterally veto a measure: without their support, it cannot pass. From
Banzhaf’s perspective, this is not a problem, as the plot shows power shares align almost perfectly
with population shares—a veto does not in itself contribute to the measurement of power. That a
veto player may not be especially powerful is perhaps surprising, and in any event this distribution
of weights will likely seem intuitively unfair.
We will use the term weight distortion for situations like this in which there is low discrepancy

between population and power, but this is achieved with a weight vector far out of proportion to
power. A particular kind of weight distortion is veto distortion, in which a player’s voting weight
crosses the veto line while the power lags behind.

1.3 Our proposal: Adaptive Banzhaf
We view the Victor paradox in Ontario County as a symptom of a more fundamental issue with
the Banzhaf power index at high voting quota. By effectively assuming that every voter is equally
likely to vote yes or no, the power computation conditions on the rare event that enough yes votes
are cast to reach a threshold much higher than 1/2.

We propose a simple alternative model of voting behavior under which this event is not rare: For
a matter requiring a supermajority quota of 𝑞 > 1/2, we suppose each voter has a propensity to vote
yes with probability 𝑝 = 𝑞, rather than 1/2. The adaptive Banzhaf power index follows Banzhaf’s
construction exactly, but uses this alternative model of random, independent votes. (There will be
many probabilities discussed here, so we will reserve the word "propensity" for the probability of a
positive vote.)
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Conceptually, we feel that our variant index has multiple advantages. To see why, assume there
are many players in a weighted voting game, all voting with equal propensity 𝑝 . If each votes yes
independently with propensity 1

2 , then the distribution of positive weight is tightly concentrated
around half. But pivotality occurs when positive weight is near the quota 𝑞, so for high quotas,
each voter has a negligible chance of being pivotal. The same is true for any propensity 𝑝 far from
𝑞. The setting 𝑝 = 𝑞 is the only choice for which elections will likely be on the knife-edge. This
was recognized already in Banzhaf’s original paper, where he writes that "it would seem that the
test of a legislator’s power comes only when the other representatives are closely divided and the
individual legislator is able to cast a deciding number of votes" [Banzhaf, 1965].
Thus, the adaptive Banzhaf power index hypothesizes a model of voting behavior that is built

to emphasize this test of power. In addition, we will provide rigorous proofs that adaptive power
is the unique form of propensity-based voting that asymptotically eliminates the Victor paradox,
together with empirical evidence that it reduces weight distortion in real New York counties.

1.4 Results and outline
We formally define weighted voting games and power indices following standard conventions in
Section 2. We introduce the class of 𝑝-propensity Banzhaf power indices, in which every voter is
assumed to vote yes independently with probability 𝑝 , in Section 3. We define the adaptive Banzhaf
power index as the 𝑝-propensity case where propensity equals voting quota (𝑝 = 𝑞).
In Section 4, we investigate 𝑝-propensity Banzhaf powers in various limiting regimes. First,

in Section 4.1, we consider a large family of weighted voting games G𝑛 , with the number of
players going to infinity and each individual player’s weight going to 0. Under mild assumptions,
Theorem 4.2 gives a complete solution for the limiting ratio of powers of any two players, in terms
of 𝑝 and 𝑞. Computing this ratio in the special case 𝑝 = 1/2 (the ordinary Banzhaf power index) has
been an open problem since it was posed in Lindner and Machover [2004]. When 𝑝 = 𝑞, we find
that the ratio of the powers of any two players tends to the ratio of their weights. We prove that
adaptive Banzhaf is the only member of a large class of power indices including the Banzhaf power
index (semivalues with independent voters) for which this weight-to-power proportionality holds.
This is a desirable property of a power index known as the Penrose Limit Theorem.

Section 4.2 studies a distinct class of infinite games known as oceanic games, where some large
players hold a fixed share of the weight each, while the remaining weight is split evenly among a
growing "ocean" of small players. We give a precise calculation of the players’ powers in the limit
in Theorem 4.5. This gives another setting in which the 𝑝 = 𝑞 case is special: it is the only choice
of propensity for which the power of the large players is non-zero (besides a finite list of quota
"pitfall points").
In Section 5, we give some negative results on the veto distortion of any propensity Banzhaf

power indices. Theorem 5.1 states that for any supermajority quota 𝑞 and any propensity 𝑝 , there
exist examples where a voter of arbitrarily small population share has a veto under an exactly
optimal set of weights. However, for 𝑝 ≈ 𝑞, these examples rely on delicate constructions that are
unlikely to arise in real-world instances. We conjecture that weight-to-power proportionality is
generic for adaptive Banzhaf power.
We close with empirical results in Section 6, for both synthetic and real-world examples. The

predictions made by the theory can be observed with satisfying clarity in the experiments. In partic-
ular, at supermajority quotas, the adaptive Banzhaf index leads to significantly more proportional
weights than the ordinary Banzhaf power index, resolving the paradox of undeserving veto players
that we find to be widespread in real instances.
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1.5 Related Work
Below we survey the work most closely related to the current project; additional literature review
is found in Appendix A.

Power indices in the limit. Shapiro and Shapley [1978] first considered power indices in the limit,
for the Shapley-Shubik index of games with some players of fixed weight and an infinite number
of players with negligible weight. Dubey and Shapley [1979] extend their results to the Banzhaf
power index. Neyman [1982] studies the Shapley-Shubik index when the weights of all players go
to 0. Lindner and Machover [2004], based on unproven claims due to Penrose [1946], define the
Penrose Limit Theorem (PLT) as the property that the ratio of two players’ powers approaches
the ratio of their weights, given that all weights are bounded by a constant. They find that under
mild assumptions, this holds for the Shapley-Shubik index, and for the Banzhaf index at quota 1/2.
Chang et al. [2006] empirically, and Lindner and Owen [2007] theoretically, show that the PLT does
not hold for the Banzhaf index at quotas other than 1/2, but leave the question of the actual limit of
the ratio of powers open. We resolve this open question.

Distortion for optimized weights. The weight distortion phenomenon seen in Ontario County
has been observed elsewhere: Leech [2002c] notes that in weighted voting among the executive
directors of the International Monetary Fund at the supermajority quota 𝑞 = .85, the United States
has only a 6.5% share of the Banzhaf power, despite holding 17.5% of the voting weight. He estimates
that the weight share of the US must be set to 67.5% so that their Banzhaf power hits the target of
17.5%. Leech and Machover [2003] use heuristics to argue that in the Council of Ministers of the
European Union at supermajority quotas, Germany’s weight would need to be set disproportionally
high, converging to 100% as the quota goes to 1, to achieve proportional Banzhaf powers. (We
revisit their motivating example of the International Monetary Fund in Appendix C.5 and verify
that adaptive Banzhaf cures the weight distortion.)

Voter propensity. The idea of generalizing the Banzhaf power index with independent voting
probabilities originates, to the best of our knowledge, with Owen [1972]. Straffin [1977] considers a
setting where the 𝑝𝑖 (probability of yes vote from voter 𝑖) are random variables drawn independently
or dependently from a uniform distribution on [0, 1] and shows that this leads to the Banzhaf
and the Shapley-Shubik indices, respectively. Puente del Campo [2000] refers to unnormalized
power indices where all players vote yes independently all with the same probability 𝑝 as binomial
semivalues and studies them as a basis of the space of semivalues (which will be defined below).
Amer and Giménez [2007] give an axiomatic justification for binomial semivalues based on the
delegation of power between players. We have not found a theoretical or practical justification in
the computational literature for using any propensity other than 1/2, which seems to be preferred
due to its impartial and entropy-maximizing nature. The idea of adaptive Banzhaf, where propensity
equals quota, does not appear to have been studied before.

2 Preliminaries
2.1 Weighted voting games
A weighted voting game (WVG) is a tuple W = (𝒘 ;𝑞) consisting of the player weights 𝒘 ∈ Δ𝑛

(the 𝑛-dimensional standard simplex) and a quota 𝑞 ∈ [0, 1). A coalition 𝐶 is a subset of the voter
set 𝑁 = [𝑛]. A coalition 𝐶 is winning if the weight of the players voting yes exceeds the quota,
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𝑖∈𝐶 𝑤𝑖 > 𝑞, else it is losing.3 We say that a player 𝑖 is pivotal for a coalition 𝐶 with 𝑖 ∉ 𝐶 if 𝐶 is

losing but 𝐶 ∪ {𝑖} is winning and let pivW (𝑖,𝐶) be the corresponding indicator function.

2.2 Semivalues and power indices
Following Felsenthal and Machover [1998], we use the term power measure for any function 𝝋̂ that
assigns an unnormalized power vector 𝝋̂ (W) ∈ R𝑛 to any WVGW with 𝑛 players, for all 𝑛 ∈ N.
We call the function 𝝋 a power index if the power vectors are normalized, that is 𝝋 (W) ∈ Δ𝑛 for
any WVG W with 𝑛 players, for all 𝑛 ∈ N

A semivalue [Weber, 1979] is a power measure 𝝋̂𝒑 (W) that assigns the voting power of a player
𝑖 in the WVG W as the probability with which 𝑖 is pivotal for a random coalition 𝐶 ⊆ 𝑁 \{𝑖}. It is
assumed that the probability of a coalition arising depends only on the size of the coalition but is
independent of the labels of the players in the coalition. In particular, for a WVG with 𝑛 players, a
probability vector 𝒑 = (𝑝0, ..., 𝑝𝑛−1) such that

∑𝑛−1
𝑖=0

(
𝑛−1
𝑖

)
𝑝𝑖 = 1 assigns a probability of 𝑝 |𝐶 | to each

coalition 𝐶 ⊆ 𝑁 \{𝑖} based on its size. The semivalue of player 𝑖 in WVGW is

𝜑
𝒑
𝑖
(W) =

∑︁
𝐶⊆𝑁 \{𝑖 }

pivW (𝑖,𝐶) · 𝑝 |𝐶 | .

The corresponding normalized semivalue is the power index

𝜑𝑖 (W) = 𝜑𝑖 (W)∑
𝑗∈𝑁 𝜑 𝑗 (W) .

The Banzhaf power measure 𝜷 (W) [Banzhaf, 1965, Penrose, 1946] is the semivalue in which
every coalition 𝐶 ⊆ 𝑁 \{𝑖} is assumed to be equally likely. Equivalently, each voter in 𝑁 \{𝑖} is
assumed to vote yes independently with probability 1/2. Consequently, 𝑝𝑛

𝑘
= 1/2𝑛−1 so that

𝛽𝑖 (W) = 1
2𝑛−1

∑︁
𝐶⊆𝑁 \{𝑖 }

pivW (𝑖,𝐶).

The Banzhaf power index 𝜷 (W) is the Banzhaf power measure normalized to sum to 1, i.e.,

𝛽𝑖 (W) = 𝛽𝑖 (W)∑
𝑗∈𝑁 𝛽 𝑗 (W)

.

Example 2.1. Consider W = ((0.25, 0.25, 0.5); 0.6). The first player, 𝑖 = 1, is pivotal for one
coalition, {3}, so their Banzhaf power measure is 𝛽1 (W) = 1/4; analogously, 𝛽2 (W) = 1/4. The third
player, 𝑖 = 3, is pivotal for three coalitions, {1}, {2} and {1, 2}, so their Banzhaf power measure is
𝛽3 (W) = 3/4. This gives normalized powers 𝜷 = (1/5, 1/5, 3/5).

2.3 Inverse power problem
In the inverse power problem, we are given a target distribution of power 𝒎 ∈ Δ𝑛 , a quota 𝑞 ∈ [0, 1),
and a desired power index 𝝋. For a weight vector𝑤 ∈ Δ𝑛 , we define its discrepancy as

discr𝒎,𝑞,𝝋 (𝒘) = ∥𝒎 − 𝝋 ((𝒘 ;𝑞))∥1 .
The goal is to find one or all weight vectors

𝒘∗ ∈𝑊 ∗ (𝒎, 𝑞, 𝝋) = arg min
𝒘∈Δ𝑛

discr𝒎,𝑞,𝝋 (𝒘)

3It seems to be more common in the literature to denote a coalition as winning when it meets the quota (and not necessarily
exceeds), that is

∑
𝑖∈𝐶 𝑤𝑖 ≥ 𝑞. However, we require the coalition to exceed the quota as this seems to be more common in

practice. We note that our theoretical results and proofs hold true regardless of which of the two definitions of winning is
employed, except when noted otherwise.
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that minimize discrepancy. In the inverse power problem, the quota is prescribed exogenously.

3 Propensities and the Adaptive Banzhaf Power Index
We study a generalization of the Banzhaf power index that we call 𝑝-propensity Banzhaf index.

Definition 3.1. The 𝑝-propensity Banzhaf power measure 𝜷𝑝 , also known as binomial semivalue
with value 𝑝 , is the semivalue in which each voter in 𝑁 \{𝑖} is assumed to vote yes independently
with probability 𝑝 . Consequently, 𝑝𝑛

𝑘
= 𝑝𝑘 (1 − 𝑝)𝑛−𝑘−1 so that

𝛽
𝑝

𝑖
(W) =

∑︁
𝐶⊆𝑁 \{𝑖 }

pivW (𝑖,𝐶) · 𝑝 |𝐶 | (1 − 𝑝)𝑛−|𝐶 |−1.

The 𝑝-propensity Banzhaf power index 𝜷𝑝 (W) is the 𝑝-propensity Banzhaf power measure
normalized to sum to 1

𝛽
𝑝

𝑖
(W) =

𝛽
𝑝

𝑖
(W)∑

𝑗∈𝑁 𝛽
𝑝

𝑗
(W)

.

The adaptive Banzhaf power index (measure) 𝝆̂ is the𝑞-propensity Banzhaf power index (measure),
where 𝑞 is the quota of the WVG W = (𝒘, 𝑞). That is,

𝜌𝑖 (W) = 𝛽
𝑞

𝑖
(W) (and 𝜌𝑖 (W) = 𝛽

𝑞

𝑖
(W)) .

Of course, the 1/2-propensity Banzhaf power index (measure) is simply the Banzhaf power index
(measure).

Example 3.2. We return to the WVG W = ((0.25, 0.25, 0.5); 0.6) from Example 2.1. While the
players are still pivotal for the same coalitions, the respective weighting of the coalitions changed;
in particular, larger coalitions are assumed to be more likely now. We get that 𝜌1 (W) = 𝜌2 (W) =
𝑝 (1 − 𝑝) = 𝑞(1 − 𝑞) = 0.24 while 𝜌3 (W) = 2 · 𝑞(1 − 𝑞) + 𝑞2 = 0.84. This gives normalized powers
𝝆 = (2/11, 2/11, 7/11).

One reason why setting the propensity equal to the quota has not been formally considered so far
may be that in this setting, two WVGs with the same set of winning coalitions but different quotas
can have different powers. In any finite WVG, the quota 𝑞 can be slightly increased and/or decreased
without changing the set of winning coalitions. For example, one can quickly check that the sets
of winning coalitions for WVGs W = ((0.25, 0.25, 0.5); 0.6) and W′ = ((0.25, 0.25, 0.5); 0.7) are
identical. However, 𝝆 (W) ≠ 𝝆 (W′)—the players are assigned different powers in the two WVGs,
even though the winning coalitions have not changed!
That said, as we will see in subsequent sections, this apparent shortcoming is of no concern

in the settings we consider. In the inverse power problem the quota is an exogenous parameter.
Furthermore, as the number of players grows, the ‘wiggle room’ of the quota—and thus that of
the powers— goes to 0. Therefore, the adaptive Banzhaf index powers are well-defined in the limit
setting.

4 Powers in Large Weighted Voting Games
It is a desirable property of a power index to assign powers proportional to weights in games
that are sufficiently ‘smooth.’ We argue that the fact that the intuitive assumption that voting
powers equal voting weights does not hold stems from the discrete nature of the setting: Only a
finite number of powers are achievable with coalitions of a finite number of players, so a player’s
weight cannot in general perfectly correspond to their power. However, this discrete noise should
reduce as the number of players grows, given that the weights of all players are of the same order
of magnitude. In particular, we posit that in such a setting, the powers of the players should be
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proportional to their weights—a deviation from proportionality in a smooth, limiting case may be a
symptom of an underlying bias towards larger or smaller weight players by the power index.
In this section, we examine this claim in two different scenarios of weighted voting with an

infinite number of players. First, we consider a setting where an infinite number of players with
fixed, finite, bounded voting weights are added to a WVG (with weights then normalized to sum to
1). We analytically solve for the 𝑝-propensity Banzhaf powers of players in the limit, resolving a
long-standing open question by Lindner and Machover [2004] for 𝑝 = 1/2, i.e., normal Banzhaf. We
find that the adaptive Banzhaf power index is the unique 𝑝-propensity Banzhaf power index that
has the desired property of being proportional in the limit.
We then consider a different setting, in which a finite number of players have a fixed amount

of weight each, with the remaining weight being split up equally among an infinite number of
players. While we cannot expect perfect proportionality in this setting as the discrete noise due
to the fixed-sized players persists, we show that the adaptive Banzhaf power index is the unique
𝑝-propensity Banzhaf power index that has the property that the powers of the fixed-sized players
are always bounded away from 0, except for a finite number of unstable pitfall points.

4.1 The Penrose Limit Theorem
Suppose we fix an infinite sequence𝒘 = 𝑤1,𝑤2, . . . and a quota 𝑞 ∈ [0, 1), where the weights𝑤𝑖

are positive integers bounded above by some constant𝑊 . Let𝑊𝑛 =
∑𝑛

𝑖=1𝑤𝑖 be the partial sums of
the weights. For all 𝑛 ∈ N, we consider the WVG defined by the first 𝑛 weights in the sequence,
normalized to 1:

G𝑛 =

(
𝑤1

𝑊𝑛

, ...,
𝑤𝑛

𝑊𝑛

;𝑞
)
.

A much-studied question asks whether the powers assigned to the players by a power index 𝝋
are proportional to their weights, as 𝑛 grows large. Since all weights of individual players go to 0
in G𝑛 as 𝑛 → ∞, it is natural to look at the ratios of the powers of players.

Definition 4.1 ([Lindner and Machover, 2004, Penrose, 1946]). The Penrose Limit Theorem (PLT)
holds for a power index 𝝋, a quota 𝑞, and a weight sequence𝒘 if for all players 𝑖, 𝑗 ,

lim
𝑛→∞

𝜑𝑖 (G𝑛)
𝜑 𝑗 (G𝑛)

=
𝑤𝑖

𝑤 𝑗

.

Remark. Since the Penrose Limit Theorem is concerned with ratios of powers, it does not matter
whether we normalize the weights or not—the definitions and theorems in this section could
equivalently be stated for power measures.

Let us define two useful properties of infinite weight sequences: We say that𝒘 is primitive if the
greatest common divisor of all weights that appear infinitely often is 1. We say𝒘 is regular if every
weight has a well-defined natural density: For all𝑤 ∈ [𝑊 ], there are values

𝑑𝑤 = lim
𝑛→∞

|{𝑖 ∈ [𝑛] : 𝑤𝑖 = 𝑤}|
𝑛

.

Lindner and Machover [2004] showed that the PLT holds with respect to the ordinary Banzhaf
power index (𝑞 = 1/2) for any primitive𝒘 . They then ask whether this holds at other quotas and
conjecture that the answer is positive. This was disproved by Lindner and Owen [2007] by giving
a class of primitive weight sequences𝒘 and a quota 𝑞 ≠ 1/2 for which the PLT fails. However, no
general formula for the Banzhaf powers at 𝑞 ≠ 1/2 or explanation for the behavior of the Banzhaf
power index at quotas other than 1/2 was known. We resolve this open problem.
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Theorem 4.2 (Convergence for propensity Banzhaf). The Penrose Limit Theorem holds for
any primitive weight sequence 𝒘 with respect to the adaptive Banzhaf power index.

Furthermore, if𝒘 is both primitive and regular, then for all players 𝑖, 𝑗 ,

lim
𝑛→∞

𝛽
𝑝

𝑖
(G𝑛)

𝛽
𝑝

𝑗
(G𝑛)

=

(
𝑤𝑖∑
𝑘=1

𝑟𝑘−1
)
(1 − 𝑝 + 𝑝𝑟𝑤𝑗 )(

𝑤𝑗∑
𝑘=1

𝑟𝑘−1
)
(1 − 𝑝 + 𝑝𝑟𝑤𝑖 )

,

where 𝑟 is the unique positive solution to
∑𝑊

𝑤=1 (𝑑𝑤
𝑝𝑤𝑟𝑤

1−𝑝+𝑝𝑟𝑤 ) = 𝑞 · ∑𝑊
𝑤=1 (𝑑𝑤𝑤).

Remark. If 𝑝 = 𝑞, it follows that 𝑟 = 1 and thus that the limiting ratio is𝑤𝑖/𝑤 𝑗 . Consequently, the
first part of the theorem (PLT if 𝑝 = 𝑞) for primitive, regular weight sequences follows from the
second.

We defer the proof to Appendix B.1. On a high level, we show that what determines the powers
under the 𝑝-propensity Banzhaf power index in the limit is the limiting behavior of the distribution
of the weight of a random coalition (where each voter joins with probability 𝑝) around the quota 𝑞.
In particular, applying a theorem due to Petrov [1975] that was also used by Lindner and Machover
[2004], we show that this distribution is "flat" around 𝑞 whenever 𝑝 = 𝑞, which implies that the
PLT holds. In all other cases, we determine the exponential decay rate of the coalitional weight
distribution around 𝑞, corresponding to ln 𝑟 . We apply a technique called exponential tilting to
the distribution to transform it to a distribution to which we can meaningfully apply, again, the
theorem due to Petrov [1975], to show that it is flat around 𝑞. This allows us to describe the limiting
behavior of the original distribution in terms of 𝑟 , which is used to obtain the formula in the
theorem statement.

We can solve for 𝑟 in Theorem 4.2 to get insights into how the ratio of player’s powers behave in
the limit.

Corollary 4.3 (Trends of power ratios). Assume 𝒘 is a primitive, regular weight sequence.
Let 𝑖 and 𝑗 be two players so that𝑤𝑖 < 𝑤 𝑗 . Then lim

𝑛→∞
𝛽
𝑝

𝑖
(G𝑛)/𝛽𝑝𝑗 (G𝑛) as a function of the quota 𝑞 is

"U-shaped": It has a unique minimum 𝑞min in (0, 1) and non-zero derivative at all other points. The
derivative of the function at 𝑞 = 𝑝 is positive when 𝑝 > 1/2, negative when 𝑝 < 1/2, and zero at 𝑝 = 1/2.

The proof can be found in Appendix B.1. To make the statement easier to parse, we illustrate
lim𝑛→∞ 𝛽

𝑝

𝑖
(G𝑛)/𝛽𝑝𝑗 (G𝑛) > 𝑤𝑖/𝑤 𝑗 as a function of 𝑞 in Figure 2.

Corollary 4.3 offers an explanation for why veto players are a frequent occurrence if 𝑞 ≫ 𝑝 ≥ 1/2.
Since we know that at 𝑞 = 𝑝 , the limiting ratio is𝑤𝑖/𝑤 𝑗 , we know that for 𝑞 > 𝑝 ≥ 1/2 it holds that
lim𝑛→∞ 𝛽

𝑝

𝑖
(G𝑛)/𝛽𝑝𝑗 (G𝑛) > 𝑤𝑖/𝑤 𝑗 : Players with large weight have disproportionally little power.

Thus, if their power share is required to match their population target, their weight share needs to
be far greater than this target. Conversely, we get that for 𝑝 > 1/2 and 𝑞 slightly smaller than 𝑝 ,
it holds that lim𝑛→∞ 𝛽

𝑝

𝑖
(G𝑛)/𝛽𝑝𝑗 (G𝑛) < 𝑤𝑖/𝑤 𝑗 : Players with large weight have disproportionally

high power, so in the inverse power problem their weight share will be smaller than their target.
We confirm that these trends also hold for weighted voting games with a finite number of players
in Section 6.

Corollary 4.3 also highlights that adaptive Banzhaf is the only 𝑝-propensity Banzhaf power index
for which the powers converge to weights in our setting. Since every semivalue that is anonymous
to the voters and assumes they are voting independently is a 𝑝-propensity Banzhaf index for some
𝑝 , this implies that:
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0.8
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𝑝

𝑤𝑖/𝑤𝑗

𝑞

lim
𝑛→∞

𝛽
𝑝

𝑖
(G𝑛 )

𝛽
𝑝

𝑗
(G𝑛 )

Fig. 2. An illustrative plot of the convergence of the 2/3-propensity Banzhaf powers for a player of weight
𝑤𝑖 = 1 and a player of weight𝑤 𝑗 = 2 for the repeating weight sequence𝒘 = 1, 1, 2, 1, 1, 2, 1, 1, 2, .... At 𝑞 = 𝑝 ,
the power ratio limits to the weight ratio. Because the plot is U-shaped, there is a second value 𝑞 < 𝑝 with
the same limiting ratio𝑤𝑖/𝑤 𝑗 = 1/2. This turns out to occur when 𝑟 = 1/2, which gives 𝑞 = 5/12.

Corollary 4.4 (Uniqeness of adaptive Banzhaf). The adaptive Banzhaf power index is the
only normalized semivalue that assumes voters are voting independently and satisfies the Penrose
Limit Theorem for all primitive, regular weight sequences𝒘 and all quotas 𝑞.

The proof of Corollary 4.4 can be found in Appendix B.1.
To conclude the section, we consider if there is hope to relax the conditions of primitivity and

regularity for the weight sequence. Lindner and Machover [2004] already point out that without
primitivity, the PLT can fail. For example, consider the weight sequence𝑤1 = 1 and𝑤𝑖 = 2 for all
𝑖 ≥ 2 with quota 1/2. For any odd number of players, player 1 is pivotal in no coalition, so their
power is 0. For any even number of players, it is not hard to verify that player 1 is pivotal if and
only if any of the players of weight 2 is pivotal, so the powers of all players are equal. Thus, the
limit 𝛽𝑝1 (G𝑛)/𝛽𝑝2 (G𝑛) does not exist, as the ratio jumps between 0 and 1.
Let us now consider regularity. If the limits of the fraction of voters that have a given weight,

i.e., the natural densities, do not exist and 𝑞 ≠ 𝑝 , the limit 𝛽𝑝1 (G𝑛)/𝛽𝑝2 (G𝑛) may not exist either.
We give an informal argument: Consider the finite weight sequences 𝒗1 = 1, 2, 1 and 𝒗2 = 1, 2, 2,
quota 4/5, and the standard (i.e., 1/2-propensity) Banzhaf power index. By Theorem 4.2, the ratio
𝛽
𝑝

1 /𝛽
𝑝

2 , i.e., of powers of a player with weight 1 to a player with weight 2, approaches 1 : 1.662... for
𝒘 = 𝒗1, 𝒗1, ... and approaches the different ratio 1 : 1.754... for𝒘 = 𝒗2, 𝒗2, .... We can now create a
weight sequence𝒘 consisting of alternating blocks of just 𝒗1 and just 𝒗2, with the blocks increasing
in size. By making each block sufficiently much longer than all preceding blocks, we know that
after the end of each 𝒗1 block, 𝛽

𝑝

1 /𝛽
𝑝

2 is arbitrarily close to 1 : 1.662..., while after each 𝒗2 block,
𝛽
𝑝

1 /𝛽
𝑝

2 is arbitrarily close to 1 : 1.754.... Thus, 𝛽𝑝1 /𝛽
𝑝

2 does not converge, the limit as 𝑛 → ∞ does
not exist. Note that in this example, the natural densities do not exist: At the end of a 𝒗1 block, 𝑑1
will be arbitrarily close to 2/3, while after a 𝒗2 block, it will be arbitrarily close to 1/3. Also, note that
this argument does not work if 𝑞 = 𝑝 , since both under𝒘 = 𝒗1, 𝒗1, ... and𝒘 = 𝒗2, 𝒗2, ..., the ratio of
powers 𝜌1/𝜌2 approaches 1 : 2.

4.2 Oceanic games
A second setting of weighted voting in the limit that has been extensively discussed in the literature
is the setting where some large players have a fixed weight while the remaining weight is split up
evenly among a growing number of small players. In particular, we can fix weights𝑤1, ...,𝑤ℓ of ℓ
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large players summing to no more than 1 and a quota 𝑞 ∈ (0, 1). Let 𝛼 = 1 −∑ℓ
𝑖=1𝑤𝑖 be the leftover

weight. We now consider the WVGs

G𝑛 = (𝑤1, . . . ,𝑤ℓ ,
𝛼

𝑛
, . . . ,

𝛼

𝑛︸    ︷︷    ︸
𝑛

;𝑞),

defined for 𝑛 = 1, 2, . . . , where the small players divide up the leftover weight. In slight abuse of
notation, 𝑛 here denotes the number of small players in the game, so that the total number of
players is |𝑁 | = 𝑛 + ℓ .

Theorem 4.5 (Oceanic propensity Banzhaf). For 𝑖 ∈ [ℓ],

lim
𝑛→∞

𝛽
𝑝

𝑖
(G𝑛) =

{
𝛽
𝑝

𝑖
(G𝑝

0 ) if 𝑞 − 𝛼𝑝 ∈ [0, 1 − 𝛼] \𝐴0

0 else,

whereG𝑝

0 = ( 𝑤1
1−𝛼 , ...,

𝑤ℓ

1−𝛼 ;
𝑞−𝛼𝑝
1−𝛼 ) is a game restricted to the large players and𝐴0 = {∑𝑖∈𝑆 𝑤𝑖 | 𝑆 ⊆ [ℓ]}

are the weights achievable by large players.

The special case of Theorem 4.5 for the standard Banzhaf power index (𝑝 = 1/2) was established
by Dubey and Shapley [1979]. The formal proof of this generalization is given in Appendix B.2 and
follows the same proof strategy.
The theorem states that there are two different scenarios for the powers of the large players,

𝑖 ∈ [ℓ], in the limit, depending on the relation of the quota to 𝛼 , 𝑝 , and 𝐴0. If 𝛼𝑝 ≤ 𝑞 ≤ 1 − 𝛼 + 𝛼𝑝

and 𝑞 − 𝛼𝑝 ∉ 𝐴0, the total power of the large players approaches 1; in all other cases, the total
power of the large players goes to 0. It is noteworthy that the latter case stems from two regimes
that differ in their stability: Following Dubey and Shapley [1979], we define a set of pitfall points for
the quota as 𝑃 = 𝛼𝑝 +𝐴0. A quota taking a value at the pitfall points leads to the limit of the game
being unstable: A small perturbation to 𝑞, 𝑝 or the large player weights will change the behavior in
the limit so that the total large player power goes to 1 (instead of 0). By contrast, for 𝑞 outside the
range [𝛼, 1 − 𝛼 + 𝛼𝑝], the limit is stable: the fact that the total power of the large players goes to 0
is robust to perturbations. We illustrate these regions in Figure 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1𝑝

𝛼𝑝 𝛼𝑝 +𝑤1 𝛼𝑝 +𝑤2 𝛼𝑝 +𝑤1 +𝑤2

Fig. 3. The different regions for 𝑞 that determine player power in the oceanic limit with ℓ = 2 large players of
weight𝑤1 = 0.2 and𝑤2 = 0.3 at propensity 𝑝 = 3/4. Here, 𝛼 = 0.5 is the share of weight made up by the small
players. The blue regions correspond to the interval 𝛼𝑝 + [0, 1 − 𝛼]. The weights achievable by large players
are 𝐴0 = {0, 𝑤1, 𝑤2, 𝑤1 +𝑤2} and the "pitfall points" 𝑃 = 𝛼𝑝 +𝐴0 are marked in red. As long as the quota
falls in the blue region, the large players retain power as the small players shrink.

A key observation to understand these cases is that in the limit, the fraction of small voters who
vote yes is tightly concentrated around 𝑝 , so the weight that they contribute to the coalition is
tightly concentrated around 𝛼𝑝 . Now, if the quota is between 𝛼𝑝 and 𝛼𝑝 + (1 − 𝛼), some large
players are going to be pivotal at these most-likely weight sums. If there exists a coalition of large
players 𝑆 ⊆ [ℓ] so that 𝑞 = 𝛼𝑝 + ∑

𝑖∈𝑆 𝑤𝑖 (i.e., if 𝑞 ∈ 𝑃 ), then small players become pivotal as well
in the limit. In the proof, we show that in both the case that 𝑞 ∈ 𝑃 (where both large and small
voters are pivotal in the most-likely coalitions) and 𝑞 ∉ (𝛼𝑝, 1 − 𝛼 (1 − 𝑝)) (where neither large nor
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small voters are pivotal in the most-likely coalitions), the sum of pivotal probabilities is dominated
by the small players, causing the large players to have shrinking power, going to 0 in the limit.

At all other quotas, where only large players are pivotal in the most-likely coalitions, the sum of
pivotality probabilities for all small players goes to zero, while the pivotality probability of each
large player tends to the limit derived from the reduced WVG G𝑝

0 = ( 𝑤1
1−𝛼 , ...,

𝑤ℓ

1−𝛼 ;
𝑞−𝛼𝑝
1−𝛼 ) . This

particular weighted voting game arises from assuming that 𝑝 share of the small players always
vote yes and the remaining small players always vote no.

In this family of games, we see the special position that the quota-equals-propensity case occupies
in the family of propensity-Banzhaf power indices. In particular, it is not hard to verify that 𝑝 = 𝑞

is the only value of 𝑝 for which 0 ≤ 𝑞 − 𝛼𝑝 ≤ 1 − 𝛼 for all 𝛼 ∈ (0, 1). Thus, 𝑝 = 𝑞 is the only value
of 𝑝 for which the large players retain non-zero power for all 𝛼 ∈ (0, 1) (besides the unstable pitfall
points). Furthermore, we note that 𝑝 = 𝑞 is the only value of 𝑝 for which the quota 𝑞−𝛼𝑝

1−𝛼 in the
reduced game G𝑝

0 is equal to the original quota 𝑞. Thus, only at 𝑝 = 𝑞 are the powers as if the small
players didn’t exist and all large-player weights were scaled up equally to sum to 1, with the quota
unchanged:

Corollary 4.6 (adaptive Banzhaf in the oceanic case). It holds that

lim
𝑛→∞

𝜌𝑖 (G𝑛) = 𝜌𝑖
(
( 𝑤1
1−𝛼 , ...,

𝑤𝑙

1−𝛼 ;𝑞)
)
,

unless there exists 𝑆 ⊆ [𝑙] for which ∑
𝑖∈𝑆 𝑤𝑖 = 𝑞(1 − 𝛼).

We conclude this section with two remarks: First, note that there are obstructions to obtaining a
result in the style of the Penrose Limit Theorem (see Definition 4.1) for the ratio of the players’
powers. In the first case of Theorem 4.5, 𝑞 ∈ [𝛼𝑝, 1−𝛼 (1−𝑝)] \𝑃 , pairs of large players will violate
the PLT, while in the second case, a pairing of large player and small player will violate the PLT
(with their power ratio converging to a constant). Finally, we note that in the literature the term
"oceanic" games is used for the greater class of WVGs where the weight of all small players goes
to 0, but they are not necessarily all equal. However, Dubey and Shapley [1979] show that in this
more general setting, the powers of the large players under the (1/2-propensity) Banzhaf power
index do not necessarily converge, even at quota 1/2. Therefore our narrower definition of oceanic
games is a reasonable place to look for positive results.

5 Veto Distortion
A player 𝑖 in a WVGW = (𝒘, 𝑞) is called a veto player if𝑤𝑖 ≥ 1 − 𝑞, or equivalently, 𝑖 is included
in every winning coalition.4 Intuitively, veto players have great power: Since no coalition of voters
excluding them is winning, their approval is necessary for any motion to pass.
As observed in Section 1.2, it can happen in an instance of the inverse power problem that the

discrepancy-minimizing weights for a power index include a veto player. Generally, this is not
necessarily concerning: If a player’s target power𝑚𝑖 (for example, their population share) exceeds
the veto threshold of 1 − 𝑞, it is not unexpected that also their weight 𝑤∗

𝑖 (in an optimal weight
distribution𝒘∗ ∈𝑊 ∗ (𝒎, 𝑞, 𝝋) for power index 𝝋) exceeds the veto threshold, making them a veto
player. In contrast, it is concerning if a player whose target power𝑚𝑖 is far below the veto threshold
becomes a veto player. We call such a player 𝑖 with𝑚𝑖 ≤ 1 − 𝑞 but𝑤∗

𝑖 > 1 − 𝑞 an undeserving veto
player.

In this spirit, it is natural to investigate how undeserving a veto player is: How small can the𝑚𝑖

of a player be that receives a veto for some optimal weights𝒘∗? To answer this question, we define
the veto distortion of an inverse power problem instance with target distribution 𝒎, quota 𝑞, and
4In the case of a non-strict quota, the veto player condition becomes 𝑤𝑖 > 1 − 𝑞.
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power index 𝝋 as the ratio between the veto threshold of 1 − 𝑞 and the smallest target distribution
value𝑚𝑖 of a player 𝑖 that ended up as a veto player in some discrepancy-minimizing weight vector
𝒘∗. If this fraction is less than one, no undeserving player of weight less than 1 − 𝑞 was made a
veto player in any discrepancy-minimizing weight vector, so we set the distortion to 1.5 That is,

veto-dist(𝒎, 𝑞, 𝝋) = max
{

1 − 𝑞

min𝒘∗∈𝑊 ∗ (𝒎,𝑞,𝝋 ) min𝑖∈𝑁 :𝑤𝑖≥1−𝑞𝑚𝑖

, 1
}
.

We let the veto distortion of power index 𝝋 for fixed quota 𝑞 be the worst-case veto distortion of
this power index for any target distribution 𝒎. With a slight abuse of notation, we write

veto-dist𝑞 (𝝋) = max
𝒎∈ΔN

veto-dist(𝒎, 𝑞, 𝝋).

Theorem 5.1 (Arbitrary veto distortion). For any 𝑞 ∈ (1/2, 1) and any 𝑝 ∈ (0, 1), the veto
distortion veto-dist𝑞 (𝜷𝑝 ) is unbounded.

The key idea of the proof is to construct, for any quota 𝑞 and propensity 𝑝 , a family {G𝑛} of
WVGs with weights {𝒘𝒏} and quota 𝑞 that all have a veto player whose 𝑝-propensity Banzhaf
power can be made arbitrarily small for sufficiently large 𝑛. We then define the target distributions
{𝒎𝒏} to be precisely the 𝑝-propensity Banzhaf powers of those WVGs {G𝑛}. Now, since 𝒎𝒏 are
the 𝑝-propensity Banzhaf powers of WVG G𝑛 , we know that by definition the weights 𝒘𝒏 are
going to have discrepancy 0 and thus be optimal. However, this already implies Theorem 5.1: By
our assumption on {G𝑛}, we can make the power of the veto player 𝛽𝑝

𝑖
(G𝑛), and thus their target

distribution value𝑚𝑛
𝑖 , arbitrarily small, while ensuring that the weights𝒘𝑛 for which 𝑖 is a veto

player are optimal weights. We can make the denominator of the expression defining veto distortion
arbitrarily small, leading to unbounded veto distortion. We give the construction of these {G𝑛},
which is based on Theorem 4.5, and a formal proof in Appendix B.3.

For 𝑞 = 1/2 and a non-strict quota, the veto distortion behaves a lot more nicely:

Theorem 5.2. For any 𝑝 ∈ (0, 1), if the quota is not strict (so that weights ≥ 𝑞 are winning), then
there is no distortion at simple majority: veto-dist1/2 (𝜷𝑝 ) = 1.

The proof of Theorem 5.2 can be found in Appendix B.3. The key idea is that for non-strict quota
1/2, any veto player is also a dictator : Any coalition that includes them is winning. From this, we
can deduce that the power of any veto player is 1, so it suffices to prove that the power distribution
(1, 0, ..., 0) is never optimal if no player’s target distribution value exceeds the veto threshold.
There remains the case 𝑞 = 1/2 with strict quota (i.e., weights > 𝑞 are winning). That situation

can be distinguished from the non-strict case by an example. For the target distribution 𝒎 =

(5/12, 5/12, 2/12), one can easily confirm that in this case, veto-dist1/2 (𝜷𝑝 ) ≥ 6/5.
The results in this section may at first seem bleak. However, the proof of Theorem 5.1 relies on

engineering games that put 𝑝, 𝑞 in an unstable "pitfall" relationship from Theorem 4.5. Due to this
instability, we conjecture that for 𝑞 ≈ 𝑝 , a random target distribution will have little to no veto
distortion with probability 1. As partial confirmation, the empirical results below in Section 6 show
that undeserving veto players are frequent for 𝑞 ≪ 𝑝 or 𝑞 ≫ 𝑝 , while they are rare in 𝑝 ≈ 𝑞 cases.

5We only focus on the issue of a player that does not deserve a veto (as𝑚𝑖 ≤ 1 − 𝑞) becoming a veto player. A related
question is whether it can happen that a player that would deserve a veto ends up without a veto in the optimal weights. We
believe the latter phenomenon is significantly less concerning; it is conceivable that some player of large target distribution
(e.g., population share) may need to forgo their veto for a discrepancy-minimizing power distribution.
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6 Empirical Results
6.1 Predictions from theory
As we have seen, the objective to minimize the discrepancy of the normalized vectors 𝒎 and 𝜷 can
lead to optimized weights𝒘 with𝒘 0 𝜷 . In particular, Corollary 4.3 suggest that at large quotas
(larger than the propensity), the power of the largest player will lag far behind their weight. Thus,
to get the power to hit a target will require the allocation of a large weight. This is exactly what
has been observed for the ordinary Banzhaf power index (𝑝 = 1/2) at supermajority quotas: this
was noted for the United States at the IMF at 𝑞 = 85% [Leech, 2002c], for Germany in the Council
of Ministers of the EU at quotas exceeding 75% [Leech and Machover, 2003], and in our consulting
work for Ontario County.

On the other hand, our theoretical results from Section 4.1 tell us that in several limiting
constructions, the adaptive Banzhaf power index leads to proportional optima

𝒎 ≈ 𝒘 ≈ 𝝆 .

We now design a range of experiments to test whether the asymptotic predictions are already
observable in small finite games.

6.2 Experiment setup
In the experiments, we focus on two forms of distortion: In an instance of the inverse power problem
with target distribution 𝒎 such that𝑚1 ≤ ... ≤ 𝑚𝑛 , quota 𝑞, and power index 𝝋, the largest-player
distortion of a weight vector 𝒘 is the (signed) difference between the weight and target of the
largest player:6

large-player-distortion𝒎,𝑞,𝝋 (𝑤) = 𝑤𝑛 −𝑚𝑛 .

Similarly, we define the total distortion to be the 𝐿1 distance between the weights and the target
distribution,

total-distortion𝒎,𝑞,𝝋 (𝑤) = ∥𝒘 −𝒎∥1 .

We study these notions of distortion for optimized weights in real-world instances: counties in
New York State, especially Ontario, and executive directors of the International Monetary Fund.
Unless otherwise noted, we find optimized weights giving powers close to the desired target

using a simple Markov chain method. Weights are initialized to be proportional to populations.
Then, in every iteration, we sample a player with probability proportional to the absolute difference
between that player’s power index and population share (the power target). The weight of that
player is then adjusted in the direction that would reduce the discrepancy by a small, random
step size. The search terminates after 1000 consecutive steps in which the 𝐿1 discrepancy did
not improve. We empirically observe that this approach stabilizes, with multiple runs eventually
converging to roughly the same near-optimal solution, with tiny values for the objective function,
often with |𝒎 − 𝝋 | < .001 for vectors with entries summing to 1. Figure 8 in Appendix C.2 shows
the progression of one such run as it converged to optimized weights for quota 3/4 and propensity
1/2 (i.e., the exact setting described in Section 1.2).

To confirm that the results are not just artifacts of our heuristic algorithm, we employ an integer
linear programming (ILP) approach due to Kurz [2012] to find globally optimal weights for small
instances, confirming our findings. Exact results are presented in Appendix C.3.

6It is not hard to check that this largest-target player will also be the player with the largest weight in an optimal solution.
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6.3 Ontario County
Data. Recall that there are 21 members of the Board of Supervisors in Ontario County, who pass

measures by weighted voting. The sizes of the populations they represent, as well as the weights
optimized for quotas 1/2, 3/5, 2/3, 3/4, and 4/5, can be found in the supplementary material in Table 1.
The largest player in this weighted voting game is the Town of Victor with a population share of
14.1%.

Experiments. For every combination of propensity 𝑝 and quota 𝑞 in the set {50%, 51%, . . . , 99%},
we found heuristically optimized weights under 𝑝-propensity Banzhaf power index with a Markov
chain local search as described above. Victor’s weight distortion is shown in Figure 4, while the
heatmap showing the total distortion is deferred to Appendix C.

Fig. 4. Largest-player distortion for the Town of Victor, where 𝒎 is the (fixed) vector of population shares
in Ontario County and 𝒘 has been heuristically optimized for each (𝑝, 𝑞) pair. Outlined boxes represent
situations where the weight boost makes Victor a veto player. The dashed line represents the threshold at
which Victor would be a veto player with naive weights𝒘 = 𝒎.

These results empirically confirm that the predictions of Corollary 4.3 hold in a 21-town instance,
rather than merely asymptotically. In particular, the U-shape of the limiting ratio is visible. When
the quota is much larger than the propensity, the largest town has power lagging far behind weight,
so a near-optimal solution calls for massively high weights so that the power can hit its target.
When the propensity is roughly equal to the quota, the weight of the largest town is roughly
proportional. For quotas less than the propensity, the optimized weight of the largest player first
decreases, before increasing again in the bottom right corner. We note that the line of zeroes, where
weight and power match, is not exactly along the main diagonal 𝑝 = 𝑞 (adaptive Banzhaf) as the
asymptotic theory predicts. However, along this main diagonal, Victor becomes a veto player right
around the line 𝑞 = 1 −𝑚 where its population is large enough to "deserve" it.
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Fig. 5. In Ontario, adaptive Banzhaf causes Victor’s weight to stay close to proportional until they become a
deserving veto player, after which their weight grows quickly.

By contrast, ordinary Banzhaf is observed along the left-hand edge of the square, at propensity
𝑝 = 1/2. There, the optimized weight of Victor increases almost linearly with the quota, for quotas
greater than 70%. Figure 5 shows another view.

6.4 Counties in New York State
Data. In each of the 16 counties in New York State that use weighted voting, we obtain the voting

weights for the Board of Supervisors from the local laws in the counties; the populations of the
towns they represent are pulled from the 2020 Decennial Census [U.S. Census Bureau, 2020].
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Fig. 6. For each of the 16 counties in New York State that use weighted voting, we show the largest player’s
population and their weight in the optimized weights under the Banzhaf power index and adaptive Banzhaf
power index at quota 𝑞 = 3/4.
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Experiment and Results. For each county, we find optimized weights under both the ordinary
Banzhaf index and the adaptive Banzhaf index at quota 𝑞 = 75%. We find that in all 16 counties, the
largest player distortion is negative for the adaptive Banzhaf index and positive for the ordinary
Banzhaf index, with the latter dominating in magnitude. In seven counties, thus almost half
of the analyzed counties, the largest player has a population share (i.e., target) below the veto
threshold, but under the Banzhaf power index receives weight above the veto threshold, making
them an undeserving veto player. In some cases, the largest player’s weight is more than twice their
proportional share. In one county, Hamilton, the largest town’s population just exceeds the veto
threshold, while their optimized adaptive Banzhaf weight is just below: a town "deserving" of a veto
does not get one. We plot the largest player population and weight, from which the largest player
distortion can easily be inferred, in Figure 6. Furthermore, in all 16 counties, the total distortion of
the Banzhaf index is significantly larger than that of the adaptive Banzhaf index. We plot this in
Figure 7.
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Fig. 7. For each of the 16 counties in New York State that use weighted voting, we show the total distortion,
the 𝐿1 distance between optimized weights and populations, under the Banzhaf power index and the adaptive
Banzhaf power index at quota 𝑞 = 3/4.

6.5 Additional experiments
We analyze voting in the International Monetary Fund in Appendix C.5. Weight distortion for
the largest player (the United States) at supermajority quotas was identified as paradoxical and
problematic in Leech [2002c]. Here again, optimizing weights for the adaptive Banzhaf index works
in practice, alleviating the distortion paradox.
Heatmaps displaying the total distortion and largest-player distortion for all combinations of

propensity 𝑝 and quota 𝑞 in the set {50%, 51%, . . . , 99%} for Ontario County, Livingston County, and
a set of synthetic examples can be found in Appendix C.4. We consider two synthetic populations
that resemble a finite version of the oceanic case and find that the pitfall points are clearly visible
from the optimized weight vectors.
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7 Discussion
We have argued that the properties of the adaptive Banzhaf power index make it an appealing
alternative to the ordinary Banzhaf power index, leading to more proportional weights in the inverse
power problem while still abiding by the essential assumptions that players vote anonymously and
independently. Due to the independence of the voters, it is a policy-seeking power index in the
formulation of Felsenthal and Machover [1998], measuring a fundamentally different notion of
power than the office-seeking Shapley-Shubik index. Thus, it conserves the known conceptual and
theoretical advantages of the Banzhaf index over the Shapley-Shubik index for measuring voting
power.
There is another body of work giving signs in favor of the adaptive Banzhaf index over the

ordinary Banzhaf index and Shapley-Shubik index. Leech [2002a] argues that shareholders in
publicly traded companies offer real-world approximations to oceanic games, with few large
players and a large number small players present. Drawing on classic work from Berle and Means
[1932], Leech argues that a knowledgeable analysis of the powers should indicate that the practical
control over decisions (i.e., the power) of the large players greatly exceeds their voting weight.
Therefore, a power index that reflects this reality, when applied to publicly traded companies,
should in most cases assign disproportionately much power to the few players with large voting
weight. Analyzing data from publicly traded companies in the UK, Leech [2002a] finds this is the
case for the Banzhaf index but not for Shapley-Shubik index, at a quota of 1/2. In the light of our
results for oceanic games (Theorem 4.5), this is not surprising: Unless the large player weights
lead to a (very unlikely) pitfall point, the ordinary Banzhaf power index at quota 𝑞 = 1/2 will lead
to the large players having disproportionally high power. Interestingly, this no longer holds for
the Banzhaf power index at any quota other than 1/2, when 𝛼 is sufficiently close to 1. Instead, by
Theorem 4.5, we see that the adaptive Banzhaf power index is the only 𝑝-propensity Banzhaf power
index that satisfies Leech’s criterion for all quotas 𝑞 and any 𝛼 . We see this as intriguing evidence
on the side of adaptive Banzhaf.

Let us close where we started, in Victor, New York. Our results show that the seeming necessity of
the Victor veto for supermajority voting is merely a byproduct of contestible modeling assumptions.
Adaptive Banzhaf power can serve as a tool for institutional design, aligning mathematical notions
of power with normative expectations and avoiding distortions that undermine the legitimacy of
real-world voting systems.
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A Additional Related Work
Voting power. The formal study of voting power was initiated by Penrose [1946] studying the

probability that a voter is on the ‘winning side’ of a yes/no vote, when all other voters vote
independently and uniformly at random. Independently, Shapley and Shubik [1954] developed the
first power index, now known as the Shapley-Shubik index, by applying the Shapley value from
cooperative game theory to weighted voting. After Banzhaf’s paper made a splash in the 1960s,
Weber [1979] generalized both the Shapley-Shubik and the Banzhaf index to a class of anonymous,
probabilistic power indices called semivalues. Some less-well-known power indices, which do not
fall into the class of semivalues, were defined by Deegan and Packel [1978] and Johnston [1978].
More information about these power indices and their respective justifications and shortcomings
can be found in the survey by Felsenthal and Machover [1998].

Law and political science. Banzhaf’s investigation of voting power came in the wake of major
U.S. Supreme Court decisions in Baker v. Carr (1962) and Reynolds v. Sims (1964) interpreting the
constitution to mandate equalization of voting weight with a strong basis in raw population. He
argued against naive weighting (with weights presumed to be proportional to power) in [Banzhaf,
1965], with a follow-up in [Banzhaf, 1968]. Subsequent coverage in law reviews and political science
journals has not been extensive but includes at least work by Brenner [1978], Gelman et al. [2004],
Grofman [1981], and Ostrow [2016].

Complexity of computing the Banzhaf power index. Matsui and Matsui [2001] show that deciding
whether a voter’s Banzhaf (and Shapley-Shubik) power is non-zero is NP-complete, thus proving
the problems of computing the Banzhaf power index or measure, and of even getting an multi-
plicative approximation to them, to be intractable. Many papers propose algorithms for additive
approximations to the Banzhaf power index or measure in large instances [Bachrach et al., 2010,
Leech, 2003, Matsui and Matsui, 2000].

The inverse power problem. The problem of finding weights giving powers close to a desired
distribution is as old as the question of how to measure voting power. While the problem is known
to be intractable [Diakonikolas and Pavlou, 2019], there exist many approximation algorithms [Aziz
et al., 2008, Diakonikolas et al., 2022, Leech, 2002b]. Alon and Edelman [2010] prove that there exist
certain power distributions for which no weighted voting game, no matter the number of players,
leads to Banzhaf powers close to it. Kurz [2012] extends this analysis to the Shapley-Shubik index
and proposes an approach based on integer linear programming for solving the inverse problem
exactly.

Empirical evidence for Banzhaf vs. Shapley-Shubik. Clearly, we cannot expect either power index
to actually coincide with observed coalitions in real-world settings. Since the power indices aim
to make an a priori measurement—the power distribution in a voting body without consideration
of the players’ nature—they must be agnostic to ideological similarities between voters. Gelman
et al. [2004] examine which of the two indices’ assumptions on the distribution of coalition sizes
matches data from states in U.S. presidential elections by looking at the vote share the winning
party received. They find that while coalition sizes around the threshold of 1/2 are more likely
than extreme coalition sizes (which provides evidence against the Shapley-Shubik assumption), the
distribution of the winning party’s relative vote share around the threshold seems to be independent
of the number of voters (which conflicts with the Banzhaf assumption). Leech [2002a] investigates
the voting among shareholders in publicly traded companies in the UK and finds that the Banzhaf
power index aligns with the qualitative comparison of practical power described in the literature
much better than Shapley-Shubik.
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B Missing Proofs
B.1 The Penrose Limit Theorem
An important building block is the following local limit theorem for lattice distribution, proved in
Petrov [1975]. For us, it plays the role of a lemma.

Lemma B.1 (Local Limit for Lattice Distribution). Let {D𝑖 }𝑖∈[𝑊 ] be a finite number of
distributions over the integers, each with finite variance. The span 𝐻𝑖 of distribution D𝑖 is the smallest
integer ℎ for which there exists an integer 𝑎 so that Pr𝑥∼D𝑖

[𝑥 ≡ 𝑎 (mod ℎ)] = 1. Let 𝑋1, 𝑋2, ... be a
sequence of independent random variables where each 𝑋 𝑗 is distributed according to one of the D𝑖 . Let
D∗

1 , ...,D∗
𝑊 ∗ be all distributions according to which infinitely many 𝑋𝑖 in the sequence are distributed

and let their spans be 𝐻 ∗
1 , ...𝐻

∗
𝑊 ∗ . If gcd

(
𝐻 ∗
1 , ..., 𝐻

∗
𝑊 ∗

)
= 1, then the distribution is asymptotically

normal:

sup
𝑥∈Z

�����𝜎𝑛 Pr
[

𝑛∑︁
𝑗=1

𝑋 𝑗 = 𝑥

]
− 1
√
2𝜋

exp

(
−1
2

(
𝑥 − 𝜇𝑛

𝜎𝑛

)2)����� 𝑛→∞−→ 0,

where 𝜇 = E
[∑𝑛

𝑗=1𝑋 𝑗

]
and 𝜎𝑛 =

√︂
Var

(∑𝑛
𝑗=1𝑋 𝑗

)
.

Proof of Theorem 4.2. Without loss of generality, we’ll assume that players 𝑖, 𝑗 are players of
weight𝑤1 (‘player 1’) and of weight𝑤2 (‘player 2’), and that𝑤1 < 𝑤2. Going forward, we’ll thus
reuse 𝑖 and 𝑗 as variables, no longer to denoting the 2 players in question. Furthermore, we’ll refer
to the WVGs in their unnormalized form G (𝑛) =

(
𝑤1, ...,𝑤𝑟 ;𝑞𝑊 (𝑛) ) since this simplifies notation

(note that this does not change which coalitions are winning and thus doesn’t change the powers).
For 𝑖 ∈ {3, ..., 𝑛}, we let 𝑋𝑖 ∼ Bernoulli(𝑝) be independent random variables representing how

the 𝑖th player votes. Thus, 𝑆𝑛 =
∑𝑛

𝑖=3𝑤𝑖𝑋𝑖 denotes the weight of a random coalition, conditioned
on excluding the first two voters.
We let 𝑇𝑛 =

⌊
𝑞𝑊 (𝑛) ⌋ be the integer voting threshold: Any coalition with more than 𝑇𝑛 weight is

winning, any coalition with 𝑇𝑛 or less weight is losing.7 Thus, we can observe:
• Player 1 is pivotal if and only if 𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 −𝑤2 + 1, ...,𝑇𝑛 −𝑤2} and player 2 votes yes or
𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 + 1, ...,𝑇𝑛} and player 2 votes no. Thus,

𝛽
𝑝

1 (G𝑛) = 𝑝 Pr[𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 −𝑤2 + 1, ...,𝑇𝑛 −𝑤2}] + (1 − 𝑝) Pr[𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 + 1, ...,𝑇𝑛}] .
• Player 2 is pivotal if and only if 𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 −𝑤2 + 1, ...,𝑇𝑛 −𝑤2} and player 1 votes yes,
𝑆𝑛 ∈ {𝑇𝑛 −𝑤2 + 1, ...,𝑇𝑛 −𝑤1} regardless of player 1’s vote, or 𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 + 1, ...,𝑇𝑛} and
player 1 votes no. Thus,

𝛽
𝑝

2 (G𝑛) = 𝑝 Pr[𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 −𝑤2 + 1, ...,𝑇𝑛 −𝑤2}]+
+ Pr[𝑆𝑛 ∈ {𝑇𝑛 −𝑤2 + 1, ...,𝑇𝑛 −𝑤1}] + (1 − 𝑝) Pr[𝑆𝑛 ∈ {𝑇𝑛 −𝑤1 + 1, ...,𝑇𝑛}] .

Let’s first consider adaptive Banzhaf. Note that 𝜌1 (G𝑛 )
𝜌2 (G𝑛 ) =

𝛽
𝑞

1 (G𝑛 )
𝛽
𝑞

2 (G𝑛 )
=

𝛽
𝑞

1 (G𝑛 )
𝛽
𝑞

2 (G𝑛 )
. To calculate the limit

of

𝛽
𝑞

1 (G𝑛)
𝛽
𝑞

2 (G𝑛)
=

𝑝
𝑤1+𝑤2−1∑
𝑖=𝑤2

Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖] + (1 − 𝑝)
𝑤1−1∑
𝑖=0

Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖]

𝑝
𝑤1+𝑤2−1∑
𝑖=𝑤2

Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖] +
𝑤2−1∑
𝑖=𝑤1

Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖] + (1 − 𝑝)
𝑤1−1∑
𝑖=0

Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖]
, (1)

7Note that the proof works identically if we set𝑇𝑛 =
⌈
𝑞𝑊 (𝑛) ⌉ − 1, corresponding to the case when a coalition is winning if

it meets the quota (but does not necessarily need to exceed it).
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we’ll first determine the ratio Pr[𝑆𝑛 = 𝑇𝑛 − 𝑐]/Pr[𝑆𝑛 = 𝑇𝑛] for 𝑛 → ∞ and a constant 𝑐 .
The 𝑋𝑖 are independent random variables from at most𝑊 different distributions (one for each

possible value of𝑤𝑖 in [𝑊 ]). The distribution of𝑋𝑖 has finite variance and span𝑤𝑖 . Thus, primitivity
of the weight sequence implies that the greatest common divisor of the span of all distributions
that appear infinitely often as distributions of 𝑋𝑖 is 1, so we can apply Lemma B.1 to get that we
can write

Pr[𝑆𝑛 = 𝑥] = 1
𝜎𝑛

(
1

√
2𝜋

exp

(
−1
2

(
𝑥 − 𝜇𝑛

𝜎𝑛

)2)
+ 𝜉𝑛 (𝑥)

)
for 𝜇𝑛 = 𝑞(𝑊 (𝑛)−𝑤1−𝑤2),𝜎𝑛 =

√︃∑𝑛
𝑖=3 𝑞(1 − 𝑞)𝑤2

𝑖
, and some error 𝜉𝑛 (𝑥) where sup𝑥∈Z |𝜉𝑛 (𝑥) | → 0

as 𝑛 → ∞. Thus,

Pr[𝑆𝑛 = 𝑇𝑛 − 𝑐]
Pr[𝑆𝑛 = 𝑇𝑛]

=

exp
(
− 1

2

(
𝑇𝑛−𝑐−𝜇𝑛

𝜎𝑛

)2)
+ 𝜉𝑛 (𝑇𝑛 − 𝑐)

exp
(
− 1

2

(
𝑇𝑛−𝜇𝑛
𝜎𝑛

)2)
+ 𝜉𝑛 (𝑇𝑛)

.

Since both |𝑇𝑛 − 𝜇𝑛 | and |𝑇𝑛 − 𝑐 − 𝑛𝜇 | are bounded above by a constant independent of 𝑛 but

𝜎𝑛 → ∞ as 𝑛 → ∞, we get that both exp
(
− 1

2

(
𝑇𝑛−𝑛𝜇
𝜎
√
𝑛

)2)
and exp

(
− 1

2

(
𝑇𝑛−𝑐−𝑛𝜇

𝜎
√
𝑛

)2)
go to 𝑒0 = 1 as

𝑛 → ∞. In particular, since the limit of the denominator is non-zero, we get that for any constant 𝑐 ,
Pr[𝑆𝑛 = 𝑇𝑛 − 𝑐]
Pr[𝑆𝑛 = 𝑇𝑛]

→ 1

as 𝑛 → ∞. This is the key finding for the proof of the first part of the theorem: The distribution of
the weight of a random coalition, 𝑆𝑛 , is flat around the threshold 𝑇𝑛 . Thus, the players powers are
proportional to the size of their corresponding interval of pivotality, i.e. their weight. Formally,
plugging into Equation (1), this tell us that

𝛽
𝑞

1 (G𝑛)
𝛽
𝑞

2 (G𝑛)
→ 𝑝𝑤1 + (1 − 𝑝𝑤1)

𝑝𝑤1 + (𝑤2 −𝑤1) + (1 − 𝑝)𝑤1
=
𝑤1

𝑤2
.

Thus, the PLT holds for adaptive Banzhaf at any quota 𝑞 ∈ (0, 1).
Let’s now assume that the weight sequence is regular, i.e., that all the natural densities 𝑑𝑤

for 𝑤 ∈ [𝑊 ] are well defined, and consider the general case where 𝑝 ∈ (0, 1), not necessarily
equal to the quota. We cannot directly use the same trick as in the 𝑝 = 𝑞 case, since the ratio
Pr[𝑆𝑛 = 𝑇𝑛 − 𝑐]/Pr[𝑆𝑛 = 𝑇𝑛] as 𝑛 → ∞ will not be 1 for all constant 𝑐 (in terms of 𝑛) but instead
depend on 𝑐 . To overcome this, we use a technique that is standard in probability theory called
exponential tilting, modifying 𝑆𝑛 to make its expectation equal to 𝑞𝑊 (𝑛) : Let

𝜅𝑆𝑛 (𝑠) = lnE[𝑒𝑠𝑆𝑛 ] =
𝑛∑︁
𝑖=3

E[𝑒𝑠𝑤𝑖𝑋𝑖 ] =
𝑛∑︁
𝑖=3

𝜅𝑋𝑖
(𝑠)

be the cumulant generating function of 𝑆𝑛 , where 𝜅𝑋𝑖
(𝑠) = ln (1 − 𝑝 + 𝑝𝑒𝑠𝑤𝑖 ) is the cumulant

generating function of 𝑋𝑖 . We let 𝑠∗𝑛 be the unique solution to

𝜅′𝑆𝑛 (𝑠
∗
𝑛) =

𝑛∑︁
𝑖=3

𝑝𝑤𝑖𝑒
𝑤𝑖𝑠

∗
𝑛

1 − 𝑝 + 𝑝𝑒𝑤𝑖𝑠
∗
𝑛
= 𝑞𝑊 (𝑛) .

Note that there exists exactly one such 𝑠∗𝑛 since 𝜅′
𝑆𝑛
(𝑠) is continuous, 𝜅′′

𝑆𝑛
(𝑠) = ∑𝑛

𝑖=3
(1−𝑝 )𝑝𝑤2

𝑖 𝑒
𝑤𝑖𝑠

(1−𝑝+𝑝𝑒𝑤𝑖𝑠 )2 > 0
for all 𝑠 , lim𝑠→−∞ 𝜅′

𝑆𝑛
(𝑠) = 0, and lim𝑠→∞ 𝜅′

𝑆𝑛
(𝑠) =𝑊 (𝑛) .
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We define the exponentially tilted random variables 𝑋 ′
𝑖 for 𝑖 ∈ {3, ..., 𝑛} by

Pr[𝑋 ′
𝑖 = 𝑥] = 𝑒𝑠

∗
𝑛𝑥−𝜅𝑋𝑖

(𝑠∗𝑛 ) Pr[𝑋𝑖 = 𝑥],

and 𝑆 ′𝑛 =
∑𝑛

𝑖=3𝑋
′
𝑖 so that

Pr[𝑆 ′𝑛 = 𝑥] = 𝑒𝑠
∗
𝑛𝑥−𝜅𝑆𝑛 (𝑠∗𝑛 ) Pr[𝑆𝑛 = 𝑥] .

It are well-known facts about exponential tilting that the 𝑋𝑖 and 𝑆 ′𝑛 are well-defined random
variables and that E[𝑆 ′𝑛] = 𝜅′

𝑆𝑛
(𝑠∗𝑛) = 𝑞𝑊 (𝑛) and Var(𝑆 ′𝑛) = 𝜅′′

𝑆 ′𝑛
(𝑠∗𝑛).

We can now write 𝛽
𝑝

1 (G𝑛 )
𝛽
𝑝

2 (G𝑛 )
=

𝛽
𝑝

1 (G𝑛 )
𝛽
𝑝

2 (G𝑛 )
=

𝑝
𝑤1+𝑤2−1∑
𝑖=𝑤2

𝑒𝑖𝑠
∗
𝑛 Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖] + (1 − 𝑝)

𝑤1−1∑
𝑖=0

𝑒𝑖𝑠
∗
𝑛 Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖]

𝑝
𝑤1+𝑤2−1∑
𝑖=𝑤2

𝑒𝑖𝑠
∗
𝑛 Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖] +

𝑤2−1∑
𝑖=𝑤1

𝑒𝑖𝑠
∗
𝑛 Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖] + (1 − 𝑝)

𝑤1−1∑
𝑖=0

𝑒𝑖𝑠
∗
𝑛 Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑖]

. (2)

Now we can apply the same technique as in the previous case of 𝑝 = 𝑞 to determine the ratio
Pr[𝑆 ′𝑛 = 𝑇𝑛 − 𝑐]/Pr[𝑆 ′𝑛 = 𝑇𝑛] for 𝑛 → ∞ and any constant 𝑐: The 𝑋 ′

𝑖 are still independent random
variables from at most𝑊 different distributions (one for each possible value of 𝑤𝑖 in [𝑊 ]); the
distribution of 𝑋 ′

𝑖 has finite variance and span𝑤𝑖 . Thus, primitivity of the weight sequence implies
that the greatest common divisor of the span of all distributions that appear infinitely often as
distributions of 𝑋 ′

𝑖 is 1, so we can apply Lemma B.1 to get that we can write

Pr[𝑆 ′𝑛 = 𝑥] = 1
𝜎 ′
𝑛

(
1

√
2𝜋

exp

(
−1
2

(
𝑥 − 𝜇′𝑛
𝜎 ′
𝑛

)2)
+ 𝜉𝑛 (𝑥)

)
for 𝜇′𝑛 = E[𝑆 ′𝑛] = 𝑞𝑊 (𝑛) , 𝜎 ′

𝑛 =
√︃
𝜅′′
𝑆 ′𝑛
(𝑠∗𝑛), and some error 𝜉𝑛 (𝑥) where sup𝑥∈Z |𝜉𝑛 (𝑥) | → 0 as

𝑛 → ∞. By the exact same argument as above, we get that for any constant 𝑐 ,
Pr[𝑆𝑛 = 𝑇𝑛 − 𝑐]
Pr[𝑆𝑛 = 𝑇𝑛]

→ 1

as 𝑛 → ∞. We get that

lim
𝑛→∞

𝛽
𝑝

1 (G𝑛)
𝛽
𝑝

2 (G𝑛)
= lim

𝑛→∞

𝑝
∑𝑤1+𝑤2−1

𝑖=𝑤2
𝑒𝑖𝑠

∗
𝑛 + (1 − 𝑝)∑𝑤1−1

𝑖=0 𝑒𝑖𝑠
∗
𝑛

𝑝
∑𝑤1+𝑤2−1

𝑖=𝑤2
𝑒𝑖𝑠

∗
𝑛 + ∑𝑤2−1

𝑖=𝑤1
𝑒𝑖𝑠

∗
𝑛 + (1 − 𝑝)∑𝑤1−1

𝑖=0 𝑒𝑖𝑠
∗
𝑛

. (3)

To simplify notation, we set 𝑟𝑛 = 𝑒𝑠
∗
𝑛 . Recall from the definition of 𝑠∗𝑛 that 𝑟𝑛 thus is the unique

positive root of 1
𝑛

∑𝑛
𝑖=3 (

𝑝𝑤𝑖𝑟
𝑤𝑖

1−𝑝+𝑝𝑟𝑤𝑖
− 𝑞𝑤𝑖 ), which converges to

∑𝐶
𝑤=1 𝑑𝑤 (

𝑝𝑤𝑟𝑤

1−𝑝+𝑝𝑟𝑤 − 𝑞𝑤) as 𝑛 → ∞. It
is not hard to verify that convergence also holds for the unique positive root so that 𝑟 = lim𝑛→∞ 𝑟𝑛 .

Plugging into Equation (3), we get that when 𝑟 ≠ 1

lim
𝑛→∞

𝛽
𝑝

1 (G𝑛)
𝛽
𝑝

2 (G𝑛)
=

𝑝𝑟𝑤2 1−𝑟𝑤1
1−𝑟 + (1 − 𝑝) 1−𝑟𝑤1

1−𝑟

𝑝𝑟𝑤2 1−𝑟𝑤1
1−𝑟 + 𝑟𝑤1 1−𝑟 (𝑤2−𝑤1 )

1−𝑟 + (1 − 𝑝) 1−𝑟𝑤1
1−𝑟

=
(1 − 𝑟𝑤1 ) (1 − 𝑝 + 𝑝𝑟𝑤2 )
(1 − 𝑟𝑤2 ) (1 − 𝑝 + 𝑝𝑟𝑤1 )

and when 𝑟 = 1,

lim
𝑛→∞

𝛽
𝑝

1 (G𝑛)
𝛽
𝑝

2 (G𝑛)
=

𝑝𝑤1 + (1 − 𝑝)𝑤1

𝑝𝑤1 + (𝑤2 −𝑤1) + (1 − 𝑝)𝑤1
=
𝑤1

𝑤2
.

To finish the proof, we note that it holds that 𝑟 = 1 if 𝑝 = 𝑞. Since 𝜅′
𝑆𝑛
(ln(𝑟 )) is strictly monoton-

ically increasing in 𝑟 and 𝑝 , it follows that 𝑟 = 1 if and only if 𝑝 = 𝑞. □
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Proof of Corollary 4.3. To depart from the informal term"U-shaped", we will say that a func-
tion 𝑓 is strictly negatively unimodal on an interval 𝐼 if there exists a value 𝑟 ∗ ∈ 𝐼 such that 𝑓 is
strictly monotonically decreasing on (𝑖∞, 𝑟 ∗]∩𝐼 and strictly monotonically increasing on [𝑟 ∗,∞)∩𝐼 .
Thus, to prove the corollary it suffices to show that lim

𝑛→∞
𝛽
𝑝

𝑖
(G𝑛)/𝛽𝑝𝑗 (G𝑛) as a function of 𝑞 is strictly

negatively unimodal on (0, 1).
First, note that if 𝑔 : 𝐼 → 𝐽 is strictly increasing and its image is all of 𝐽 , then by the chain rule 𝑓

is strictly negatively unimodal on 𝐽 if and only if 𝑓 ◦ 𝑔 is strictly negatively unimodal on 𝐼 .
As established in the proof of Theorem 4.2, for any fixed 𝑝 ∈ (0, 1) the right-hand side of the

equation defining 𝑟 , namely 𝜅′
𝑆𝑛
(ln(𝑟 )) = ∑𝑊

𝑤=1 𝑑𝑤
𝑝𝑤𝑟𝑤

1−𝑝+𝑝𝑟𝑤 , is strictly increasing in 𝑟 on R≥0. Thus,

the equation
∑𝑊

𝑤=1 𝑑𝑤
𝑝𝑤𝑟𝑤

1−𝑝+𝑝𝑟𝑤 = 𝑞 · ∑𝑊
𝑤=1 𝑑𝑤𝑤 has a unique solution 𝑟 = 𝑟 (𝑞) and 𝑟 (𝑞) is a strictly

increasing function of 𝑞. Furthermore, 𝑟 : (0, 1) → R>0 has image R>0 since lim𝑞→0 𝑟 (𝑞) = 0 and
lim𝑞→1 𝑟 (𝑞) = ∞. Therefore, we get that to prove the theorem, it suffices to show that the function

𝑓 (𝑟 ) = lim
𝑛→∞

𝛽
𝑝

𝑖
(G𝑛)

𝛽
𝑝

𝑗
(G𝑛)

=

(
𝑤𝑖∑
𝑘=1

𝑟𝑘−1
)
(1 − 𝑝 + 𝑝𝑟𝑤𝑗 )(

𝑤𝑗∑
𝑘=1

𝑟𝑘−1
)
(1 − 𝑝 + 𝑝𝑟𝑤𝑖 )

is strictly negatively unimodal on R>0 .
Now, note that we can equivalently write

𝑓 (𝑟 ) = (1 − 𝑟𝑤𝑖 ) (1 − 𝑝 + 𝑝𝑟𝑤𝑗 )
(1 − 𝑟𝑤𝑗 ) (1 − 𝑝 + 𝑝𝑟𝑤𝑖 )

with 𝑓 (1) = 𝑤𝑖/𝑤 𝑗 being a smooth discontinuity. In this notation, it becomes evident that we can
use the composition of functions trick one more time: Using 𝑔(𝑟 ) = 𝑟 1/𝑤𝑖 , with 𝑔 : R>0 → R>0
and image R>0, we get that it suffices to show that 𝑓 is strictly negatively unimodal on R>0 when
𝑤𝑖 = 1 (for all 𝑝 and𝑤 𝑗 = 𝑤 > 1).

To prove this, we look at its derivative

𝑓 ′ (𝑟 ) =
(𝑝 − 1)∑𝑤−1

𝑗=1 𝑗𝑟 𝑗−1 + 𝑝
∑𝑤−1

𝑗=1 (𝑤 − 𝑗)𝑟𝑤+𝑗−1(
(1 − 𝑝 + 𝑝𝑟 )∑𝑤−1

𝑗=0 𝑟 𝑗
)2 .

For 𝑟 ∈ R>0, the denominator is strictly positive, so the sign of 𝑓 ′ (𝑟 ) is equal to the sign of the
numerator. The numerator is a polynomial with a single sign switch in the coefficient series, thus
Descartes’ rule of signs implies that 𝑓 ′ has exactly one positive root, we’ll denote it 𝑟 ∗. One can
quickly check that lim𝑟→0 𝑓

′ (𝑟 ) < 0 to get that 𝑓 ′ (𝑟 ) < 0 when 𝑟 ∈ (0, 𝑟 ∗) and 𝑓 ′ (𝑟 ) > 0 when
𝑟 ∈ (𝑟 ∗,∞). This implies that 𝑓 is strictly negatively unimodal on R≥0.

Finally, when 𝑞 = 𝑝 it holds that 𝑟 = 1. It is easy to confirm that 𝑓 ′ (1) = (2𝑝 − 1)∑𝑤−1
𝑗=1 𝑗 . Thus,

𝑓 ′ (1) > 0 when 𝑝 > 1/2, 𝑓 ′ (1) < 0 when 𝑝 < 1/2, and 𝑓 ′ (1) = 0 when 𝑝 = 1/2. Since 𝑟 (𝑞) is strictly
increasing in 𝑞, this implies the stated sign of the derivative at 𝑞 = 𝑝 from the corollary. □

Proof of Corollary 4.4. As pointed out in the paper, any semivalue in which players are
assumed to vote independently is a 𝑝-propensity Banzhaf power measure: If players vote indepen-
dently, they each have a probability 𝑝𝑖 of voting yes. Since semivalues are anonymous, all 𝑝𝑖 are
the same. Thus, any normalized semivalue where players vote independently is a 𝑝-propensity
Banzhaf power index.

By Corollary 4.3, we know that for any fixed propensity 𝑝 and primitive, regular weight sequence
𝒘 , the PLT holds for quota 𝑞 = 𝑝 and for at most one other quota which we’ll denote 𝑞(𝑝,𝒘) as a
function of 𝑝 and 𝒘 . If we can show that for any 𝑝 , there exist two weight sequences 𝒘1 and 𝒘2
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(that are regular and primitive) so that 𝑞(𝑝,𝒘1) ≠ 𝑞(𝑝,𝒘2), it follows that for no 𝑞 there exists a
value of 𝑝 other than 𝑝 = 𝑞 such that the PLT hold with respect to the 𝑝-Propensity Banzhaf power
index for all𝒘 (fulfilling our assumptions).

It remains to show this claim. We consider the two weight sequences𝒘1 = 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
and𝒘2 = 1, 2, 2, 1, 2, 2, 1, 2, 2, .... Assume towards a contradiction that 𝑞(𝑝,𝒘1) = 𝑞(𝑝,𝒘2) and denote
this value as 𝑞. Let 𝑟1 be the unique positive solution to 1

3
𝑝𝑟1

1−𝑝+𝑝𝑟1 +
2
3

2𝑝𝑟 21
1−𝑝+𝑝𝑟 21

= 𝑞( 13 + 2 · 2
3 ) and let

𝑟2 be the unique positive solution to 2
3

𝑝𝑟1
1−𝑝+𝑝𝑟1 +

1
3

2𝑝𝑟 21
1−𝑝+𝑝𝑟 21

= 𝑞( 23 + 2 · 1
3 ).

Let’s first consider the case 𝑟1 = 𝑟2 and denote this value as 𝑟 . It holds that
1
3

𝑝𝑟

1−𝑝+𝑝𝑟 +
2
3

2𝑝𝑟 2
1−𝑝+𝑝𝑟 2

5
3

=

2
3

𝑝𝑟

1−𝑝+𝑝𝑟 +
1
3

2𝑝𝑟 2
1−𝑝+𝑝𝑟 2

4
3

,

which implies that

2
𝑝𝑟

1 − 𝑝 + 𝑝𝑟
=

2𝑝𝑟 2

1 − 𝑝 + 𝑝𝑟 2

or equivalently
(1 − 𝑝)𝑟 (𝑟 − 1) = 0.

We know that 𝑟 ≠ 0, so it follows that 𝑟 = 1. However, we know from the proof of Theorem 4.2 that
𝑟 = 1 if and only if 𝑞 = 𝑝 , a contradiction.

Thus, there remains the case 𝑟1 ≠ 𝑟2. However, since 𝑞 ≠ 𝑝 , we know that 𝑟1, 𝑟2 ≠ 1. This implies
that there are 3 values 𝑟1, 𝑟2, 1 > 0 at which 𝑓 (𝑟 ) = lim𝑛→∞

𝛽
𝑝

𝑖
(G𝑛 )

𝛽
𝑝

𝑗
(G𝑛 )

takes the value 1/2. This is a
contradiction to 𝑓 being strictly negatively unimodal on R≥0 as shown in the proof of Corollary 4.3.
This finishes the proof. □

B.2 Oceanic games
Dubey and Shapley [1979] proved Theorem 4.5 for 𝑝 = 1/2. They also proved a version of Theorem 4.5
for general 𝑝 for unnormalized Banzhaf powers but do not consider normalized Banzhaf powers
for 𝑝 ≠ 1/2. Conceptually, our proof of Theorem 4.5 is identical to the proof by Dubey and Shapley
[1979] for normalized Banzhaf at 𝑝 = 1/2, with modifications to work for any 𝑝 .
For the proof, we will rely on a handful of well-known facts about the asymptotic behavior of

binomial coefficients, which we restate here for the reader’s convenience.

Lemma B.2 (Facts about Binomial Distributions). Let 𝑝 ∈ (0, 1). Define 𝑏 (𝑛, 𝑝, 𝑘) = 𝑝𝑘 (1 −
𝑝)𝑛−𝑘

(
𝑛
𝑘

)
to be the probability that a binomial random variable with 𝑛 trials and success probability 𝑝

takes on value 𝑘 . All 𝑂 (1) and 𝑜 (1) are in terms of 𝑛.
(1) It holds that

𝑏 (𝑛, 𝑝, 𝑛𝑝 +𝑂 (1)) = 1 ± 𝑜 (1)√︁
2𝜋𝑛𝑝 (1 − 𝑝)

.

(2) For any 𝑠 ≠ 𝑝 and sequence (𝑠𝑛)𝑛∈𝑁 such that 𝑠𝑛 = 𝑠𝑛 ±𝑂 (1), it holds that
𝑠𝑛∑︁
𝑘=0

𝑏 (𝑛, 𝑝, 𝑘) = Θ(𝑏 (𝑛, 𝑝, 𝑠𝑛)) if 𝑠 < 𝑝 and
𝑛∑︁

𝑘=𝑠𝑛

𝑏 (𝑛, 𝑝, 𝑘) = Θ(𝑏 (𝑛, 𝑝, 𝑠𝑛)) if 𝑠 > 𝑝.

(3) For any 𝑟 < 𝑠 ≤ 𝑝 or 𝑟 > 𝑠 ≥ 𝑝 and sequences (𝑠𝑛)𝑛∈𝑁 and (𝑟𝑛)𝑛∈𝑁 such that 𝑠𝑛 = 𝑠𝑛 ±𝑂 (1)
(𝑠𝑛)𝑛∈𝑁 and 𝑟𝑛 = 𝑟𝑛 ±𝑂 (1), it holds that

𝑏 (𝑛, 𝑝, 𝑠𝑛)
𝑏 (𝑛, 𝑝, 𝑟𝑛)

= 𝑒Θ(𝑛) .
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(4) For any 𝑟 < 𝑝 < 𝑠 and sequences (𝑠𝑛)𝑛∈𝑁 and (𝑟𝑛)𝑛∈𝑁 such that 𝑠𝑛 = 𝑠𝑛 ±𝑂 (1) (𝑠𝑛)𝑛∈𝑁 and
𝑟𝑛 = 𝑟𝑛 ±𝑂 (1), it holds that

lim
𝑛→∞

𝑠𝑛∑︁
𝑘=𝑟𝑛

𝑏 (𝑛, 𝑝, 𝑘) = 1.

Proof. (1) This follows directly from the Central Limit Theorem for binomial distributions,
see for example Grinstead and Snell [1998].

(2) Let’s first assume 𝑠 < 𝑝 . For any 𝑘 ∈ {0, ..., 𝑠𝑛} and 𝑛 large enough, it holds that

𝑏 (𝑛, 𝑝, 𝑘 − 1) = 𝑏 (𝑛, 𝑝, 𝑘) 1 − 𝑝

𝑝

𝑘

𝑛 − 𝑘 + 1
≤ 𝑏 (𝑛, 𝑝, 𝑘) 1 − 𝑝

𝑝

𝑠𝑛

𝑛 − 𝑠𝑛 + 1
.

We denote 𝑐𝑛 =
1−𝑝
𝑝

𝑠𝑛
𝑛−𝑠𝑛−1 and note that lim𝑛→∞ 𝑐𝑛 =

1−𝑝
𝑝

𝑠
1−𝑠 ∈ (0, 1). Thus, we get that for

𝑛 large enough
𝑠𝑛∑︁
𝑘=0

𝑏 (𝑛, 𝑝, 𝑘) ≤ 𝑏 (𝑛, 𝑝, 𝑠𝑛)
𝑠𝑛∑︁
𝑘=0

(𝑐𝑛)𝑘 ≤ 𝑏 (𝑛, 𝑝, 𝑠𝑛)
1

1 − 𝑐𝑛
= 𝑂 (𝑏 (𝑛, 𝑝, 𝑠𝑛)) .

The case 𝑠 > 𝑝 can be proved analogously.
(3) By Stirling’s formula, we get that

𝑏 (𝑛, 𝑝, 𝑠𝑛)
𝑏 (𝑛, 𝑝, 𝑟𝑛)

= (1 + 𝑜 (1))

√︄
𝑟 (1 − 𝑟 )
𝑠 (1 − 𝑠) 𝑒

𝑛 (𝐷 (𝑟 ∥𝑝 )−𝐷 (𝑠 ∥𝑝 ) ) = 𝑒Θ(𝑛) ,

where 𝐷 (𝑟 ∥𝑝) − 𝐷 (𝑠 ∥𝑝) > 0 since 𝑟 < 𝑠 ≤ 𝑝 or 𝑟 > 𝑠 ≥ 𝑝 .
(4) From part (2), we know that

lim
𝑛→∞

𝑟𝑛−1∑︁
𝑘=0

𝑏 (𝑛, 𝑝, 𝑘) = lim
𝑛→∞

𝑂 (𝑏 (𝑛, 𝑝, 𝑟𝑛) = 0,

lim
𝑛→∞

𝑛∑︁
𝑘=𝑠𝑛+1

𝑏 (𝑛, 𝑝, 𝑘) = lim
𝑛→∞

𝑂 (𝑏 (𝑛, 𝑝, 𝑠𝑛)) = 0.

Since
∑𝑛

𝑘=0 𝑏 (𝑛, 𝑝, 𝑘) = 1, the claim follows.
□

Proof of Theorem 4.5. We’ll first calculate the unnormalized propensity Banzhaf powers of
the players. We then examine whether the total power of the large players,

∑
𝑖∈[ℓ ] 𝛽

𝑝

𝑖
(G𝑛), or the

total power of the small players,
∑ℓ+𝑛

𝑖=ℓ+1 𝛽
𝑝

𝑖
(G𝑛), dominates as 𝑛 goes to infinity. In the cases where

the large player power dominates, we’ll then solve for the relative powers of the players.
Let 𝑆 ⊆ [ℓ] be any subset of large players. We let 𝑟𝑆 =

⌊
(𝑞−∑

𝑖∈𝑆 𝑤𝑖 )𝑛
𝛼

⌋
, so that a coalition of 𝑆

and 𝑟𝑆 small players is losing but a coalition of 𝑆 and 𝑟𝑆 + 1 small players is winning. Thus, the
unnormalized Banzhaf powers of the large players are

𝛽
𝑝

𝑖
(G𝑛) =

∑︁
𝑆⊆[ℓ ]\{𝑖 }

𝑟𝑆∑︁
𝑘=𝑟𝑆∪{𝑖}+1

(
𝑛

𝑘

)
𝑝𝑘+|𝑆 | (1 − 𝑝) (𝑛+ℓ−1)−(𝑘+|𝑆 | )

=
∑︁

𝑆⊆[ℓ ]\{𝑖 }

𝑟𝑆∑︁
𝑘=𝑟𝑆∪{𝑖}+1

𝑏 (𝑛, 𝑝, 𝑘)𝑝 |𝑆 | (1 − 𝑝) (ℓ−1)− |𝑆 | ,
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where 𝑏 (𝑛, 𝑝, 𝑘) = 𝑝𝑘 (1−𝑝)𝑛−𝑘
(
𝑛
𝑘

)
and we define binomial coefficients with negative bottom entries

as 0. We let 𝛽large (G𝑛) =
∑

𝑖∈[ℓ ] 𝛽
𝑝

𝑖
(G𝑛) be the total power of large players. Similarly, we can get

the total power of the small players as

𝛽small (G𝑛) =
ℓ+𝑛∑︁
𝑖=ℓ+1

𝛽
𝑝

𝑖
(G𝑛) = 𝑛

∑︁
𝑆⊆[ℓ ]

(
𝑛 − 1
𝑟𝑆

)
𝑝𝑟𝑆+|𝑆 | (1 − 𝑝) (𝑛+ℓ−1)−(𝑟𝑆+|𝑆 | )

=
∑︁
𝑆⊆[ℓ ]

(𝑛 − 𝑟𝑆 )
(
𝑛

𝑟𝑆

)
𝑝𝑟𝑆+|𝑆 | (1 − 𝑝) (𝑛+ℓ−1)−(𝑟𝑆+|𝑆 | )

=
∑︁
𝑆⊆[ℓ ]

(𝑛 − 𝑟𝑆 )𝑏 (𝑛, 𝑝, 𝑟𝑆 )𝑝 |𝑆 | (1 − 𝑝) (ℓ−1)− |𝑆 | .

Let’s now examine how the ratio of the total power of large players to the total power of small
players, 𝛽large (G𝑛)/𝛽small (G𝑛), is going to behave in the limit:

• First, assume there exists a coalition 𝑆∗ such that lim𝑛→∞
𝑟𝑆∗
𝑛

= 𝑝 . This case applies precisely
if there exists a coalition 𝑆∗ ⊆ [ℓ] such that 𝑝 = lim𝑛→∞ 𝑟𝑆∗/𝑛 = (𝑞 − ∑

𝑖∈𝑆∗ )/𝛼 , i.e., 𝑞 =

𝛼𝑝 + ∑
𝑖∈𝑆∗ 𝑤𝑖 , or equivalently, 𝑞 ∈ 𝑃 . By Lemma B.2, part (1), there thus exists a term of the

form 𝑏 (𝑛, 𝑝, 𝑛𝑝 +𝑂 (1)) in the sum of the total powers of the small powers. We thus know
that 𝛽small (G𝑛) ≥ (𝑛 − 𝑟𝑠 )Θ( 1√

𝑛
) = Θ(

√
𝑛). However, 𝛽𝑖 (G𝑛) ≤ 1 for all 𝑖 , so 𝛽large (G𝑛) ≤ ℓ .

It follows that 𝛽large (G𝑛)/𝛽small (G𝑛) → 0 and therefore lim𝑛→∞ 𝛽𝑖 (G𝑛) → 0 for all 𝑖 ∈ [ℓ].
• Next, we consider the case of the quota𝑞 being such that lim𝑛→∞ 𝑟∅/𝑛 < 𝑝 (thus lim𝑛→∞ 𝑟𝑆/𝑛 <

𝑝 for all 𝑆) or lim𝑛→∞ 𝑟 [ℓ ]/𝑛 > 𝑝 (thus lim𝑛→∞ 𝑟𝑆/𝑛 > 𝑝 for all 𝑆). This case applies precisely
when𝑞 < 𝑝𝛼 or𝑞 > 𝛼𝑝+𝑊 = 1−𝛼 (1−𝑝). Let’s focus on lim𝑛→∞ 𝑟∅/𝑛 < 𝑝 first. By Lemma B.2,
part (2), we know that 𝛽large (G𝑛) = Θ(𝑏 (𝑛, 𝑝, 𝑟∅)) and 𝛽small (G𝑛) = Θ(𝑛𝑏 (𝑛, 𝑝, 𝑟∅)). It follows
that 𝛽large (G𝑛)/𝛽small (G𝑛) → 0 and therefore lim𝑛→∞ 𝛽𝑖 (G𝑛) → 0 for all 𝑖 ∈ [ℓ]. The case
lim𝑛→∞ 𝑟 [ℓ ]/𝑛 > 𝑝 is analogous.

• There remains the case 𝑞 ∈ [𝛼𝑝, 1− 𝛼 (1− 𝑝)] \ 𝑃 . Note that due to 𝑆 = ∅ and 𝑆 = [ℓ], 𝛼𝑝 and
1−𝛼 (1− 𝑝)] are always in 𝑃 , so we may exclude these values from the interval. By definition
of 𝑃 , we know that in this case no binomial coefficient

(
𝑛
𝑟𝑆

)
with lim𝑛→∞ 𝑟𝑆/𝑛 = 𝑝 appears

in 𝛽small (G𝑛). Thus, we know by Lemma B.2, part (2), that 𝛽small (G𝑛) = 𝑂 (𝑛𝑏 (𝑛, 𝑝, 𝑠𝑛) +
𝑛𝑏 (𝑛, 𝑝, 𝑠′𝑛)) for sequences (𝑠𝑛)𝑛∈N and (𝑠′𝑛)𝑛∈N with 𝑠𝑛 = 𝑠𝑛 +𝑂 (1) and 𝑠′𝑛 = 𝑠′𝑛 +𝑂 (1) so
that 𝑠 < 𝑝 < 𝑠′.
In contrast, we know that

(
𝑛

⌈𝑛𝑝 ⌉
)
has to appear in some 𝛽large (G𝑛). In particular, assume

WLOG that 𝑤ℓ ≥ 𝑤1, ...,𝑤ℓ−1. For some 𝑗 ∈ [ℓ − 1], it holds that ∑
𝑖∈[ 𝑗 ] 𝑤𝑖 + 𝛼𝑝 < 𝑞 but∑

𝑖∈[ 𝑗+1] 𝑤𝑖 + 𝛼𝑝 > 𝑞 (equaling 𝑞 is not possible since we know 𝑞 ∉ 𝑃 ). Since 𝑤ℓ is the
largest weight, it follows that

∑
𝑖∈[ 𝑗 ] 𝑤𝑖 + 𝛼𝑝 ≤ 𝑞 but

∑
𝑖∈[ 𝑗 ]∪{ℓ } 𝑤𝑖 + 𝛼𝑝 > 𝑞. Therefore,

𝑝 ∈ [lim𝑛→∞ 𝑟 [ 𝑗 ]∪{ℓ }/𝑛, lim𝑛→∞ 𝑟 [ 𝑗 ]/𝑛]. This implies that 𝛽large (G𝑛) = Ω(𝑏 (𝑛, 𝑝, ⌈𝑛𝑝⌉)).
By Lemma B.2, part (3), it follows that 𝛽large (G𝑛)/𝛽small (G𝑛) ≥ 𝑒Θ(𝑛)/𝑛 → ∞ as 𝑛 → ∞.

What remains is to determine 𝛽𝑖 (G𝑛) in the third case. By Lemma B.2, part (4), we know that

lim
𝑛→∞

𝑟𝑆∑︁
𝑘=𝑟𝑆∪{𝑖}+1

𝑏 (𝑛, 𝑝, 𝑘) =
{
1 if lim𝑛→∞ 𝑟𝑆∪{𝑖 }/𝑛 < 𝑝 < lim𝑛→∞ 𝑟𝑆/𝑛
0 if lim𝑛→∞ 𝑟𝑆∪{𝑖 }/𝑛 > 𝑝 or 𝑝 > lim𝑛→∞ 𝑟𝑆/𝑛

.

Since we know that in this case lim𝑛→∞ 𝑟𝑆/𝑛 ≠ 𝑝 for all 𝑆 , we don’t need to be concerned about
the other cases. Now, observe that for any coalition 𝑆 , 𝑟𝑆/𝑛 < 𝑝 implies

∑
𝑗∈𝑆 𝑤𝑖 > 𝑞 − 𝛼𝑝 while

lim𝑛→∞ 𝑟𝑆/𝑛 > 𝑝 implies
∑

𝑗∈𝑆 𝑤𝑖 < 𝑞 − 𝛼𝑝 . Thus, the above expression converges to 1 exactly if
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coalition 𝑆 is less than a threshold but coalition 𝑆 ∪ {𝑖} is exceeding this threshold—this is exactly
definition of 𝑖 being pivotal for a coalition 𝑆 . We can write

𝛽
𝑝

𝑖
(G𝑛) =

∑︁
𝑆⊆[ℓ ]\{𝑖 }

pivG (0)
𝑝
(𝑖, 𝑆) 𝑝 |𝑆 | (1 − 𝑝) (ℓ−1)− |𝑆 | = 𝛽

𝑝

𝑖
(G (0)

𝑝 ),

where G (0)
𝑝 = ( 𝑤1

𝑊
, ...,

𝑤ℓ

𝑊
; 𝑞−𝛼𝑝

𝑊
) as defined in the theorem statement. □

B.3 The Emergence of Veto Players
Proof of Theorem 5.1. Following the proof outline from Section 5, we first show how to con-

struct, for any 𝑞 ∈ (0, 1), 𝑝 ∈ (0, 1), a family of WVGs {G𝑛} where G𝑛 = (𝒘𝒏;𝑞) so that𝑤𝑛
1 > 1 − 𝑞

for all 𝑛 (i.e., player 1 is a veto player in G𝑛) but lim𝑛→∞ 𝛽
𝑝

1 (G𝑛) = 0.
We start by considering the cases where 𝑞 <

1+𝑝
2 . We let

G𝑛 = (𝑤1,𝑤2,
𝛼
𝑛
, . . . , 𝛼

𝑛︸   ︷︷   ︸
𝑛

;𝑞),

where𝑤1 = 1/2, 𝛼 =
𝑞−1/2

𝑝
, and𝑤2 = 1 −𝑤1 − 𝛼 . Note that the WVG is well-defined: By definition

𝑤1+𝑤2+𝛼 = 1; furthermore, 𝛼 ∈ (0, 1) since 1
2 < 𝑞 <

1+𝑝
2 and𝑤2 ∈ (0, 1) since𝑤1+𝛼 =

𝑝/2+𝑞−1/2
𝑝

<

𝑝/2+𝑝/2
𝑝

= 1. As desired, player 1 is a veto player since 𝑤1 > 1 − 𝑞. Since 𝑞 = 𝛼𝑝 +𝑤1, we get by
Theorem 4.5 that lim𝑛→∞ 𝛽

𝑝

1 (G𝑛) = 0.
Next, consider the remaining cases 𝑞 ≥ 1+𝑝

2 . Note that for 𝑝 ∈ (0, 1), 𝑞 ∈ (1/2, 1), this implies
𝑞 > 𝑝 . We let

G𝑛 = (𝑤1,
𝛼
𝑛
, . . . , 𝛼

𝑛︸   ︷︷   ︸
𝑛

;𝑞),

where 𝑤1 =
𝑞−𝑝
1−𝑝 and 𝛼 =

1−𝑞
1−𝑝 . Note that the WVG is well-defined: 𝑤1 + 𝛼 = 1, and 𝑤1 > 0 since

𝑞 > 𝑝 and 𝛼 > 0 since 𝑞 < 1. Furthermore, we get that𝑤1 > 1 − 𝑞, since 𝑞−𝑝
1−𝑝 > 1 − 𝑞 ⇔ 2𝑞−1

𝑞
> 𝑝 ,

which follows from 𝑞 < 1 and 𝑝 < 2𝑞 − 1, by the case assumption. Since 𝑞 = 𝛼𝑝 +𝑤1, we get by
Theorem 4.5 that lim𝑛→∞ 𝛽

𝑝

1 (G𝑛) = 0.
Now, for {G𝑛} chosen according to which case of 𝑝 and 𝑞 we are in, let 𝒎𝒏 = 𝜷𝑝 (G𝑛) and let𝒘𝒏

be the weights in G𝑛 . We know, by construction, that
discr𝒎𝒏,𝑞,𝜷𝑝 (𝒘𝒏) =



𝒎 − 𝜷𝑝 ((𝒘𝒏;𝑞)))



1 = ∥𝒎 −𝒎∥1 = 0.

Thus,𝒘𝒏 ∈𝑊 ∗ (𝒎𝒏, 𝑞, 𝜷𝑝 ). We get that

veto-dist𝑞 (𝜷𝑝 ) ≥ veto-dist(𝒎𝑛, 𝑞, 𝜷𝑝 ) ≥ 1 − 𝑞

𝑚𝑛
1

.

Since lim𝑛→∞𝑚𝑛
𝑖 = lim𝑛→∞ 𝛽

𝑝

1 (G𝑛) = 0, it follows that veto-dist𝑞 (𝜷𝑝 ) is unbounded. □

Proof of Theorem 5.2. A player is called a dictator if any coalition they are in is winning, that
is if𝑤𝑖 ≥ 𝑞 (for a non-strict quota). Since𝑤𝑖 ≥ 1 − 𝑞 = 1/2 implies𝑤𝑖 ≥ 𝑞, any veto player is also a
dictator. If a player is a dictator and a veto player, every coalition they are in is winning and any
coalition they are not a part of is losing. Thus, they are pivotal for any coalition without them,
while no other player is pivotal for any coalition. Thus, in this setting, if there exists a veto player,
this player has power 1 while all other players have power 0.
WLOG, assume the population target 𝒎 is sorted from largest to smallest. A weight vector 𝒘

with player 𝑖 as a veto player will lead to discrepancy 2(1 −𝑚𝑖 ), so any weight vector with a veto
player has discrepancy at least 2(1 −𝑚1). In contrast, the weight vector 𝒘 = (1/2, 1/2, 0, ...) does
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not induce a veto player and leads to powers 𝜷𝑝 = (1/2, 1/2, 0, ...). If𝑚1 < 1
2 , i.e., player 1 is not a

deserving veto player, the discrepancy of 𝒘 = (1/2, 1/2, 0, ...) is exactly 2(1 −𝑚1 −𝑚2), so strictly
less than the discrepancy achievable with a veto player (since𝑚2 > 0 if𝑚1 < 1). If𝑚1 ≥ 1

2 , player
1 is a deserving veto player, so the discrepancy of any weight vector with a veto player is at least
2(1 −𝑚2). The discrepancy of 𝒘 = (1/2, 1/2, 0, ...) is exactly 2(1/2 −𝑚2), so strictly less than the
discrepancy achievable with a veto player.
It follows that in no case a weight vector inducing an undeserving veto player will be optimal.

Thus, the veto distortion is 1. □
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C Full Empirical Results
C.1 Ontario weight table

Table 1. Weighted voting under the Banzhaf power index. Towns, populations, optimized weights, and
powers for ordinary Banzhaf (propensity 1/2).

Fixed P Town name Pop. share 𝑇 = 1/2 𝑇 = 3/5 𝑇 = 2/3 𝑇 = 3/4
weight power weight power weight power weight power

Town 1 Town of South Bristol 0.01459 1487 0.01459 1484 0.01460 1438 0.01459 1229 0.01457
Town 2 Town of Canadice 0.01483 1511 0.01484 1510 0.01485 1460 0.01483 1247 0.01482
Town 3 Town of Bristol 0.02031 2105 0.02031 2063 0.02031 1999 0.02031 1711 0.02032
Town 4 Town of Naples 0.02137 2210 0.02136 2172 0.02137 2104 0.02137 1802 0.02137
Town 5 Town of Seneca 0.02351 2421 0.02351 2388 0.02351 2313 0.02351 1987 0.02352
Town 6 Town of West Bloomfield 0.02437 2505 0.02436 2476 0.02436 2397 0.02436 2058 0.02437
Town 7 Town of Richmond 0.02988 3123 0.02988 3029 0.02988 2939 0.02988 2522 0.02987
Town 8 Town of Geneva 0.03088 3203 0.03087 3132 0.03088 3042 0.03088 2607 0.03088
Town 9 Town of East Bloomfield 0.03237 3340 0.03237 3282 0.03237 3192 0.03237 2732 0.03236
Town 10 City of Geneva (5,6) 0.03272 3372 0.03272 3320 0.03272 3223 0.03271 2760 0.03273
Town 11 City of Geneva (3,4) 0.03487 3582 0.03487 3534 0.03487 3435 0.03487 2939 0.03487
Town 12 Town of Hopewell 0.03496 3588 0.03495 3544 0.03496 3442 0.03495 2948 0.03496
Town 13 Town of Gorham 0.03651 3741 0.03651 3698 0.03651 3599 0.03652 3080 0.03652
Town 14 City of Canandaigua (2,3) 0.04571 4684 0.04572 4625 0.04571 4505 0.04571 3855 0.04572
Town 15 City of Geneva (1,2) 0.04633 4741 0.04634 4686 0.04632 4565 0.04634 3903 0.04634
Town 16 City of Canandaigua (1,4) 0.04834 4932 0.04834 4892 0.04833 4767 0.04834 4076 0.04835
Town 17 Town of Phelps 0.05902 6001 0.05901 5948 0.05901 5823 0.05902 4985 0.05902
Town 18 Town of Manchester 0.08362 8381 0.08363 8356 0.08362 8318 0.08362 7045 0.08362
Town 19 Town of Canandaigua 0.09879 9750 0.09879 9829 0.09878 9808 0.09878 8339 0.09878
Town 20 Town of Farmington 0.12600 12093 0.12600 12320 0.12599 12710 0.12600 11576 0.12600
Town 21 Town of Victor 0.14103 13230 0.14103 13712 0.14102 14921 0.14104 26599 0.14103
SUM 100,000 1 100,000 1 100,000 1 100,000 1

𝐿1 error 0.00013 0.00011 0.00008 0.00012
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C.2 Convergence of heuristic algorithm
See Figure 8 for the convergence plot as discussed in Section 6.2.

Fig. 8. Weights of each of the 21 towns/wards in Ontario County over the course of a heuristic optimization
run. Only the steps where an improvement was made are shown. The largest town, Victor (Town 21), ended
up with a weight that was inflated beyond its population share by an extra 88.6%.
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C.3 Optimal Weights for Hamilton County
All the optimized weights used in Section 6 were obtained using the random local search algorithm
described. To ensure that the observed behavior is not due to this algorithm getting stuck in a local
optimum, we use an algorithm due to Kurz [2012] to solve for the exact (globally) optimal weights.

The algorithm is based on modeling the inverse power problem as a mixed integer linear program.
For the Banzhaf power index, we can check for any fixed 𝑎 ∈ Q whether weights with discrepancy
less than 𝑎 to a given target power distribution exist. Thus, with binary search on 𝑎, we can identify
weights giving near-optimal discrepancy up to an arbitrarily small margin. It is not difficult to
adapt the MILPs to correspond to the 𝑝-propensity Banzhaf power index or the adaptive Banzhaf
power index. It is furthermore straightforward to impose as a constraint that no undeserving veto
player may be induced by the optimal weights.

Unfortunately, the number of binary optimization variables used in the MILP increases exponen-
tially with the number of players. Thus, this approach only works well for small 𝑛. In particular,
we find that within reasonable time, 𝑛 ≈ 12 are the largest instances for which we can determine
exactly optimal weights, while 𝑛 ≈ 14 are the largest instances for which we can solve a single
MILP to check for a single discrepancy whether it is achievable.
Luckily, there is one county in New York State with only 9 Towns: Hamilton County. The

populations of the towns are 92, 221, 292, 355, 413, 683, 791, 897, and 1363. For quota 75%, we plot
the heuristically optimized weights and the globally optimal weights in Figure 9. The heuristically
optimized weights give a discrepancy of 0.0287, while truly optimal weights achieve a discrepancy
of 0.0237. Most importantly, not only are the discrepancies close, but the weights themselves are
close. In particular, optimal weights over-weight Indian Lake as predicted, with the algorithm
outputs actually underestimating the magnitude.
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Fig. 9. The weights found by the randomized optimization algorithm and the optimal MILP algorithm under
the Banzhaf power index for Hamilton County at quota 75%.
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We run the same experiment with adaptive Banzhaf power. For quota 75%, we plot the weights
the optimization algorithm found and the optimal weights in Figure 10. The heuristic achieved
population-power discrepancy of 0.06427, while the global minimum is 0.06184. And again, the
heuristic correctly tracks the key feature: 𝒎 ≈ 𝒘 ≈ 𝝆.
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Fig. 10. The weights found by the randomized optimization algorithm and the optimal MILP algorithm under
the adaptive Banzhaf power index for Hamilton County at quota 75%.

C.4 Additional Heatmaps
Here we show all plots of the excess weight of the largest player and 𝐿1 distortions for Ontario
County, Livingston County, and four synthetic instances:

Linear. 21 towns with evenly-spaced populations.
Big-Small-1. 2 large towns with equal populations, and 19 small towns with equal populations.
Big-Small-2. 2 large towns with slightly different populations, and 19 small towns with slightly

different populations.
Anti-Ontario. The largest and smallest population in Ontario sum to 17,501. Anti-Ontario is

constructed by subtracting all their populations from that total, so that there are two smallest
towns and a large number of nearly-equal large ones.

Note that for the distortion plots, a "++" indicates a distortion of 100% or greater.
We believe that the two "lines" of low distortion, that are very clear in Big-Small-1 and slightly

diluted but still clearly visible in Big-Small-2, are especially noteworthy: They align very well with
the pitfall points predicted by Theorem 4.5.
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C.4.1 Ontario County. Populations: [1641, 1668, 2284, 2403, 2644, 2740, 3360, 3473, 3640, 3679,
3921, 3931, 4106, 5140, 5210, 5436, 6637, 9404, 11109, 14170, 15860]
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C.4.2 Livingston County. Populations: [725, 765, 1157, 1464, 1583, 2087, 2292, 2322, 2695, 3187,
4156, 4158, 4452, 5341, 6945, 7508, 10242]
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C.4.3 Linear. Populations: [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000,
13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000]
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C.4.4 Big-Small-1. Populations: [2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000,
2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 20000, 20000]



Jakob de Raaij, Moon Duchin, Ariel D. Procaccia, and Jamie Tucker-Foltz 39

C.4.5 Big-Small-2. Populations: [1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100,
2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 19000, 20000]
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C.4.6 Anti-Ontario. Populations: [1641, 3331, 6392, 8097, 10864, 12065, 12291, 12361, 13395, 13570,
13580, 13822, 13861, 14028, 14141, 14761, 14857, 15098, 15217, 15833, 15860]
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C.5 Executive directors of the International Monetary Fund
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Fig. 11. Leech [2002c] observed that in the IMF weighted voting game explained above, the United States
receives disproportionally much weight at high quotas. At the quota of 85%, which is actually being used by
the IMF, the US would need to receive over 60% of the weight to get their fair share of . Here we see that the
use of adaptive Banzhaf power mitigates the problem significantly.
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