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We study the problem of selecting a statement that finds common ground across diverse population preferences.
Generative Al is uniquely suited for this task because it can access a practically infinite set of statements,
but Al systems like the Habermas machine [Tessler et al., 2024] leave the choice of generated statement to a
voting rule. What it means for this rule to find common ground, however, is not well-defined.

In this work, we propose a formal model for finding common ground in the infinite alternative setting
based on the proportional veto core from social choice. To provide guarantees relative to these infinitely many
alternatives and a large population, we wish to satisfy a notion of proportional veto core using only query
access to the unknown distribution of alternatives and voters.

We design an efficient sampling-based algorithm that returns an alternative in the (approximate) propor-
tional veto core with high probability and prove matching lower bounds, which show that no algorithm can
do the same using fewer queries. On a synthetic dataset of preferences over text, we confirm the effectiveness
of our sampling-based algorithm and compare other social choice methods as well as LLM-based methods in
terms of how reliably they produce statements in the proportional veto core.
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1 Introduction

In many countries, polarization has reached unhealthy levels [Silver, 2022], dividing politics into
“us” versus “them”. This division exacts a heavy toll: it reduces trust between people, entails political
gridlock and democratic erosion, and increases political violence [Lee, 2022, McCoy et al., 2018,
Orhan, 2022, Piazza, 2023]. To stem the tide of polarization, recent initiatives encourage people
to discuss politics across divides and find points of agreement. The nonprofit Braver Angels', for
example, brings groups of Democrats and Republicans face to face, and citizens’ assemblies [Dryzek
et al., 2019, OECD, 2020] convene a representative sample of constituents to design common policy
proposals. Major obstacles, however, stand in the way of scaling these efforts to a society-wide level,
including the cost of trained facilitators and cognitive limits that prevent high-quality deliberation
in large groups [Fishkin, 2009]. The recent success of large language models (LLMs) in processing
natural language text shows promise in overcoming these obstacles [Dembrane, 2023, Konya et al.,
2023, Landemore, 2024, McKinney and Chwalisz, 2025, Small et al., 2023].

Perhaps the most prominent Al tool with this goal is the Habermas machine, presented by Tessler
et al. [2024] in Science. To help a group deliberate on a topic, the Habermas machine transforms
opinion statements from the group members into possible group statements, which are pieces of
text representing the common ground of opinions. Tessler et al. [2024] test the Habermas machine
in the context of a citizens’ assembly and find that groups interacting with the Habermas machine
converge in their beliefs towards a common position, decreasing polarization.

Besides LLM components (for the generation of text and prediction of agreement), the Habermas
machine also crucially relies on voting to select among generated proposals. Voting happens on two
levels: first, to generate alternative statements, 16 statements are sampled from a fine-tuned LLM,
ranked by a proxy model for each group member, and only the winner according to the Schulze
voting rule [Schulze, 2011] is kept; second, four alternative statements generated in this fashion are
ranked by the actual group members, and the winning statement is again selected by Schulze.

For finding common ground, Schulze may not be the right tool for selecting among statements
because this voting rule is inherently majoritarian: it readily overrides the preferences of a minority
to satisfy even a slight majority, as evidenced by axioms such as Condorcet consistency and the
mutual majority criterion. While Tessler et al. [2024] find that minority opinions have an influence
on the winning statement,” this is an empirical finding and only holds on average across their
experiments. To robustly find common ground, we should aim for guarantees on the influence of
minorities that hold for every possible group deliberation.

What, then, can social choice offer as an axiom for finding common ground and as a voting rule
to be embedded inside the Habermas machine? We argue that the proportional veto core (PVC) of
Moulin [1981, 1982] is the right notion since it gives explicit outcome guarantees to cohesive voter
coalitions of all sizes. Consider a coalition of, say, 30% of the participants and some alternative
statement c. If the coalition can find a set with 100% — 30% = 70% of the alternatives that they
all rank above ¢, the PVC guarantees that ¢ will not be selected. In this way, minority groups are
guaranteed an influence on the outcome, and they can avoid the statements they disagree with the
most, which is important for a claim of common ground. To pursue this guarantee, the Habermas
machine could use a voting rule whose output always lies in the PVC (like Vote by Veto [Moulin,

Uhttps://braverangels.org/

ZSpecifically, Tessler et al. [2024] embed the opinions by all group members using a text embedding model, and run a
regression to predict the embedding of the winning statement as a mixture of these opinion statements. Group members are
partitioned into a “majority” and “minority” group based on whether they answered “somewhat agree/agree/strongly agree”
or “somewhat disagree/disagree/strongly disagree” in an initial question on the topic. Tessler et al. [2024] find that minority
agents tend to have non-negligible weight in this regression.
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1981]), one could constrain any voting rule to alternatives in the PVC, or one could evaluate voting
rules (classical or LLM-based) in terms of how reliably their output lies in the PVC.

One more challenge of using social choice in settings like the Habermas machine is that the
space of alternatives is tremendously large and often infinite. This leads to the natural question:
Are the 16 statements sampled i.i.d. from the fine-tuned LLM enough to find common ground, and
are the four statements resulting from independent runs of sampling and simulated voting enough?
How can we capture what “enough” is? In this paper,

we define proportional veto core guarantees with respect to a very large set of state-
ments and design practical algorithms that satisfy them.

Our pursuit of guarantees with respect to a large set of textual alternatives is closely aligned with
the generative social choice framework by Fish et al. [2026]. Like them, we can only access this space
of alternatives indirectly through queries, which in our case means sampling from an unknown
distribution over alternatives.

1.1  Our Contributions

We start by giving a formal mathematical model of what it means for a statement to find common
ground when there are an infinite number of alternatives. We propose using the e-proportional veto
core (e-PVC), which extends the standard PVC to the setting with a distribution over alternatives.
We define the critical € of an alternative as the smallest € for which that alternative is in the e-PVC.
Therefore, a smaller critical € indicates that a statement better represents common ground.

To model information elicitation when there are infinite alternatives, we study a query-based
information model with two types of queries. First, we explore generative queries, which return
alternatives sampled from an unknown distribution of interest over the alternative space, such as
the output of an LLM with respect to a given prompt. Second, we explore discriminative queries,
which return user preferences over alternatives. We focus on two types of discriminative queries:
min-queries that return a voter’s least favorite alternative among a given set and pairwise queries
that return a voter’s preference between two given alternatives.

Theoretical Results. Our theoretical work focuses on providing upper and lower bounds for how
many queries are necessary to find an element in the e-PVC. We begin by showing that the e-PVC
always has size at least e. We then present a query-based algorithm that with high probability
finds an element of the e-PVC using O(1/€?) generative queries and min-queries. We prove that no
algorithm can always find an element of the e-PVC using fewer than Q(1/€?) generative queries
and min-queries, which shows that our algorithm is worst-case optimal for both types of queries.

Pairwise queries are perhaps the easiest information elicitation method from the voters’ perspec-
tive. Therefore, we show that our algorithm can be adapted to use pairwise queries while giving the
same theoretical guarantees. The key modification is showing that with O(nm) pairwise queries,
we can find an element of the PVC for finite sets of n voters and m alternatives. We provide an
efficient method for doing this and further show that there is a matching lower bound for this step;
i.e., no algorithm can find an element of the PVC with fewer than Q(nm) pairwise queries for n
voters and m alternatives.

Experimental Results. We conclude by empirically evaluating the critical € achieved by different
methods for selecting alternatives on simulated preference data. We obtain diverse preference data
sets for a variety of topics by using ChatGPT to generate both alternatives and preference data for
different personas. To model a query-based setting, the different voting rules are only given access
to a small subset of voters and alternatives and must select an alternative from this subset.
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Our first empirical result confirms that the sampling-based approach from the theory section
finds alternatives in the e-PVC for small e. We then show that different social choice methods
such as Schulze and plurality can select alternatives with large critical €, indicating that these
methods may not necessarily choose a good common-ground statement. Finally, we conclude
our experiments by studying generative voting rules that use LLMs to generate common-ground
statements. We show that these generative voting rules do generate statements with small critical e,
which indicates that the notion of PVC aligns well with how an LLM tries to find common ground.
We also show that when the LLM is not properly tuned to the population, the generative voting
rules give statements with significantly higher critical € compared to our algorithm.

1.2 Related Work

Many recent works have studied how to use Al for finding consensus on a large scale [Bakker
et al.,, 2022, Gudiflo et al., 2024, Kahng et al., 2019, Konya et al., 2023, Landemore, 2022, Tessler et al.,
2024]. The most similar of these methods is the Habermas machine [Tessler et al., 2024], which we
already discussed at length. At the end of Section 2, we further discuss the clone-proofness axiom
satisfied by the Schulze rule, and why our approach to common ground does not require it.

Finding common-ground statements is an important goal of online deliberation platforms like
Polis [Small et al., 2021] and Remesh®, on which users submit statements and rate their agreement
with the statements written by others. Both platforms [Computational Democracy Project, 2025,
Konya et al., 2023] present user-submitted statements based on a “bridging-based ranking” [Ovadya
and Thorburn, 2023], which measures if a statement has high approval rates in all clusters of users.
Our approach is much more general because we give guarantees to all subsets of voters rather than
only some prespecified groups.

The idea of finding common-ground and bridging has also been popular in the context of
annotating social media posts [De et al., 2025, Wojcik et al., 2022]. For example, Wojcik et al. [2022]
study a bridging-based algorithm for finding common-ground and selecting notes to append to
tweets. Furthermore, Slaughter et al. [2025] show that this approach to finding common ground
successfully reduces engagement with and proliferation of misinformation on social media platforms.
While these methods for finding common ground have had practical success, they lack formal
theoretical guarantees.

The PVC was first studied by Moulin [1981, 1982] in the traditional social choice setting of
perfect information about a finite number of voters and alternatives. In the same setting, Ianovski
and Kondratev [2023] give a polynomial time algorithm for computing the PVC and a neutral and
anonymous algorithm for finding an element from the PVC. Ideas from these algorithms inspire
some of our algorithmic procedures, as discussed in later sections. More recently, the PVC has been
studied in a variety of contexts including approval ballots [Halpern et al., 2025], federated learning
[Chaudhury et al., 2024], and policy aggregation [Alamdari et al., 2024]. The settings studied by
Chaudhury et al. [2024] and [Alamdari et al., 2024] both can have an infinite number of alternatives,
which lead these works to notions similar to the e-PVC.

Like us, the work on generative social choice [Boehmer et al., 2025, Fish et al., 2026] uses generative
models for social choice over an infinite space of textual alternatives. Similar to our setting, they
study generative queries that generate alternatives and discriminative queries that access voter
preferences. A major difference, however, is that their goal is to find a set of several representative
statements, which enables them to give guarantees to minority groups without finding common
ground within each statement. A second major difference is that their space of alternatives lacks
our structure of a probability distribution. As a result, their generative queries (finding a statement

3https://www.remesh.ai/
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maximizing a function of voter preferences) are much more complex and much harder to implement
than our query of sampling from a fixed distribution.

Beyond the generative social choice model, there has also been significant work on applying
social choice techniques to settings with many or infinite alternatives and limited information in
the setting of Al alignment [Conitzer et al., 2024, Ge et al., 2024, Golz et al., 2025, Procaccia et al.,
2025a] and Al evaluation [Procaccia et al., 2025b, Zhang and Hardt, 2024]. Due to the size of the
alternative space in these settings, these works also focus on choosing subsets of alternatives and
voters to give approximate or probabilistic generalization guarantees.

2 Model

Let M be a (possibly infinite) set of alternatives and let NV be a finite (but potentially very large) set
of voters. Each voter i € N has a ranking over all alternatives in M. For alternatives a,b € M and
voter i € N, we use a >; b to mean that voter i prefers alternative a to alternative b. Importantly,
we do not assume perfect information about the preferences of the voters.

Instead, we assume that we can access information about the alternatives and voters using two
types of queries: generative queries and discriminative queries. Generative queries allow us
to access the set of alternatives M. Specifically, let D be a fixed distribution over M. For a set of
alternatives M C M, define up (M) as the measure of the set M for distribution 9. A generative
query returns a random sample from the distribution ©. Note that no information about the
distribution D or the rankings of the voters is known a priori.

Discriminative queries allow us to gather information about voter preferences. We study two
types of discriminative queries. The first type of discriminative query we study is a min-query,
which takes as input a voter i € N and a set of alternatives X € M and returns voter i’s least
favorite alternative in X. The second type of discriminative query we study is a pairwise query,
which takes as input a voter i € N and two alternatives a, b € M, and returns which alternative
in {a, b} is ranked higher by voter i. Our main goal is to use a combination of generative and
discriminative queries to efficiently find an alternative in M that finds common ground for the
entire population N.

We argue that the e-Proportional Veto Core (e-PVC) is a mathematically principled way of
finding common ground. Informally, an alternative a is blocked by a coalition of voters if all voters
in the coalition prefer a sufficiently large set of alternatives to a. The e-PVC is simply the set of
alternatives that is not blocked by any coalition of voters. By ruling out alternatives for which some
sizable minority ranks a large block of options higher, the e-PVC excludes polarizing alternatives.

Definition 2.1. An alternative a € M is e-blocked by a coalition T C N of voters if there exists
a blocking set of alternatives S € M such that
e Each voter i € T prefers each alternative b € S to a (i.e. b >; a), and
o up(S) > 1—%+e.

The e-Proportional Veto Core (e-PVC) is the set of all alternatives that are not e-blocked by any
coalition of voters.

When N and M are finite, the Proportional Veto Core (PVC) [Moulin, 1981] refers to the special
case when € = 0 and D is the uniform distribution over all alternatives in M. See Appendix A for
more details.

A higher € > 0 makes it harder for coalitions to block alternatives and therefore makes the e-PVC
a less demanding notion. Hence, the e-PVC naturally leads to a metric for how well an alternative
a € M does at finding common ground for the voters V. Intuitively, the critical € for an alternative
is the smallest fraction of voters that must be ignored in each coalition so that no coalition will veto
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that alternative. Therefore, a critical € closer to 0 implies that an alternative is better for finding
common ground while a larger critical € implies that an alternative is worse at it.

Definition 2.2. For any alternative a € M, the critical € for a is the smallest € > 0 such that a is
in the e-PVC.

Role of the Statement Distribution. D plays a crucial role in our notion of common ground since
it determines how many alternatives a coalition T must agree on to block an alternative a. For
example, let D be defined by an LLM, which produces a neutral summary with 99% probability, but
sometimes insults a minority instead. The e-PVC allows the small minority to block the insulting
statements, whose small measure in the distribution reflects its fringe nature. This marks a major
difference in perspective to Tessler et al. [2024], who use the Schulze voting rule due to its clone-
proofness. If the Habermas machine samples 99 neutral statements and one insulting statement
from the LLM and voters see the neutral statements as interchangeable, clone-proofness actually
ensures that a slight majority preference for the insulting statement makes it the winner. In addition,
clone-proofness is a brittle axiom that only applies to exact clones, so similar but not identically
ranked alternatives can still have a large effect on the outcome. *

Asillustrated in the above example, having a distribution over alternatives enables us to guarantee
rights to coalitions by forming a yardstick for how much influence each of them deserves. This
does mean, of course, that the distribution must be carefully chosen to be broadly acceptable to
the voters. In many cases, the statement distribution generated by an LLM might be a sufficiently
neutral ground — say, from a base model, which seem to be more politically moderate than post-
trained models [Rozado, 2024], or a model specifically fine-tuned for this purpose. Another option
could be to define D in terms of the distribution of voters as we do in our experiments: we draw
characteristics of a random voter and ask the LLM to answer from their perspective. We continue
our discussion on the choice of distribution 9 in Section 6.

3 Basic Properties

To begin our investigation of the e-PVC, we start by bounding its size and developing a polynomial-
time algorithm that can compute the critical € and the e-PVC if D is the uniform distribution over
a given set of alternatives.

3.1 Size of e-PVC

As a warm-up, we study the size of the e-PVC, which will tell us how many generative queries
are necessary to even see an element of the e-PVC. We begin by showing that, for any € > 0, the
€-PVC is not only non-empty but always has a size (with respect to the measure pip) of at least e.
Previous papers that have looked at variants of the e-PVC [Alamdari et al., 2024, Chaudhury et al.,
2024] give similar proofs of existence, but do not explicitly study the size of the e-PVC.

ProposITION 3.1. For any instance of the problem and any e, the size of the e-PVC (with respect to
the measure jig) is at least €.

ProoF skeTCH. The key idea of this proof relies on an algorithm we call vote by y-veto (Algorithm
3 in Appendix B.1), which is guaranteed to return a set of alternatives C with mass at least € such
that all alternatives in C are also in the e-PVC. In this algorithm, the voters are ordered randomly,
and then in this order each voter vetoes their least favorite 1_76 mass of alternatives that has not

*While the winner of Schulze on samples from D is independent of the multiplicities of identical samples, we want to
caution that the precondition of clone-proofness, requiring alternatives to be treated the same by every voter, makes it a
brittle axiom. For example, Pierczynski and Szufa [2024] give an election where Schulze does not satisfy clone-proofness for
alternatives that are almost clones. In this way, multiplicities can still have unpredictable effects under Schulze.
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yet been vetoed. Clearly, once all n voters have vetoed 1=¢ mass, the remaining alternatives must
have mass at least €. The proof that the remaining alternatlves are in the e-PVC follows similarly
to the proof for the Vote by Veto rule of Moulin [1982]. Intuitively, any alternative a not in the
€-PVC must get removed before the algorithm ends, as the last voter to veto from the blocking set
for this alternative a is guaranteed to veto a if a has not yet been vetoed. For the full proof, see
Appendix B.1. O

A direct corollary of Proposition 3.1 is that, among sufficiently many generative queries, there
will with high probability be an alternative in the e-PVC:

COROLLARY 3.2. Foranye,d > 0, aset of m = M

contain an element of the e-PVC.

generative queries will with probability 1 — 6

10g(1/5)

Proor. Let M be the result of m = generative queries and let C, be the e-PVC. Then

PHMN G = 0) = (1~ ip(C)" < (1- " < =M =

where the first inequality is by Proposition 3.1. Therefore, the probability that at least one element
of M is in C, is at least 1 — 4. O

While O(1/€) generative queries contain at least one element of the e-PVC with high probability,
we show in Section 5 that a larger number, specifically Q(1/€?), of generative queries is needed to
identify an element of the e-PVC. Therefore, identifying an element of the e-PVC with generative
queries is statistically harder than simply generating an element of the e-PVC.

In contrast to the traditional PVC, the 0-PVC can, in general, be empty:

PRroPoOSITION 3.3. For an infinite number of alternatives, the 0-PVC can be empty.

ProoOF. Let M = N, and let each alternative i > 1 have mass Z. Suppose that all voters prefer
alternatives with larger numbers. We prove, by contradiction, that no alternative i is in the 0-PVC.
Indeed, any such i is blocked by the grand coalition T = N and the alternative set S = {i + 1}, since

all voters prefer i + 1 over i and since pp(S) = 577 > 0=1— \T\ O

21+

3.2 Computing Critical €

As mentioned in the previous section, the critical € of an alternative measures how well a given
alternative does at finding common ground. In this section, we give an algorithm for finding the
critical € of a given alternative in polynomial time when the number of alternatives is finite and
D is the uniform distribution over M. Our algorithm generalizes the algorithm of Ianovski and
Kondratev [2023] for deciding if an alternative is in the traditional PVC. By running this algorithm
for all alternatives, we can construct the entire e-PVC in polynomial time in the same setting.

ALGORITHM 1: Computing the critical e

Input: Alternative a, [N| =n, M| =m
Construct a flow graph G as follows:

Connect a source node to n voter nodes, each edge with weight m

Connect m — 1 nodes (for all alternatives except a) to a sink node, each with edge weight n

Connect voter node i to alternative node j with infinite weight if voter i prefers a to alternative j
Let K be the size of the min-cut for graph G

2nm—n—-K
return =——_—— 1




[

)

©w

[

ECIC

©

oy

Jay Chooi, Paul Golz, Ariel D. Procaccia, Ben Schiffer, and Shirley Zhang 7

THEOREM 3.4. When M is finite, Algorithm 1 computes the critical € of a given alternative in
polynomial time.

Proor SKETCH. Our proof generalizes the ideas of lanovski and Kondratev [2023] for computing
the PVC. Their algorithm checks whether an alternative a is in the PVC by constructing a graph
G, such that there exists a complete biclique in G, if and only if a is not in the PVC. We show that
for the same graph G,, the size of the maximum biclique is larger than (1 + €)nm if and only if that
alternative is not in the e-PVC. In order to efficiently compute the size of the maximum biclique,
we follow the same method as Ianovski and Kondratev [2023] of constructing the flow graph in
Algorithm 1 such that the weight of the max flow K in this graph plus the size of the maximum
biclique in G, equals 2nm — n. In the last line of Algorithm 1, we use this fact to find the smallest €
for which the maximum biclique of G, is larger than (1 + €)nm. The runtime of the algorithm is
polynomial because the min-cut can be found in polynomial time (Appendix C.2.2). For the detailed
proof, see Appendix C. O

4 Algorithmic Results

In this section, we present our main algorithmic results for efficiently finding an element of the e-
PVC. We give a simple algorithm using generative queries and min-queries that finds an alternative
in the e-PVC, with high probability, using O(1/€?) queries of each type. A key takeaway from this
result is that the number of generative and discriminative queries does not depend on the size
of N (the number of voters) or the distribution over alternatives. This is important because the
population may be large and the generative distribution altogether unknown to the algorithm.
Then, we discuss how the same algorithm can be modified to use pairwise discriminative queries
instead of min-queries.

4.1 Min-Queries

We now present and analyze Algorithm 2, which finds an element of the e-PVC using generative
queries and min-queries.

ALGORITHM 2: Finding an element of the e-PVC

Input: N, M, 6, ¢
Output: An alternative that is with probability 1 — § an element of the e-PVC

Setr = 6—82 log (% log (%))
Let M be a set of alternatives that is the result of 7 generative queries.
Initialize X = M.
while |X| > 1 do
Select a random voter i € N.

Do one min-query to find voter i’s least favorite alternative among X.
Remove that alternative from X.

end

return the remaining element in X

THEOREM 4.1. Using O (¢% log (Z5)) generative and min-queries, Algorithm 2 returns an element
of the e-PVC with probability at least 1 — 6.
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Proor. By construction, Algorithm 2 uses 7 generative queries and 7 — 1 min-queries, which
gives the desired bound on the number of queries, observing that, for small enough €, §,

=% log (%log (%)) < % log (634—2(;) < % log (634—2;) =% logZ =0 (e log(F))-

Let N be the set of voters that are selected in Lines 6-9 of Algorithm 2. Note that a voter i € N
could be chosen in two different iterations of the while loop, in which case we view these as distinct
copies of the voter in the set N. This means we must have that |[N| =7 — 1.

We first show that any alternative in the PVC for voters N and alternatives M will, with probability
1 — 6, be in the e-PVC for N, D. We defer the proof of this result to Lemma 4.2 below. With this
result, all we need to show is that the alternative we return is in the PVC for N and M.

In Lines 6-9, we are functionally applying the Vote by Veto rule from [Moulin, 1982] to find an
element of the PVC for N and M using one min-query for each voter in N. Let a be the alternative
returned by Algorithm 2, and assume for contradiction that a is not in the PVC for N and M, i.e.,
not in the 0-PVC for the uniform distribution over M. Hence, there exists a coalition of voters T
and a set of alternatives S such that b >; a for each i € T and b € S and such that

BB, T .
r M| IN|

Each voter i € N removed one alternative b; € M from the set X. Since a was available in X
at the time and the voter chose to remove b;, it must hold that a >; b;. This means that the set
W = {b; | i € T} of alternatives removed by the voters in T is disjoint from S. Moreover, a is clearly
not part of either set (because it was not removed and cannot be strictly preferred over itself). This
means that S € M \ W \ {a} and hence |S| < 7 — |T| — 1. It follows that

IS| _ -7 -1 IT|+1 IT|
< = <

T T T IN|+1° INT
where the last inequality follows since |T| < |N|. This contradicts Eq. (1), showing that a is indeed

in the PVC for N and M. Together with the lemma, we conclude that the returned statement is in
the e-PVC with probability at least 1 — §. O

The key to concluding the proof of the theorem is Lemma 4.2, a quite technical result that connects
the e-PVC of the full instance with the PVC for the sampled voters and alternatives. At a high
level, the proof must argue that the randomly selected set of voters and alternatives are sufficiently
representative of the population and alternative distribution. But it is not immediately obvious how
to do so, given the exponential number of coalitions, and infinite collection of alternative sets that
could show that an alternative is e-blocked.

Instead, we apply concentration inequalities in a more subtle manner so that the number of
generative queries needed depends only on € and is independent of || (see Line 3 of Algorithm 2).
Specifically, we show that we do not need enough samples to sufficiently approximate every subset
of voters and alternatives, but rather only need enough samples to sufficiently approximate the
voters and alternatives for the blocking coalitions of the generated alternatives.

LEMMA 4.2. Let N be the set of (not necessarily distinct voters) selected in Lines 6-9 of Algorithm 2.
For any d,€ > 0, every element of the PVC for N and M from Algorithm 2 will be in the e-PVC for N
and D.

Proor. The key observation is that every alternative x € M not in the e-PVC for M, N, D must
have some blocking coalition of voters T, € N and alternatives S, € M satisfying Definition 2.1.
Denote the ith alternative sampled on Line 4 as x;. If x; is not in the e-PVC for M, N, D, then we
will show that with high probability, the corresponding blocking sets T, and Sy, are sufficiently
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accurately proportionally represented in the sampled sets M and N up to a factor of €. If this is the
case, then Definition 2.1 implies that x; will also not be in the PVC for M and N. For each x;, define
the event E; as the event that the above holds if x; is not in the e-PVC. If we show that E; holds with
high probability for every alternative x; € M, then we can conclude that every alternative in a € M
falls in one of two cases: Either a is in the e-PVC for M, N, D or a is not in the PVC for N and M.
This implies the desired result that any element of the PVC for N and M is in the e-PVC for N, D.
We now proceed with the formal proof:
ool 2 e 25

Let X be a set of alternatives sampled as generative queries from D with size | X| = =

81 lo
and let Y C N be a random subset of N with size |Y| = M. We will show that with

probability 1— 4, any alternative that is not in the e-PVC for the full set of alternatives will not be in
the PVC for alternatives X and voters Y. This implies that any element of the PVC for alternatives
X and voters Y will with probability 1 — § be in the e-PVC for N, D. Define PVC(X,Y) as the
PVC for alternatives X and voters Y. Define PVC. (N, D) as the e-PVC for N, D. For any element
x € M such that x ¢ PVC.(N, D), there exists some T, C N and S, € M such that for all i € T,
and a € Sy, a »; x and pp(Sy) + ||/<(/|| >1+e.

Let X = {x1,..., x|x|} be the ordered set of generative queries. Now we define the event E; :=
{xi € PVC.(N, @)} U {x, ¢ PVC(N. D) and 2035l > 1y (5,,) — /4 and Tl 5 1l 6/4}
First, note that if ﬂlfll E; holds, then every element of X is either in PVC.(N, D) or is not in
PVC(X,Y). This implies that every element not in PVC¢ (N, D) is not in PVC(X, Y).

All that remains is to show that Pr (ﬂlfll Ei) > 1 — 4. First, we will start with lower bounding

Pr(E;) (which by symmetry is the same for all i). We have:

Pr(E;) = Pr (x; € PVC.(N, D)) +

|X N Sy, | € Y N Ty, |T;| €
Pr{— > Sy.) ——and ———— > — — — | x; € PVC.(N, Pr(x; ¢ PVC<(N, .
(P 2 uos.) - §ana el > el € g pre v, o) et PYCLN, D)

Focusing on the middle probability and using Hoeffding’s inequality, we have that

|X NSy, | € [YNT.| Tl €

r—’ZpD(Si)——and—'Z — -

( X1 " Y| IN| 4
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Returning to bounding Pr(E;), we have that

Pr(E;) > Pr(x; € PVC.(N, D)) + (1 - %) Pr(x; ¢ PVC.(N, D)) > 1 - %

Finally, we can conclude that Pr (ﬂlfl‘ Ei) >1- Zlfll Pr (=E;) = 1 - § as desired. O

4.2 Pairwise Discriminative Queries

While Algorithm 2 uses min-queries, it would be much more practically useful to have an algorithm
based on pairwise discriminative queries, which are easier for voters to respond to. Fortunately, we
can achieve this with one simple change to Algorithm 2.

Specifically, we can simulate each min-query in Line 8 with a simple iterative algorithm to find
the least-preferred alternative for a given voter in a linear number of pairwise comparisons: First,
choose an arbitrary ordering of the candidates in X and do a single pairwise query asking voter i to
compare the first two alternatives in the ordering. Then, ask voter i to compare the least-preferred
alternative from that first comparison to the next alternative in the ordering. Repeat this process,
always keeping the least-preferred alternative from each comparison. After iterating through all
alternatives in X, this is guaranteed to only use |X| — 1 pairwise queries to find voter i’s least
favorite alternative among X.

5 Lower Bounds

In this section, we show that Algorithm 2 is tight in terms of both generative and discriminative
queries. To prove this for each of generative and min-queries, we give a specific hard instance of
the problem that requires Q(1/€?) of that type of query in order to find an element of the e-PVC.
We then show that the number of pairwise queries in the modification of Section 4.2 is also tight.

5.1 Generative and Min-Queries

In Theorem 5.1, we give a lower bound on the number of generative queries needed in order to
identify an element of the e-PVC. Importantly, this result combined with Corollary 3.2 implies a
fundamental gap between the number of queries needed to generate versus identify an element
of the e-PVC. Specifically, Corollary 3.2 says that O(1/¢) generative queries suffice to generate an
element of the e-PVC with high probability, while Lemma 5.1 says that we need at least Q(1/€)
generative queries to identify an element of e-PVC. This highlights a surprising subtlety about
generative queries, which is that it can be easier to stumble across a statement in the e-PVC than
to certify which statement is in the e-PVC.

THEOREM 5.1. For anyé, e > 0, no algorithm can use fewer than Q(log(1/5)/€?) generative queries
and for every distribution D identify an element of the e-PVC with probability greater than 1 — 6.

Proor. Consider the following two discrete distributions with support {ay, a,}. Distribution
Dy puts 0.5 + € probability mass on a; and 0.5 — € probability mass on ay. Distribution D, puts
0.5 — € probability mass on a; and 0.5 + € probability mass on a,. Suppose that half of the voters in
N have preferences a; > a; and the other half of the voters have preference a; > a;. With this
voter population, the e-PVC under distribution D; is {a; } while the e-PVC under distribution D,
is {a,}. Therefore, in order to find the e-PVC, we must have sufficient information to distinguish
between distributions 9; and D,. Next, note that the KL distance between these distributions
satisfies KL(D1||D;) < O(€?). Therefore, a standard information theory result (stated and proven
in Lemma 5.3 for completeness) gives that with fewer than Q(log(1/5)/€?) generative queries, it
is impossible to distinguish between these two distributions with probability greater than 1 — 6,
which implies the desired result. O
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A similar construction shows that in the worst case, we also need at least O(1/¢?) min-queries
to distinguish between two populations that are both close to ambivalent between two alternatives.
The main difference between this construction and the one in Theorem 5.1 is that it is difficult to
distinguish between two similar populations rather than two similar distributions.

THEOREM 5.2. For any 8, € > 0, no algorithm can use fewer than Q(log(1/8)/€?) discriminative
queries and for every distribution D identify an element of the e-PVC with probability greater than
1-6.

Proor. Consider the uniform distribution O with support {a;, a;}. Consider the following two
sets of voters. In Ny, a (1/2 + €) fraction of voters have preference a; > a, and a (1/2 — €) fraction
of voters have preference a; > a;. In N;, a (1/2 + €) fraction of voters have preference a, > a; and
a (1/2 — €) fraction of voters have preference a; > a,. The e-PVC for voters M is just {a;} while
the e-PVC for the voters N; is {a;}. Distinguishing between these two voter populations with
discriminative queries is equivalent to distinguishing between a Bernoulli(1/2 + €) distribution
and a Bernoulli(1/2 — €) distribution. We can again appeal to Lemma 5.3 to get the desired result
that no algorithm can use fewer than Q(log(1/5)/€?) queries to identify an element of the e-PVC
with probability higher than 1 — § for both of these settings. O

The proofs of Theorem 5.1 and Theorem 5.2 both rely on the following standard result from
information theory, which we state here formally and reprove for completeness.

LEmMA 5.3. Iftwo distributions Dy and D, have Kullback-Leibler distance satisfying KL(D1||D;) <
ce? for some constant c, then no algorithm can achieve minimax misclassification error of less than §
for these two distributions using fewer than O(log(1/8)/€?) samples.

Proor. Let D7 and D be the product distributions for n samples from D, and D, respectively.
Then by definition, KL(D', DY) = nce®. By the Bretagnolle-Huber Inequality, this implies that

the TV (D!, Dg) <1- %e‘"“z. By Le Cam’s method, the minimax misclassification error for

any classifier distinguishing between D7, D} must be lower bounded by ; (1 - TV(D}, Dy)) >

%e‘”“Z. Plugging in n = log(1/(46))/(ce?) gives a misclassification error of at least §, which is the

desired result. m]

5.2 Pairwise Discriminative Queries

Theorems 5.1 and 5.2 together imply that Algorithm 2 is tight in terms of the number of generative
queries and min-queries needed. As discussed in Section 4, Algorithm 2 works by finding an element
of the PVC for a set of voters N and alternatives M. We also showed that this algorithm can be
modified to use O(nm) pairwise queries, where n = |N| and m = |M|. In Theorem 5.4, we show that
finding the PVC from a set of alternatives N and alternatives M (with sizes n and m respectively)
cannot be done in fewer than Q(nm) pairwise discriminative queries, which implies that there
is no better subroutine than this modification in the worst case. Theorem 5.4 and its proof may
be of independent interest to those studying the elicitation of voter preferences using pairwise
comparisons. The proof below establishes a lower bound of nm/32; we present a longer proof of
the same result that achieves a tighter lower bound of nm/2 in Appendix B.2.

THEOREM 5.4. When the sets of alternatives M and voters N are finite, no algorithm can always
find an element in the PVC using fewer than Q(mn) pairwise discriminative queries.

ProoF. Let m = kn + 1 for any k > 1. By definition, any alternative a in the PVC must not be
ranked in the last k alternatives by any voter. We will show that any algorithm ALG needs at least
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nm/32 queries to find any alternative not ranked in the last k by any voter, which implies we need
at least nm/32 queries to find any alternative in the PVC.

Consider the following adversary. The adversary answers pairwise queries by ALG arbitrarily
(and consistently with previous queries), and for every alternative a keeps track of a counter c,
which counts the number of pairwise queries involving alternative a up to this point. The adversary
also keeps track of a set X of “active” voters which is initialized to be NV. As soon as the counter
¢, for an alternative a hits n/4, the adversary arbitrarily chooses one of the remaining “active”
voters i for which a can be in the bottom k, and assigns a to be one of voter i’s k worst ranked
alternatives. The adversary then truthfully tells ALG that a is ranked in one of the last k spots for
voter i. Similarly, if the queries answered so far force an alternative a to be ranked in the last k of a
voter i, then a is also assigned to voter i. If voter i has k distinct alternatives assigned to voter i’s
last k spots, then voter i is no longer active and is removed from the set of active voters.

Now suppose that ALG has asked fewer than nm/32 discriminative queries. Partition the full set
of alternatives M into M; and My, such that M; contains all alternatives that have been involved in
at least n/4 discriminative queries up until this point, and M, contains all alternatives that have
been involved in strictly less than n/4 discriminative queries. Note that for any alternative in
M;, the adversary has already placed that alternative in the last k spots of at least one voter, and
therefore no alternative in M; is in the PVC.

To conclude the proof, we must show that ALG cannot determine whether or not any alternative
in M; is in the PVC. Because ALG has asked fewer than nm/32 queries so far and each query
involves exactly two alternatives, the number of alternatives involved in at least n/4 discriminative
queries is at most m/4. This implies that |M;| < m/4. An alternative a is only assigned to a voter if
either it is in M or if the queries for a specific voter i force a to be in i’s bottom k spots. For the

latter case, there must have been at least mT_l = n queries per such assigned a. Therefore, there

are at least nk —m/4 — %/32 > remaining spots left in the bottom k positions of the active

voters, which implies there are at least 23n/32 — 1 active voters remaining. For any alternative
a € M,, we know that strictly less than n/4 voters have been queried about a. Therefore, since there
are at least 23n/32 — 1 active voters remaining, there must be at least 23n/32 — 1 — n/4 > 0 active
voters (for sufficiently large n) who have not yet been queried about alternative a. Importantly, this
means that a may be in one of the last k spots of these voters’ rankings, which further implies that
ALG is unable to determine whether a is in the PVC. This is true for every alternative a € M, so
we can conclude that ALG cannot find any element of the PVC with fewer than nm/32 queries. O

23kn—9
32

6 Interpretation of D

In this section, we further discuss the significance of the distribution 9. One way to think about D is
to view it as a weighting scheme that puts more weight on more “important” alternatives. Traditional
voting theory does not explicitly assume such a weighting scheme, but does commonly assume
neutrality. A voting rule satisfies neutrality if it is indifferent to the identity of the alternatives,
in other words the outcome does not change if the alternatives are permuted. Therefore, any
voting rule that satisfies neutrality must implicitly weight the alternatives equally, i.e. use a uniform
weighting. Similarly, when there is a compact space of infinite alternatives, any voting rule satisfying
neutrality must implicitly use a distribution D that is the uniform distribution over all alternatives.

All of our theoretical results (both positive and negative) apply when D is the uniform distribution.
However, when there are infinite alternatives, the uniform distribution may not always be the
correct choice. As an example, consider the alternative space M = [0, 1] with 100 voters. 99 of these
voters only like alternative 0 and one voter only likes alternative 1. In this example, despite infinite
alternatives existing in the interval [0, 1], the only two alternatives that should be relevant are {0, 1},
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which have measure 0 under the uniform distribution. Unfortunately, the natural generalization
of many voting rules (e.g., Borda count) ignore sets of size 0, and therefore may even select an
alternative not from {0, 1}. Similarly, when computing the e-PVC, both of the alternatives in {0, 1}
with measure 0 could be vetoed depending on tie-breaking. This is clearly an undesirable outcome,
and can be easily avoided by choosing a more appropriate distribution D.

Motivated by the example above, one way to choose the distribution D is to put more weight on
alternatives that are more “important”. This means that the distribution D is implicitly capturing
the cardinal preferences of the voters by putting higher weight on alternatives for which voters
have higher utilities. A common choice for such a distribution is the Bradley-Terry-Luce (BTL)
model, where the probability of selecting an alternative is proportional to a score for that alternative.
Suppose each player i has a utility function u; : M — [0, 1] such that / w #i(m)dm = 1. Then we
could let D be the mixture of BTL models over all voters, i.e. up(m) = |17| Dien ui(m). This is
equivalent to a BTL model with scores equal to the sum of voter utilities.

Happily, choosing D to be this BTL model also gives us an intuitive interpretation for the e-PVC.
If D is this BTL model, then the size of a coalition necessary to veto an alternative is proportional
to the utilitarian social welfare (total population utility) for that alternative. This means that a
larger coalition of voters is needed to veto an alternative that has higher utility among the voters.
We formalize this idea below in the extreme case .

THEOREM 6.1. If D satisfies pip(m) = ﬁ Yien ui(m) then the following holds for any subset
S € M. If at least an x + € fraction of voters rank every alternative in S above every alternative not in
S and the total utility of S is greater than 1 — x fraction of the total utility of all alternatives, then the
€-PVC must be a subset of S.

Proor. Let T be the coalition of voters that prefers S to every alternative not in S and satisfies
l%l > x+¢€. We will show that the coalition T with alternatives S can veto every alternative a € M\S.
This follows directly from the fact that ¢ (S) = ﬁ Dienui(m) > 1-x > 1—(x+€)+e > 1— % +e

which satisfies Definition 2.1. ]
In the discrete setting, we have the following corollary:

COROLLARY 6.2. If D satisfies pp(m) = ﬁ Dien ui(m) then the following holds. If at least an
X + € fraction of the population ranks alternative a € M first and the utilitarian social welfare of a is
greater than x fraction of the total utility of all alternatives, then a is the only alternative in the e-PVC.

For intuition, suppose x = 1/2 and D is the BTL distribution (as above). In this case, Corollary
6.2 says that if there is any alternative a such that a majority of voters rank a first and a has more
than half of the total population utility, then a is the only alternative in the e-PVC. Similarly, if at
least a 1/2 + € fraction of voters have utility 1 for a and utility 0 for every other alternative, then a
is the only alternative in the e-PVC. Examples such as these demonstrate how the e-PVC combines
both ordinal and cardinal preferences when D is the utility-based BTL model.

7 Experimental Results

We now analyze the e-PVC of synthetically generated preference data, modeling the preferences
of individuals over opinion statements on various policy issues. Our first experimental goal is to
verify that our algorithm performs well in practical settings. This complements our asymptotic
analysis in Section 4, demonstrating that our algorithm also performs well at small sample sizes.
Our second goal is to measure how often popular voting rules choose alternatives that are in the
€-PVC. Our third goal is to understand how well LLMs can generate statements in the e-PVC given
different generative capabilities and types of information.
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Fig. 1. Our experiment setup. We generate statements conditioned on synthetic persona, and build preference
profiles from voters conditioned on synthetic persona. We then evaluate various voting rules, including those
powered by LLMs, and compare their critical epsilons.

For each experiment, we first use the persona dataset of Castricato et al. [2024] to select the
100 distinct voters in NV. We then generate a different alternative for each voter for a total of 100
alternatives. We let D be the uniform distribution over these alternatives, to capture a distribution
defined by first choosing a random voter, and then generating a statement based on that user’s
preferences, as discussed in Section 2.

As in our theoretical model, the voting rules in our experiments only have access to a random
subset of alternatives and voters, specifically 20 of each. Of course, practical situations may have
more than 100 voters and alternatives, and one would want to sample as many as possible, but
this small-scale experiment allows us to run many experiments with LLMs at reasonable cost. We
compute the critical e with respect to all 100 alternatives and voters to measure how well the
alternative selected by each voting rule does at finding common ground for the overall population.
Recall that the critical € (Definition 2.2) measures the smallest € for which the alternative is in the
€-PVC. Therefore, a method that is better at finding common ground will choose alternatives with
critical € close to 0 while a method that is worse at finding common ground will choose alternatives
with relatively large critical e. Upon publication, we will release our implementation of various
€-PVC computations as open source.

7.1 Methodology

Our experiment setup is illustrated in Figure 1. For each of six topics, we perform 10 replications,
each with 100 voters and 100 alternatives drawn from the persona dataset. We then obtain a ranking
of the generated alternatives for each voter to form the overall preference profile. From there, we
subsample to get 20 voters and 20 statements yielding a 20 X 20 preference profile, which we do 4
times per replication. Finally, various voting rules are run on this 20 X 20 preference profile, and
we compare the critical epsilons of the selected alternatives (with respect to the original 100 X 100
preference profile). We elaborate on the details of each step of the experiment below.

Topics. We originally formulated 13 topics covering contemporary political issues (Appen-
dix D.1.1). To study if certain voting rules do better or worse on polarized or less polarized questions,
we rate each topic by degree of polarization. For each topic, we generate 100 statements and sample
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100 voters independently to assign a Likert score from 0-10 to each statement indicating how much
they agree with that statement (Figure 4). We then compute the mean Likert score and take its
absolute difference from 5 to measure how strongly voters feel about different topics, i.e. how
polarizing topics are. Finally, we selected the top three and bottom three topics by this metric.

Personas. We use the 1,000 synthetic personas generated by Castricato et al. [2024]. Their choice
of personas is informed by the US census and intended to be ideologically and demographically
diverse. Each persona contains comprehensive personal characteristics, such as race, occupation,
and how they spend their personal time. An example of a persona can be found in Appendix D.2.
We filter the personas to those above the age of 18, thus obtaining 815 adult personas.

Alternatives. For each persona and topic, we generate a representative statement from that
persona for that topic by querying an LLM (specifically, gpt-5-mini). We explore other methods
to generate alternatives in Appendix D.3.

Preference Profiles. We construct preference profiles by asking each voter (powered by gpt-5-mini
and conditioned on a persona) to sequentially rank their top 10 and bottom 10 statements until all
100 statements are ranked. We term this approach iterative ranking and discuss further details in
Appendix D.4. Each preference profile consists of 100 voters and 100 statements.

Calculating Critical Epsilons. We compute the critical epsilons for each statement using Algo-
rithm 1 (where the critical € is with respect to the full 100 x 100 preference profile and the uniform
distribution over these alternatives).

7.2 Voting Rules

In this section, we compare the critical epsilon of the statements selected by various voting rules.
Veto-By-Consumption (VBC) [lanovski and Kondratev, 2023], like Algorithm 2, finds an element of
the PVC for the subsampled preference profile. We then compare VBC to other standard voting
rules, including Borda count, Schulze [Schulze, 2011], Instant Runoff Voting (IRV), and plurality. We
also include a baseline that is the critical € of a uniform randomly chosen statement among the 100.
Figure 2 shows the cumulative distribution function (CDF) of critical epsilons across all iterations
for the three controversial topics, and Table 1 shows the mean critical epsilons for all six topics.
CDF graphs for the other topics and additional figures can be found at Appendix D.7. Across topics
there is a consistent pattern: the voting rules ranked in increasing order of critical epsilons are:

VBC < Borda < Schulze < IRV < Plurality. (2)

As expected from our theoretical results, even with access to only a small number of voters and
alternatives, finding an element of the PVC for the subset gives an alternative with very low critical
€ for the full sets. The critical € for VBC is almost always 0, with mean consistently less than 0.001
across topics. This supports using methods for finding elements of the PVC in practical situations
even without having access to full information.

Unsurprisingly, the other voting rules select alternatives that have higher critical €. For example,
Schulze (used by the Habermas machine) selects alternatives with an order of magnitude higher
critical epsilon than VBC. Perhaps more surprisingly, plurality consistently selects alternatives
with higher critical € than just choosing a random alternative. The social choice function that
consistently does the best after VBC is Borda count. In practice, Borda count could be a good
compromise as a scoring rule that is easily computable, interpretable, and also chooses alternatives
with small critical e.

In addition to these synthetic experiments for preferences over textual statements, we also
tested how well each of these voting rules perform on preference datasets from Preflib [?], without
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subsampling, i.e., when the voting rule has full access to voters and alternatives. In these real-world
scenarios, we observe the same pattern of Equation (2), with Borda count consistently having the
lowest critical € among the standard voting rules and Plurality consistently having the highest. See
Appendix D.5 for more details.

Critical Epsilons of Voting Methods for Topics: Abortion, Electoral College, Healthcare

Abortion Electoral College Healthcare
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Fig. 2. CDF of critical epsilons for the chosen alternatives of various voting rules for the three polarizing
topics. The smaller the epsilons (the closer the line is to the top-left corner), the better at finding common

ground the voting method is.

Table 1. Mean critical epsilons for various voting rules across various topics. The smallest epsilon for each
topic is bolded.

Method  Abortion Electoral College Healthcare Policing Environment Trust in Institutions

VBC 0.0008 0.0000 0.0003 0.0003 0.0000 0.0014
Borda 0.0075 0.0023 0.0005 0.0015 0.0014 0.0025
Schulze 0.0108 0.0040 0.0030 0.0040 0.0033 0.0033
IRV 0.0203 0.0233 0.0063 0.0133 0.0086 0.0050
Plurality ~ 0.0865 0.0460 0.0158 0.0268 0.0142 0.0128
Random 0.0609 0.0108 0.0082 0.0103 0.0108 0.0072

7.3 Generative Voting Rules
In this section we examine generative voting rules, which do not have to select among the existing
alternatives and instead can use an LLM-generated new alternative. We consider several different
generative voting rules that each use different amounts of information about the problem to
generate common-ground statements:
e GPT-Blind: the model is only given the topic and no information about voters or alternatives
e GPT-Synthesize: the model is given the topic and the 20 alternatives.
o GPT-Synthesize+Rankings: the model is given the topic, the 20 alternatives, and the 20 x 20
preference profile.
e GPT-Synthesize+Personas: the model is given the topic and the persona descriptions of the
20 voters.
To keep the values comparable, we do not compute the critical epsilon of a generated statement
with respect to the uniform distribution over 101 statements. Instead, we continue to consider the
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uniform distribution over the 100 original statements, and treat the generated statement as having
zero probability mass in D.

Table 2 shows the mean critical € for these different generative voting rules. From this table, we
can see that the generative voting rules do generate alternatives with smaller critical € than many
standard voting rules like Schulze, IRV, and Plurality. VBC and Borda both slightly outperform
the generative voting rules despite the fact that the generative methods can produce their own
alternatives. Overall, the generative voting rules choose alternatives with relatively low critical e,
indicating that what an LLM believes represents common ground is well aligned with the concept
of the PVC.

Table 2. Mean critical epsilons for VBC, generative voting rules and random baselines across various topics.
Smallest epsilon for each topic is bolded. Under “Random Insertion,” we sample a random statement from the
815 global statements that are not in the 100 X 100 preference profile and use the same insertion program
that we use for the generative methods.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.0008 0.0000 0.0003 0.0003 0.0000 0.0014
GPT-Blind 0.0103 0.0093 0.0080 0.0045 0.0085 0.0200
GPT-Synthesize 0.0055 0.0108 0.0090 0.0128 0.0168 0.0238
GPT-Synth+Rank. 0.0030 0.0053 0.0038 0.0025 0.0080 0.0095
GPT-Synth.+Pers. 0.0030 0.0060 0.0040 0.0040 0.0058 0.0105
Random Insertion 0.0700 0.0100 0.0108 0.0100 0.0073 0.0110
Random 0.0609 0.0108 0.0082 0.0103 0.0108 0.0072

In addition to generative LLM-based methods, we also evaluate LLM-based methods that are still
restricted to choosing one of the original 100 alternatives. We discuss these methods and results in
more detail in Appendix D.8.

Clustered Voter Populations. In the previous section, we showed that the generative voting rules
are able to generate alternatives with very low critical €, and the low numbers make it difficult
to distinguish between the generative and non-generative methods. As LLMs are post-trained to
be aligned to the general population, we hypothesize that generative voting rules will struggle in
elections where the voter base is skewed to a particular ideology. To investigate this, we partition
the 815 adult personas into 431 progressives and 255 conservatives by keyword filtering, with 129
unmatched personas (see Appendix D.9 for details). We plot our results for conservative voters
in Figure 3 and report the mean critical epsilon in Table 3. We find that generative voting rules
degraded significantly compared to Table 2 and sometimes perform worse than the random baseline,
while VBC maintains its performance of having most critical epsilons close to 0.

We also find that providing more information to the generative voting rules helps them signifi-
cantly. Interestingly, providing personas of the voters is the most helpful to the generative voting
rules, but with this information the mean critical epsilon is still 10 times larger than that of VBC.
Due to space constraints, we report the results for progressive voters in Table 12 in Appendix D.9.3.

8 Discussion

One of the main theoretical contributions of this paper is analyzing the sample complexity of
finding alternatives in the e-PVC using different types of queries. While we studied certain forms
of generative and discriminative queries, there are many other ways to elicit information about
both alternatives and voters. A natural open question is whether there are other reasonable query
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Critical Epsilons of Generative Voting Methods (Conservative Voters) for Topics: Abortion, Electoral College, Healthcare
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Fig. 3. Critical epsilons for the winners of various generative voting rules on conservative voters for polarizing
topics. Generative voting rules consistently do worse than VBC and sometimes even the random baseline.

Table 3. Mean critical epsilons for VBC, generative voting rules and random baselines across various topics
for conservative voters. Smallest epsilon for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.0013 0.0003 0.0003 0.0000 0.0003 0.0000
GPT-Blind 0.2775 0.0263 0.0050 0.0225 0.0843 0.0220
GPT-Synthesize 0.2313 0.0263 0.0178 0.0393 0.0230 0.0305
GPT-Synth+Rank. 0.1980 0.0295 0.0120 0.0215 0.0280 0.0048
GPT-Synth.+Pers. 0.1065 0.0088 0.0048 0.0033 0.0065 0.0010
Random Insertion 0.1360 0.1013 0.0418 0.0640 0.0153 0.0135
Random 0.1751 0.0989 0.0428 0.0625 0.0382 0.0330

models that are more effective at finding elements of the e-PVC. For example, different forms of
discriminative or generative queries may be able to reduce the complexity of identifying an element
of the e-PVC and close the 1/¢ to 1/€? gap we showed in Section 5.

One of our key assumptions is that the number of alternatives is large or infinite, a setting
in which many voting rules are not well-defined. Therefore, another open question is how to
generalize other voting rules to the setting of infinite alternatives. For example, despite the PVC
technically requiring a number of constraints which is exponential in |[N|, Theorem 4.1 shows that
the number of samples needed to find an element of the e-PVC does not depend on the distribution
or the number of voters. One could ask whether other voting rules also have such shortcuts in the
infinite alternative setting, and whether similar sample complexity results hold.

Finally, we use the critical € to measure the degree to which a given statement represents common
ground for the population. However, there may be many alternatives with critical € equal to 0,
in which case it may not be obvious how to choose among them. One practical way to break ties
would be to choose the alternative from the e-PVC with the highest score according to some social
choice scoring function. For example, we could select the alternative with the highest Borda score
among all alternatives in the e-PVC. If we take the Borda score as a proxy for maximizing welfare,
then the Borda winner in the e-PVC can be interpreted as the common-ground alternative with the
highest welfare. One direction for future work is to further explore the best way to combine the
€-PVC with different scoring functions to select alternatives with small critical € and high welfare.
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Appendix
A Reduction of e-PVC to PVC
The standard definition of PVC (as in [Moulin, 1982]) is the following.

Definition A.1. Let there be a set of voters N with |[N| = n, and a set of alternatives M with
|M| = m. Each voter i has a ranking o; over all alternatives. Let the veto function f(x, n, m) for
some positive integer x < n be defined as follows:

f(x)=r—;~m—l-|.

An alternative a is vetoed if there exists some group of voters T € N such that there exists a set S
of alternatives with |S| > m — f(|T|) where every voter i € T prefers every alternative b € S to a.
The set of alternatives which are not vetoed is called the proportional veto core.

Now consider Definition 2.1 with N = N, M = M, € = 0, and D as the uniform distribution over
M. We will show this is equivalent to Definition A.1 Define n = [N| and m = |M|. In this choice of
parameters for Definition 2.1, an alternative a € M is blocked if there existsaT € N and S € M
such that

N 7|
N iy
m n

Defining y = @, this can be rewritten as
|S| > m —y. (3)
Note that |S| > m — y if and only if |S| > m — [y — 1]. Therefore, Equation (3) is equivalent to
S| =2m—[y—-1]=m- f(IT}).

This is exactly the same definition of being blocked as in Definition A.1, and therefore we are done.

B Deferred Proofs
B.1 Proof of Proposition 3.1

ProOOF OF PROPOSITION 3.1. A key technical tool we use in the proof of Proposition 3.1 is a linear
time algorithm that, given full access to D and the preferences of the voters, can return a set of
alternatives that are in the e-PVC. This algorithm is based on the Veto by Voting (VBV) algorithm in
[Moulin, 1982] for finding the PVC when M is finite. For any instance of the problem with finite M,
VBV always output an element of the PVC. Our modification allows these algorithms to generalize
to the setting of e-PVC with infinitely many alternatives.

Proposition 3.1 follows directly from the following lemma analyzing Algorithm 3.

LeEmMA B.1. Every alternative in the set C returned by Algorithm 3 is in the e-PVC. Furthermore,
ki (C) 2 €.
Proor. We first will show that the set of alternatives returned by Algorithm 3 must all be in the

€-PVC. Proof by contradiction. Suppose that a is returned by Algorithm 3 and that a is not in the
€-PVC. By definition of e-PVC, there must exist a coalition T and set of alternatives S such that

w>;aforallie Tandw € Sand up(S) >1- l—Zl + €. For i € T, let W; be the set of alternatives
that i ranks lower than a, and let W = {a} U (U;erW;). By construction, we must have that S and
W are disjoint, so
IT|
o (W) <1 - pup(S) < e

Because a is in C when the algorithm terminates, every voter in T must have removed or decreased
the capacity of alternatives they like less than or equal to a, so every voter in T must have removed
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ALGORITHM 3: Vote by y-Veto

Input: A set of voters N and a set of alternatives M
Output: A set of alternatives.

Lety = 1_76

Assign each alternatives a € M capacity ¢4 = pp(a).

Initialize C = M

for voteri € N do

Voter i identifies the smallest set X C C with the following properties. First, for every x € X and
y € C,y >; x. Second, defining Xp = {x € X : pp(x) = 0},

pp(Xo)+ > ey
XEX\X[]

Remove all alternatives in X from C except the one most highly ranked by voter i and call the most
highly ranked alternative a.
Ifcqg < y— pp(X \ {a}), then remove a from C. Otherwise, let ¢, = cq — (y — pp (x \ {a})).

end
return C

or decreased the capacity of alternatives in W. Each voter in S consumes y mass, therefore the total
amount of mass that is consumed from W must be at least
pr =TT T s ),
n n n n
Therefore, all alternatives in W must have been removed from C by the time that the algorithm
terminated, and therefore a must have been removed from C. This is a contradiction with the fact
that a is returned by the algorithm, which completes the first part of the proof.

To see that jip(C) > ¢, define
m(C) =pp({xeCipp(x) =0+ > cx

x€C:pp (x)#0

By construction, m(C) decreases by exactly y in each round of the for loop. Since y = 1%6 and there
are n rounds of the for loop, this implies that m(C) = € when the algorithm terminates. Furthermore,
by definition m(C) < pgp(C), therefore m(C) = e implies that pp(C) > € as desired. O

]

B.2 Alternative Proof of Theorem 5.4

In this section, we present an alternative proof for Theorem 5.4 that achieves a tighter lower bound
of mn/2 (improvement over mn/32 as shown in the proof in Section 5). Note that our algorithm
using Median of Medians only uses ~ 3.33mn pairwise discriminative queries, and therefore this
tighter lower bound is only a factor of ~ 6.66 from being fully tight.

SECOND PROOF OF THEOREM 5.4. Let m =n+ 1.
First, assume that we know we are in one of two cases:

e Alternative a is ranked second to last in every single ranking, and every alternative in A \ {a}
is ranked last in exactly one ranking

e Alternative a is ranked second to last by n — 1 voters and is ranked last in exactly one ranking,
in which some alternative x is ranked second to last. Every alternative in A \ {a, x} is ranked
last in exactly one ranking.
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In the first option above, the PVC is just {a}. In the second option above, the PVC is just {x}.
Therefore, in order to find the proportional veto core, the algorithm must be able to distinguish
between these two cases.

We will show that no algorithm can distinguish between these two cases with fewer than
= M queries by giving an adversary that requires at least this many queries.

Deﬁne X = A\ {a}. We therefore will consider the easier problem of determining if every element
of X is ranked last exactly once in N. Note that any queries not involving a will not give any
information for this alternate problem, therefore we will only consider queries involving a.

We will prove the desired result using induction. Let Q be a set of queries of the form (x, a,y)
for x € X and y € N where x > a. For any X, N, Q such that |X| = |N|, define f(X, N, Q) as the
minimum number of queries in this adversarial setting necessary to determine whether or not
every element in X is ranked last in exactly one ranking in N assuming that we start by doing the
queries in Q .

Base case: If | X| = |[N| = 1 then X and N are both singletons (i.e. X = {x} and N = {y}).If|Q| > 1,
then clearly f(X,N,Q) > |Q| = 1.If Q = 0, then we then need one query of (x, a,y) to determine
whether or not x is ranked last by y. Therefore, for any X, N such that |X| = [N| = 1 and any Q, we
have that f(X,N,Q) > 1= w Inductive Hypothesis: Assume that f(X, N, Q) > w
for all X, N, Q such that |X| = |[N]| < n.

Consider any X, N, Q such that [X| = |[N| = n.

Case 1: There exists a set X; € X and Y; C N such that |X;| = |Y;| < n and such that the only
possible way to assign every alternative in X to be last in some ranking in N is to assign every
alternative in X to be last in some ranking in Y;. Define Y, = N\ ¥; and X; = X \ Xj. Let O; € Q
be the set of all queries in Q involving alternatives in X; and voters in Y; and let Q, C Q be the set
of all queries in Q involving alternatives in X, and voters in Y,. We will show that

fX,Y,0) 2 f(X1,Y1,01) + f( X, Yo, Q2) + X4 | - (n = [X3]). (4)

To see this result, note that since X; alternatives must be ranked last in some ranking in Y; and
alternatives in X, must be ranked last in some ranking in Y5, from now on the player only needs to
ask queries involving alternatives in X; and voters in Y; or ask queries involving alternatives in X,
and voters in Y;. This explains the first two recursive terms in the above equation. To show the
last additive term, we must show that the number of queries in Q \ Q; \ Q2 ( or equivalently the
number of queries involving alternatives in X; and voters in ¥, or involving alternatives in X, and
voters in Y7) is at least |X;| - (n — | Xq]).

This is because in order for such an X; and Y, to exist, we must be in one of the following two
situations:

e Every alternative x; € X; has been compared to a in every ranking y, € Y, and x; >, a
e Every alternative x; € X, has been compared to a in every ranking y; € Y; and x; >, a

Option 1 above requires |X;||Yz| comparisons in Q \ Q; \ Q, and option 2 requires |Xz||Y;|
comparisons in Q \ Q; \ Q. In both cases, we must have that

O\ Q1 \ Q2] 2 [X4] - (n—[X4]).

Therefore, we have shown Equation (4).
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Using the inductive hypothesis, Equation (4) implies that

Xil(Xy| +1 Xo|(| X5 + 1
f(X,N,Q)Z' 1|(|21| )+| 2|(|22| )+|X1|(n—|X1|)

X1 (| X7+ 1 Xo|(|X5] + 1
=| 1|(|21| )+| z|(|22| )+|X1||X2| (1] = n - X))
_ X012+ X0 + 12X 1% + 1] + 21X |1z

2
_ (X1 + 1X21)? + (1X1| + X2 )
2

_IN*+|N|
- 2
_ INJ(IN] +1)

—

Case 2: If we are not in case 1, then for any query of the form q = (x, a, y), suppose that the
adversary responds that x -, a. In this case, we have that (for Q" = O + {q})

fXY,0) = f(X,Y, Q).
There are a finite number of potential queries, so eventually we will reach some Q” where Q C Q’
and such that f(X,Y,Q) = f(X,Y,Q’) and such that X, Y, Q’ falls in case 1. We already showed
n(n+1)

that in Case 1 we must have that f(X,Y,Q’) > —=5—, so we can conclude that

Y0 = v, = M.

In order to show that the above adversary is valid, we must maintain that at any point given
the query feedback from the adversary, a could either never ranked last or a could be ranked last
exactly once. Because the adversary always responds that x >, a for all queries, at any point it
is still possible that a could be ranked last by every voter. Therefore, we must show that for this
adversary, we also could have that a is not ranked last by one voter. This will follow from the
following lemma. This lemma implies that any time one query response from the adversary would
result in a query set Q for which a must be ranked last by every voter in N, we must be in the
setting of case 1. This implies that the adversary never needs to answer a query in such a way that
forces a to be ranked last by every voter until at least n(n + 1)/2 queries have already been asked.

LEmMA B.2. For a given (X, N, Q), suppose that there exists a matching of alternatives in X to
voters in N such that every alternative in X could be ranked last by exactly one voter in N given the
results of the queries in Q. Further, assume that there exists a query (a, x,y) such that if x >~ a, then
this is no longer the case. Then there must exist a set X; C X and Yy C Y such that |X;| =|Y1| <n
and such that the only possible way to assign every alternative in X to be last in some ranking in N is
to assign every alternative in X; to be last in some ranking in Y;.

Proor. Because there exists a matching of alternatives in X to voters in N, choose one such
mapping and call it M : X — N. Create the following directed graph with vertices corresponding to
X. Add a directed edge from x; € X to x; € X if and only if the alternative x; could be ranked last by
the voter M(x;). If there exists an (x, y) as assumed in the lemma, then there cannot be a directed
cycle containing the vertex x. This is because if there is a directed cycle C containing x, then there
still exists a valid matching M’ that satisfies x >, a, which violates the lemma assumption. To
construct M’, we could simply modify M by matching ever vertex b in the cycle to M(C(b)).

Now we show that the lack of cycles containing x implies that there exists some subset of vertices
X; C X such that there are no edges from X \ Xj to X; and X; C X. The simplest way to do this is
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to reduce the graph into strongly connected components. Because there is no cycle containing x, x
must be alone in its component. The strongly connected component graph is a DAG so it must
have a source, which is a component with no incoming edges. Furthermore, because x is alone in
its component there are at least two components. Therefore, taking X; to be the source component
gives that there are no edges from X \ Xj to Xj. Taking Y; = M(X;) gives that X; and Y; satisfy
the desired property that the only possible way to assign every alternative in X to be last in some
ranking in N is to assign every alternative in X; to Y, so we are done.

O

]

C Deferred Proofs for Computing e-PVC and Critical Epsilons
C.1 Computing the ¢-PVC and Critical Epsilons

In this section, we first discuss computing the e-PVC efficiently when we have access to full
information about voters and alternatives when M is finite. lanovski and Kondratev [2023] showed
that for the original definition of PVC, the problem of finding all statements in the PVC can be
reduced to a biclique problem, for which a polynomial time algorithm is known. We adapt the
proof to show that a similar reasoning applies to e-PVC.

Fix an alternative a € M. As we will use a graph reduction, we first present the definition of a
blocking graph.

Definition C.1 (Blocking graph). [lanovski and Kondratev [2023]] Given an election instance
(N, M, ) and an alternative a € M. The blocking graph of a is a bipartite graph where there are
nm left vertices, where each vertex can be identified as one of the m copies of the n voters, and
there are n(m — 1) right vertices, where each vertex can be identified as one of the n copies of
the m — 1 alternatives of M \ {a}. An edge exists from a left vertex to a right vertex if and only
if the left vertex corresponds to a voter i € N and the right vertex corresponds to an alternative
c € M\ {a} such that i prefers c to a.

We now present two statements and show that they are equivalent:

ConpiITioN C.2 (BLOCKING SET). There exists a coalition T € N and a blocking set S € M such
that |T|/n > 1 —|S|/m + € and every voter in T prefers every alternative in S to a.

ConprTION C.3 (BLOCKING GRAPH). The blocking graph of a has a biclique with mk left vertices
and nb right vertices such that mk + nb > (1 + ¢)nm.

To bridge these two statements, we use |T| = k and |S| = b. By showing that Condition C.2 is
equivalent to Condition C.3, or in words, that the existence of the blocking set is equivalent to the
existence of a sufficiently large biclique in the blocking graph, we can use a known polynomial
time algorithm for Condition C.3 to check Condition C.2, which in turn determines membership in
e—PVC.

ProrosiTiON C.4. Condition C.2 is equivalent to Condition C.3.

ProoF. (Condition C.2 = Condition C.3) Note that by multiplying the inequality in Condi-
tion C.3 by nm, we get mk + nb > (14 ¢)nm. By construction of the blocking graph, the mk vertices
on the left that correspond to the m copies each of the k voters in T are all connected to the nb
vertices on the right that correspond to the n copies each of the b alternatives in S.

(Condition C.3 <= Condition C.2) Take one left vertex x in the biclique. Say x corresponds to a
copy of voter i. Enlarge the biclique by including all left vertices that correspond to copies of voter
i. This is possible because these vertices have the same set of neighbours by construction of the
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blocking graph. Do the same for every left vertex in the biclique. Similarly, do a corresponding
enlargement for the right vertices in the biclique. Now, since there are at least mk left vertices,
of which we included all m copies of their corresponding voters, we must have at least k voters
included in the biclique. Similarly, as we have at least nb right vertices, of which we included
all n copies of their corresponding alternatives, we must have at least b alternatives included in
the biclique. Let these k voters be T and these b alternatives be S. Then note that mk + nb >
(1+e)nm = m|T|+b|S| > (1+€)nm = |T|/n > 1—|S|/m+ €. By construction of the blocking
graph, these voters in T all prefers every alternative in S to a. O

Prior work has established that Condition C.3 can be checked in polynomial time:

ProrosiTioN C.5. [Garey and Johnson [1990], pg. 196, GT24] Let G be a bipartite graph and k
an integer. We can, in polynomial time, determine whether there exists a biclique K C G with x left
vertices and y right vertices such that x +y = k.

We can thus determine whether a given alternative is in the e~PVC by using the polynomial time
algorithm in Proposition C.5 and iterating k from (1 + €)nm to 2mn — n, giving us Corollary C.6.

CoroLLARY C.6. The e—PVC can be computed in polynomial time.

C.2 A Faster Algorithm through a Correspondence with Min-Cut

With proof of existence of a polynomial time algorithm out of the way, here we proceed to present the
proof and runtime analysis for the faster algorithm that is used in our implementation (Algorithm 1).
Many ideas for this algorithm, including the max-flow correspondence, are from Ianovski and
Kondratev [2023]’s O(m max(n®, m*)) algorithm for computing the PVC. The core of the idea is
that instead of copies of the same vertex in a blocking graph, we turn these copies into weighted
edges in a flow graph where the weight is the number of copies.

C.2.1 Correctness.

Proor. Consider the flow graph after applying the min cut. The min cut could not cut the edges
between the voter nodes and the alternative nodes as the edge weights are infinite, so the only
edges possibly cut are those between the source node and the voter nodes, and those between the
alternative nodes and the sink node. Note that whenever an edge is cut, that node contributes to
the min-cut, while the remaining nodes after the min-cut forms a biclique of the blocking graph,
which is in fact maximum. To be precise, all voter nodes and alternative nodes are partitioned into
either contributing to the min-cut or the biclique. When an edge between the source and a voter
node is cut, that voter node contributes m to the min-cut. When an edge between the sink and an
alternative node is cut, that alternative node contributes n to the min-cut. The remaining nodes
after the min-cut will form a biclique in the corresponding blocking graph. To see this, note that
since the remaining voter nodes are still connected to the source, and the remaining alternative
nodes are still connected to the sink, there must not be any edges left between any remaining voter
nodes and alternative nodes. Otherwise, a single edge between a voter node and an alternative node,
which has infinite edge weight, could transmit positive flow.” Since no edges exist between the
remaining voter nodes and alternative nodes, by construction, all of these voters must approve all
of these alternatives over the given alternative, which is precisely the blocking set, or equivalently,

5The careful reader will find that the infinite edge will not transmit flow if all voter nodes are cut from the source,
or all alternative nodes are cut from the sink. Indeed this is the baseline case, which is to cut all alternative nodes
from the sink for a cut of (m — 1)n (which is less than cutting voter nodes from the source for mn), and will yield
Q=mn = Q < (1+¢€)nm Ve € [0,1] (here Q loses its meaning as the maximum biclique, but the algorithm is still
valid). By finding smaller cuts than mn, the algorithm will obtain a bigger corresponding blocking set, and raise €.
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the maximum biclique in the blocking graph. Now, the size of this biclique in the blocking graph
involves the number of copies, which is precisely the weights of the edges leftover from the min-cut.
Since the min-cut minimizes the weights cut, the constructed biclique is the biggest possible. To be
precise, Q + K = 2mn — n, where Q is the size of the biclique, K is the min-cut, and 2mn — n is the
total weight of the flow graph (excluding infinities), or equivalently, the total number of vertices in
the blocking graph. With Q obtained, the correspondence in Proposition C.4 where Q = mk + nb
allows us to check e—~PVC membership with Q < (1 + €)nm as desired. )

C.2.2 Runtime. The runtime of the algorithm is chiefly that of the construction of the flow graph,
and finding the min-cut. The flow graph construction takes O(nm) time, since the flow graph could
be fully connected. For example, consider the case where the given alternative is ranked first by
all voters. The min-cut algorithm depends on implementation. By the max-flow min-cut theorem,
we could use standard max-flow algorithms. Dinic’s algorithm [Dinitz, 1970] requires O(|V|?|E|),
which in our case where |V| = O(m + n) and |E| = O(mn), the algorithm runs in O(mn(m + n)?).

D Additional Experiment Details

We present additional details for the experiments described in Section 7.

D.1 Details on Topics

Below we present the long list of topics and their degree of polarization.

D.1.1  Long List of Topics.

e How should we increase the general public’s trust in US elections?

e What are the best policies to prevent littering in public spaces?

e What are your thoughts on the way university campus administrators should approach the
issue of Israel/Gaza demonstrations?

e What should guide laws concerning abortion?

e What balance should exist between gun safety laws and Second Amendment rights?

e What role should the government play in ensuring universal access to healthcare?

e What balance should be struck between environmental protection and economic growth in
climate policy?

e What principles should guide immigration policy and the path to citizenship?

e What limits, if any, should exist on free speech regarding hate speech?

e What responsibilities should tech companies have when collecting and monetizing user data?

e What role should artificial intelligence play in society, and how should its risks be governed?

e What reforms, if any, should replace or modify the Electoral College?

e What strategies should guide policing to address bias and use-of-force concerns while main-
taining public safety?

The Likert scores for each topic used to calculate degree of polarization can be found in Figure 4.
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Distribution of Likert Agreement Scores by Topic
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Fig. 4. Likert scores of 100 voters on 100 generated statements. Higher Likert scores indicate higher agreement.
The most polarizing topics have average Likert scores close to 5 and a wide spread. The top 3 topics by
polarization are abortion, Electoral College, and healthcare. The bottom 3 polarizing topics are environment,
policing, and public trust in elections.

D.2 Example Persona

In this section we present an example persona that we use as a voter and for generating statements.

age: 72

sex: Female

race: White alone

ancestry: Irish

household language: English only
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education: Bachelor's degree

employment status: Civilian employed, at work

class of worker: Employee of a private for-profit company or business, or of an
individual, for wages, salary, or commissions

industry category: MED-Nursing Care Facilities (Skilled Nursing Facilities)

occupation category: MED-Registered Nurses

detailed job description: Provides patient care in a nursing home

income: 135500.0

marital status: Widowed

household type: Cohabiting couple household, no children of the householder less
than 18

family presence and age: No family under 18

place of birth: Missouri/MO

citizenship: Born in the United States

veteran status: Non-Veteran

disability: None

health insurance: With health insurance coverage

big five scores: Openness: Average, Conscientiousness: Average, Extraversion:
Average, Agreeableness: Extremely High, Neuroticism: Low

defining quirks: Collects vintage medical equipment

mannerisms: Speaks with a soft, soothing voice

personal time: Spends free time gardening or reading

lifestyle: Active and community-oriented

ideology: Conservative

political views: Republican

religion: Catholic

D.3 Alternative Methods to Generate Alternatives

D.3.1 Description of Methods to Generate Alternatives. In addition to the experiment set-up pre-
sented in the body (listed below as Persona Only), we also explored three different methods of
generating statements.

e Blind: Given only the topic, the LLM is queried using verbalized sampling [Zhang et al.,
2025] to generate diverse statements.

e Persona Only: Given the topic and a persona to conditioned on, the LLM is queried to
produce a response. This is used for the experiments presented in the body.

e Deliberation Round Only: Within a rep, given 100 statements generated using Persona, the
LLM is queried using verbalized sampling [Zhang et al., 2025] to generate diverse statements
taking into account the 100 statements. This is to simulate a "deliberation round" where a user
sees statements written by others and is informed by their stances to write a new statement.

e Persona+Deliberation Round: Within a rep, first generate 100 statements using Personas.
Then conditioning on each persona, the LLM is queried to produce a single statement that
also takes into account the other 99 statements.

In Figures 5 and 6 we show the CDFs for the same experiment as in the body but using different
methods of generating alternatives. Using the Persona method gives a more interesting distribution
of alternatives and has the added benefits of being relatively simple and motivated by the theory in
Section 6.
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Fig. 5. CDF of critical epsilons across various topics (top three topics by degree of polarization). The leftmost
subplot (Persona) allows for clearer analysis than other alternative generation methods.

D.4 Building Preference Profiles

In this section, we discuss why we selected iterative ranking as our process for using an LLM to
build a preference profile.

D.4.1 The Problem of Preference Degeneracy. Preference degeneracy occurs when the preference
rankings produced by generative Al are very similar even for very different profiles. We found
that this can happen when the Al is “overwhelmed” with the task complexity of ranking too many
alternatives at once, and outputs a default ranking of the alternatives (for example, in the order

presented to the Al or its reverse).

D.4.2 Mitigating Preference Degeneracy. There are two natural ways to mitigate preference degen-

eracy:

(1) Increase model capabilities.
(2) Scaffold the task easier to make it easier for the model to complete.
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Fig. 6. CDF of critical epsilons across various topics (bottom three topics by degree of polarization). The
leftmost subplot (Persona) allows for clearer analysis than other alternative generation methods.

Item 1 has the tradeoff of budget concerns. To illustrate, order of magnitude capability jumps
between gpt-5-nano, gpt-5-mini, and gpt-5. 2 are accompanied by similar order of magnitude
price jumps. We fix the model as gpt-5-mini as a compromise between capability and price.

Another axis of increasing model capabilities is to increase reasoning effort (the length of the
model’s chain-of-thought). As the number of tokens get higher, there is also an associated cost
increase. Latency also increases as more tokens need to be generated before the tokens related to
the extractable ranking is produced. We ran a sweep on the available options for reasoning efforts
in Table 4.

There are multiple ways to go about Item 2:

Pairwise comparison. We repeatedly show the model two alternatives, and ask the model which
one to pick, until a full ranking is obtained. However, if there are n voters and m alternatives, and
an API call takes k tokens, then the number of tokens required (which is usually dominated by
input tokens for seeding techniques) is O(mnk log m). For a reasonable experiment of m = 100, n =
100, k = 500, a single preference profile will take about 33 million tokens, which is about $8.25.
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Using this option, the full experiment will cost: 6 topics X 10 repetitions X 3 voter distributions x
$8.25/profile = $1,485.

Direct Ranking. The other extreme is to simply give the model all the statements and ask it to out-
put its ranking in one API call. This is the cheapest possible approach. Unfortunately, this approach
frequently gives degenerate rankings, even for the most capable models currently available.

Top-K/Bottom-K Ranking (Iterative Ranking). Given all remaining alternatives, we ask the model
to pick its top K statements and bottom K statements. We then iterate for m/2k rounds with the
subsequent set of remaining alternatives until all alternatives haven been chosen.

Scoring. Given a set of alternatives, we ask the model to give a score to each alternative. The
benefit to this approach is that compared to producing the ranking, the model is not heavily
constrained by other alternatives it has processed or will process when processing a new alternative.
In other words, the model could ignore the scores it gave to any previous alternatives and focus on
giving a score to the current alternative. When the scoring is done, a ranking is induced, and any
duplicate scores could be randomly tie-broken. Another approach is to ask the model not to give
duplicate scores.

Because pairwise comparisons were too expensive and direct ranking produced degenerate
rankings, we focus on the remaining two methods and report results in Table 4. When we receive a
ranking, we screen it for invalid rankings (e.g. hallucinated statement IDs, or duplicate statement
IDs, etc). If it is invalid, we retry the query, up to 20 times.

Table 4. Degeneracy Mitigation Experiment Results

Mitigation Reasoning Unique Pres.Order API Avg Time
Effort Rankings Corr. Calls /Call
Top-K/Bottom-K minimal 79/100 0.029 1307 3.3s
Top-K/Bottom-K low 98/100 0.043 567 11.1s
Top-K/Bottom-K medium 100/100 0.033 ~ 500 ~ 30s
Scoring minimal 99/100 —-0.126 178 8.9s
Scoring low 100/100 —0.987 100 16.0s
Scoring medium 98/100 —0.952 ~ 100 ~ 30s

Note: “Pres. Order Corr” stands for presentation order correlations. Values near +1 indicate degenerate
rankings.

As shown in Table 4, the scoring method frequently resulted in degenerate rankings as mea-
sured by correlation with presentation order. To minimize preference degeneracy, we use the
top-K/bottom-K method for all of our experiments. We found that the low reasoning effort produce
a high number of unique rankings with minimal retries (67 compared to minimal’s 807) and have
better latency (11.1s vs medium’s 30s). The rankings produced with low reasoning also has a Spear-
man’s correlation of 0.802 with that of medium reasoning. We thus generate the preference profiles
for our full experiment using the top-K/bottom-K approach (iterative ranking) using gpt-5-mini
on low reasoning effort.

D.5 Using different methods to find common ground in real election instances

We validate the pattern in Equation (2) on real-world election instances from Preflib [Mattei and
Walsh, 2013]. We plot our results in Figure 7.



Jay Chooi, Paul Golz, Ariel D. Procaccia, Ben Schiffer, and Shirley Zhang 34

Electoral Reform Society (ERS): Critical Epsilon by Voting Rule
(Random baseline: 0.1159

Mean Critical Epsilon
o ° °
o o o
8 2 g

°
S

0.01

VETO BORDA SCHULZE IRV PLURALITY

Voting Rule

(a) Critical epsilons for Electoral Reform Society
[Plassmann and Tideman, 2014, Tideman and Plass-
mann, 2012, 2014]

Habermas: Critical Epsilon by Voting Rule
Random baseline: 0.1632

0.016

0.014

0.012

0.010

Mean Critical Epsilon
g
8

0.006

0.004

0.002

0.0001
SCHULZE IRV

Voting Rule

PLURALITY

VETO BORDA

(c) Critical epsilons for Habermas [Tessler et al., 2024]

Poland Local Elections: Critical Epsilon by Voting Rule

0.0061 (Random baseline: 0.2052)
0.005

0.004

Mean Critical Epsilon
g
H]
2

0.002

0.001

0.0004

VETO BORDA SCHULZE IRV PLURALITY

Voting Rule

(b) Critical epsilons for Poland Local Elections
[Boehmer et al., 2022]

Eurovision: Critical Epsilon by Voting Rule

Random baseline: 0.1629

0.025

0.020

0.015

Mean Critical Epsilon

0.010

0.005

0.0004

PLURALITY

VETO BORDA SCHULZE IRV

Voting Rule

(d) Critical epsilons for Eurovision [Bohmer, 2023]

Fig. 7. Comparison of critical epsilons across voting rules on various real-world datasets from PrefLib. Standard

errors depicted.

D.6

Inserting a New Statement to a Preference Profile

In this section, we discuss different methods for inserting a single alternative into an already
constructed ranking of 100 existing alternatives, which is a necessary step for evaluating generative

voting rules.

e Insert into 100: we give the model all 100 statements and ask the model to output the position

for the new statement.

e Chunked insertion: we split the 100 statements into 5 contiguous chunks. We ask the model
to output the position it will insert the new statement into for each chunk. We then tally
the positions and according to its chunk assign the appropriate ranking. For example, if
the new statement gets position 0, 3, 15, 8, 9 in the 5 chunks, then the insertion position is

0+3+15+8+9=235.

e Pairwise comparison: we ask the model to compare the new statement with every other
statement in separate API calls to obtain the insertion position.

e Iterative ranking: we rerun the algorithm for building preference profiles as in Section 7.1
and extract the resulting position of the new statement as its insertion position.

In Figure 8, we evaluate the performance of these insertion algorithms by randomly selecting
a statement from a preference profile to be (re-)inserted. We did this for 10 randomly sampled
statements and 100 voters for 1,000 insertion tests for each method. We found that the iterative
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ranking provided the best fit while still being cost-efficient, and this is the method used in our main
experiments.
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Fig. 8. Binned scatter plots comparing various statement insertion methods by plotting reconstruction position
versus original position. Error units are in the ranks, e.g. an error of -20 means that the method ranks the new

statement on average 20 positions below its original.

D.7 Detailed Results for Critical Epsilons of Voting Rules

In Tables 5 and 6 and Fig. 9, we present additional detailed statistics of the critical epsilons achieved
by various traditional voting rules.
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Table 5. P99 of critical epsilons for various voting rules across various topics

Method  Abortion Electoral College Healthcare Policing Environment Trust in Institutions

VBC 0.0161 0.0000 0.0061 0.0061 0.0000 0.0230
Borda 0.1432 0.0200 0.0100 0.0366 0.0230 0.0265
Schulze 0.1432 0.0361 0.0300 0.0522 0.0300 0.0265
IRV 0.2327 0.1244 0.0500 0.1427 0.0925 0.0265
Random 0.3101 0.1700 0.1200 0.1401 0.1801 0.0801
Plurality  0.3344 0.2088 0.1720 0.1583 0.1030 0.0990

Table 6. Percentage of critical epsilons that are less than 0.01 for various voting rules across various topics

Method  Abortion FElectoral College Healthcare Policing Environment Trust in Institutions

VBC 95.0000 100.0000 97.5000  97.5000 100.0000 91.6667
Borda 87.5000 85.0000 95.0000 97.5000 91.6667 83.3333
Schulze 75.0000 77.5000 85.0000 87.5000 80.5556 77.7778
IRV 65.0000 42.5000 75.0000 75.0000 69.4444 66.6667
Random  58.1000 71.4000 72.4000 71.7000 72.6667 73.7778
Plurality ~ 45.0000 22.5000 57.5000 62.5000 58.3333 58.3333

Critical Epsilons of Voting Methods for Topics: Policing, Environment, Trust in Institutions
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Fig. 9. CDF of critical epsilons for least controversial topics for various voting rules.

D.8 LLM-Powered Voting Rules as a Selector

In addition to testing LLM methods that generate their own statement, we also tested methods that
use LLMs to select an existing statement. We tested six different variants that vary in how much
information is given to the model.

o GPT-Select: the model is given the 20 sampled statements.

o GPT-Select+Rankings: the model is given the 20 sampled statements, and the 20x20 preference
profile.

e GPT-Select+Personas: the model is given the 20 sampled statements and the personas of the
20 voters.

e GPT-Full: the model is given the 100 statements.

o GPT-Full+Rankings: the model is given the 100 statements, and the 20 X 100 preference profile.

o GPT-Full+Personas: the model is given the 100 statements and the personas of the 20 voters.
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We present the results in Tables 7 to 9. VBC still outperforms the LLM methods. Interestingly, that
providing more information, like voter personas or the rankings, slightly degrades performance.

Table 7. Mean critical epsilons for VBC, voting rules with GPT as a selector and a random baseline across

various topics. Smallest epsilons are bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.0008 0.0000 0.0003 0.0003 0.0000 0.0014
GPT-Select 0.0038 0.0048 0.0048 0.0108 0.0103 0.0094
GPT-Sel+Rank 0.0143 0.0365 0.0163 0.0085 0.0075 0.0056
GPT-Sel+Pers 0.0125 0.0028 0.0095 0.0195 0.0100 0.0067
GPT-Full 0.0013 0.0050 0.0068 0.0055 0.0014 0.0053
GPT-Full+Rank  0.0593 0.0425 0.0055 0.0115 0.0114 0.0075
GPT-Full+Pers 0.0050 0.0023 0.0083 0.0143 0.0086 0.0039
Random 0.0609 0.0108 0.0082 0.0103 0.0108 0.0072

Table 8. P99 critical epsilons for for VBC, voting rules with GPT as a selector and a random baseline across
various topics. Smallest epsilon for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.0161 0.0000 0.0061 0.0061 0.0000 0.0230
GPT-Select 0.0505 0.0422 0.0361 0.1166 0.1190 0.0400
GPT-Sel+Rank 0.1859 0.2088 0.2149 0.0722 0.0820 0.0265
GPT-Sel+Pers 0.1954 0.0422 0.0900 0.0900 0.0865 0.0365
GPT-Full 0.0100 0.0322 0.0666 0.0805 0.0100 0.0400
GPT-Full+Rank 0.3461 0.2205 0.0461 0.0922 0.0925 0.0465
GPT-Full+Pers 0.1032 0.0261 0.1254 0.1000 0.1700 0.0465
Random Insertion  0.3161 0.0861 0.0622 0.1449 0.0300 0.0600
Random 0.3101 0.1700 0.1200 0.1401 0.1801 0.0801

Table 9. Percentage of critical epsilons that are less than 0.01 for VBC, voting rules with GPT as a selector

and a random baseline across various topics. Largest percentages for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.950 1.000 0.975 0.975 1.000 0.917
GPT-Select 0.850 0.775 0.750 0.725 0.750 0.667
GPT-Sel+Rank 0.700 0.450 0.700 0.825 0.694 0.639
GPT-Sel+Pers 0.900 0.900 0.775 0.550 0.778 0.722
GPT-Full 0.875 0.700 0.675 0.875 0.861 0.778
GPT-Full+Rank 0.500 0.350 0.775 0.700 0.611 0.583
GPT-Full+Pers 0.900 0.875 0.750 0.650 0.889 0.889
Random Insertion 0.500 0.650 0.600 0.725 0.550 0.600
Random 0.581 0.714 0.724 0.717 0.727 0.738

D.9 Details on Clustered Voters

D.9.1 Keywords Used for Classification. To cluster voters, we applied case-insensitive keyword
matching on the idealogy field in the personas using the following sets of keywords.



Conservative/Traditional.
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conservative
traditional
traditionalist
libertarian
libertarianism
fiscal conservatism

social conservatism

christian values
family values
small government

Progressive/Liberal.

progressive
liberal

social liberal
social justice
feminist

feminism
egalitarian
environmentalism
environmentalist

environmental conservation

environmental protection

social equality
workers’ rights
social welfare
humanism
humanistic
humanitarian
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D.9.2  More Results on Conservative Voters. We report additional statistics in Tables 10 and 11.

Table 10. P99 critical epsilons for for VBC, generative voting rules and random baselines across various topics
for conservative voters. Smallest epsilon for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.0161 0.0061 0.0061 0.0000 0.0061 0.0000
GPT-Blind 0.5005 0.0900 0.0461 0.1022 0.3588 0.1161
GPT-Synthesize 0.3300 0.1832 0.0944 0.2298 0.1166 0.3461
GPT-Synth+Rank. 0.3544 0.1261 0.1144 0.1022 0.2722 0.0300
GPT-Synth.+Pers. 0.2700 0.0461 0.0322 0.0200 0.0361 0.0100
Random Insertion ~ 0.3261 0.4805 0.3683 0.3600 0.1000 0.2286
Random 0.4601 0.5100 0.4200 0.4201 0.3301 0.3901

D.9.3  Results on Progressive Voters. We present the critical epsilons of generative voting rules on
progressive voters in Tables 12 to 14.
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Table 11. Percentage of critical epsilons that are less than 0.01 for VBC, generative voting rules and random
baselines across various topics for conservative voters. Largest percentages for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.900 0.975 0.975 1.000 0.975 1.000
GPT-Blind 0.000 0.225 0.750 0.425 0.100 0.275
GPT-Synthesize 0.000 0.350 0.325 0.175 0.175 0.325
GPT-Synth+Rank. 0.025 0.400 0.575 0.425 0.500 0.675
GPT-Synth.+Pers. 0.250 0.550 0.725 0.750 0.575 0.900
Random Insertion 0.425 0.100 0.575 0.400 0.525 0.750
Random 0.338 0.242 0.609 0.389 0.484 0.539

Table 12. Mean critical epsilons for for VBC, generative voting rules and random baselines across various

topics for progressive voters. Smallest epsilon for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.0000 0.0018 0.0000 0.0005 0.0000 0.0003
GPT-Blind 0.0185 0.0280 0.0113 0.0048 0.0035 0.0215
GPT-Synthesize 0.0095 0.0103 0.0058 0.0135 0.0108 0.0200
GPT-Synth+Rank.  0.0055 0.0075 0.0005 0.0025 0.0025 0.0093
GPT-Synth.+Pers. 0.0058 0.0050 0.0013 0.0033 0.0018 0.0143
Random Insertion ~ 0.2205 0.0130 0.0220 0.0532 0.0388 0.0120
Random 0.1751 0.0989 0.0428 0.0625 0.0382 0.0330

Table 13. P99 critical epsilons for for VBC, generative voting rules and random baselines across various topics
for progressive voters. Smallest epsilon for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 0.0000 0.0405 0.0000 0.0122 0.0000 0.0069
GPT-Blind 0.1622 0.1805 0.0822 0.0261 0.0283 0.0922
GPT-Synthesize 0.0844 0.0600 0.0300 0.1710 0.0927 0.1161
GPT-Synth+Rank.  0.0200 0.0461 0.0100 0.0322 0.0161 0.0661
GPT-Synth.+Pers. 0.0200 0.0300 0.0161 0.0300 0.0100 0.1083
Random Insertion  0.6444 0.1781 0.2544 0.3966 0.3149 0.0761
Random 0.4601 0.5100 0.4200 0.4201 0.3301 0.3901

Table 14. Percentage of critical epsilons that are less than 0.01 for VBC, generative voting rules and random
baselines across various topics for progressive voters. Largest percentages for each topic is bolded.

Method Abortion Electoral College Healthcare Policing Environment Trust in Institutions
VBC 1.000 0.950 1.000 0.975 1.000 0.969
GPT-Blind 0.500 0.350 0.600 0.650 0.725 0.350
GPT-Synthesize 0.600 0.500 0.575 0.625 0.525 0.350
GPT-Synth+Rank. 0.650 0.600 0.950 0.850 0.775 0.650
GPT-Synth.+Pers. 0.650 0.650 0.900 0.800 0.825 0.500
Random Insertion 0.275 0.600 0.675 0.625 0.550 0.600
Random 0.338 0.242 0.609 0.389 0.484 0.539
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D.10 Prompts

Here we present the prompt templates used to generate statements, build preference profiles, and
insert statements.

D.10.1  Generating Alternatives.

With persona, without deliberation round. These are the prompts we used for the main experi-
ments.

You are writing a statement that reflects your perspective on a topic.

You are a person with the following characteristics:
{persona}

Topic: "{topic}"

Write a bridging statement expressing your views on this topic. Your statement
should:

- Reflect your background, values, and life experiences

- Aim to find common ground or bridge different viewpoints

- Be 2-4 sentences long

NOT write in first-person

NOT explicitly reference your identity or demographics (avoid "As a [X]...")

Write only the statement:

With persona, with deliberation round.

You are writing a statement that reflects your perspective on a topic.

You are a person with the following characteristics:
{persona}

Topic: "{topic}"
Here are 100 statements from people with diverse perspectives on this topic:

{statements_list}
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Write a NEW bridging statement expressing your views on this topic. Your
statement should:

- Reflect your background, values, and life experiences

- Synthesize key themes you observed across the discussion

- Aim to find common ground or bridge different viewpoints

- Be 2-4 sentences long

- NOT write in first-person

- NOT explicitly reference your identity or demographics (avoid "As a [X]...")

- Be self-contained (do not reference "the statements above" or "other people")

Write only the statement:

Without persona, with deliberation round.

You are a helpful assistant that generates statements. Return only the statement
text, no JSON or additional commentary. For each query, please generate a
set of five possible responses, each within a separate <response> tag. Each
<response> must include a <text> and a numeric <probability>.

Please sample at random from the tails of the distribution, such that the
probability of each response is less than 9.10.

Topic: "{topic}"

Here are 100 statements from people with diverse perspectives on this topic:
{statements_list}

Write a NEW bridging statement on this topic. Your statement should:

- Synthesize key themes across the different viewpoints

- Aim to find common ground or bridge different viewpoints

- Be 2-4 sentences long
- Be self-contained (do not reference "the statements above" or "other people")

Without persona, without deliberation round.

41
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You are a helpful assistant that generates statements. Return only the statement
text, no JSON or additional commentary. For each query, please generate a
set of five possible responses, each within a separate <response> tag. Each
<response> must include a <text> and a numeric <probability>.

Please sample at random from the tails of the distribution, such that the
probability of each response is less than 0.10.

Topic: "{topic}"
Write a bridging statement on this topic. Your statement should:

- Aim to find common ground or bridge different viewpoints
- Be 2-4 sentences long

D.10.2  Building Preference Profiles. Using iterative ranking (Appendix D.4.2), the first few rounds
ask the model to pick the top and bottom K statements, and the final round asks the model to rank
the remaining statements.

Initial Rounds.

Topic: "{topic}"

Here are {n} statements (identified by 4-letter codes):
{stmt_lines}

From these {n} statements, identify:
1. Your TOP {k} most preferred (in order, most preferred first)

2. Your BOTTOM {k} least preferred (in order, least preferred last)

IMPORTANT: Do NOT simply list codes in the order they appear above.
Your preferences should reflect your persona's values and background.

Return JSON: {"top_{k}": ["codel", "code2", ...], "bottom_{k}": ["codel"
"code2", ...]1}

Where stmt_lines is formatted as:

XXXX: "Statement text here..."
YYYY: "Another statement..."
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Final Round.

Topic: "{topic}"

Here are {n} statements (identified by 4-letter codes):
{stmt_lines}

Rank ALL of these statements from most to least preferred.

IMPORTANT: Do NOT simply list codes in the order they appear above.
Your preferences should reflect your persona's values and background.

Return JSON: {"ranking": ["most_preferred", "second", ..., "least_preferred"]}

D.10.3 Winner Selection.

GPT-Select: Select from P Alternatives.

You are a helpful assistant that selects consensus statements. Return ONLY valid
JSON.

Here are {n} statements from a discussion:

{statements_text}

Which statement would be the best choice as a consensus/bridging statement?
Consider which one best represents a reasonable middle ground that could satisfy

diverse perspectives.

Return your choice as JSON: {"selected_statement_index": <index>}
Where the value is the index (0-{n-1}) of the statement you select.

Where statements_text is formatted as:

Statement @: Statement text here...

Statement 1: Another statement...

GPT-Select+Rank: Select with Rankings.
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System Prompt

You are a helpful assistant that selects consensus statements. Return ONLY valid
JSON.

Here are {n} statements from a discussion:

{statements_text}

Here are preference rankings from {n_voters} voters:

{rankings_text}

Based on both the statements and the preference rankings, which statement would
be the best choice as a consensus/bridging statement?

Return your choice as JSON: {"selected_statement_index": <index>}
Where the value is the index (0-{n-1}) of the statement you select.

Where rankings_text is formatted as (K = 20 sampled voters, full rankings over P = 20
alternatives):

Voter 1: 5>3>1>8>2>0>7>6>4>9>10>11>12>13 > 14> 15>
16 > 17 > 18 > 19

Voter 2: 3>5>8>1>2>0>7>6>4>9>10>11>12> 13> 14 > 15 >
16 > 17 > 18 > 19

Voter 20: 8 >3 >5>1>2>0>7>6>4>9>10>11>12>13>14>15>
16 > 17 > 18 > 19

DT~ l, . ele "D; onda

System mpt

You are a helpful assistant that selects consensus statements. Return ONLY valid
JSON.

Here are {n} statements from a discussion:




Jay Chooi, Paul Golz, Ariel D. Procaccia, Ben Schiffer, and Shirley Zhang

{statements_text}

Here are the {n_voters} voters who will be voting on these statements:

{personas_text}

Based on both the statements and the voter personas, which statement would be

the best choice as a consensus/bridging statement?

Return your choice as JSON: {"selected_statement_index": <index>}
Where the value is the index (0-{n-13}) of the statement you select.
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Where personas_text is formatted as (K = 20 sampled voters, filtered to 7 key fields to save

token costs):

Voter 1: age: 53

sex: Male

race: White alone

education: Master's degree

occupation: MGR-Education And Childcare Administrators
political views: Liberal

religion: Protestant

Voter 2: age: 54

sex: Male

race: White alone

education: Master's degree

occupation: ENT-News Analysts, Reporters, And Journalists
political views: Democrat

religion: Catholic

Voter 20:

GPT-Full: Select from All 100.

You are a helpful assistant that selects consensus statements.

JSON.

Return ONLY valid
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Topic: {topic}

A group of participants submitted the following {n_all} statements on this topic:

{all_text?}

Select the statement that would best serve as a consensus or bridging position -
one that:

- Engages substantively with the topic

- Could be acceptable to participants with diverse viewpoints

- Avoids extreme or polarizing framing

Return your choice as JSON: {"selected_statement_index": <index>}
Where the value is the index (0-{n_all-1}) of the statement you select.

The GPT-Full+Rank and GPT-Full+Pers variants add rankings_text and personas_text re-
spectively, using the same format as GPT-Select.

GPT-Synthesize: Generate New Statement.

You are a helpful assistant that generates consensus statements. Return ONLY
valid JSON.

Topic: {topic}
Here are some existing statements from a discussion:
{statements_text}

Generate a NEW statement that could serve as a better consensus/bridging
statement.

The statement should:

- Represent a reasonable middle ground that could satisfy diverse perspectives

- Be different from the existing statements but address the same topic

- Be clear and substantive (2-4 sentences)

Return your new statement as JSON: {"new_statement": "<your statement>"}

The GPT-Synthesize+Rank and GPT-Synthesize+Pers variants add rankings_text and personas_text
respectively as in GPT-Select.
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GPT-Blind: Blind Generation.

You are a helpful assistant that generates bridging statements. Return ONLY
valid JSON.

Given the topic: "{topic}"

Generate a bridging statement that could serve as a consensus position on this
topic.

The statement should:

- Represent a reasonable middle ground that could satisfy diverse perspectives

- Acknowledge different viewpoints while finding common ground

- Be clear and substantive (2-4 sentences)

Return your statement as JSON: {"bridging_statement": "<your statement>"}
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