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Influential deliberation platforms such as Polis and Remesh employ metrics for identifying bridging statements,
which are accepted by participants who otherwise hold opposing views. A shortcoming of these metrics,
however, is that they only account for inter-group connections in a fixed partition of the participants into
groups. We argue that better bridging metrics must account for a richer set of possible partitions. To reason
about such metrics, we develop a mathematical framework for bridging. We use it to identify two compelling
metrics, pairwise disagreement and 𝑝-mean bridging, which are supported by axiomatic characterizations.
Experiments on real data show that our metrics are stable, interpretable, and practical, even under the sparse
observations typical of deliberation platforms.
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1 Introduction
Civil discourse has been steadily eroding, marked by increasing polarization, declining trust,
and a reduced capacity for constructive disagreement. In response to these trends, researchers,
technologists, and practitioners have developed a wide range of online platforms designed to
support deliberation.

A central principle underlying many of these platforms is the identification of statements or
policy proposals that surface common ground among participants. This idea is often articulated
through the notion of bridging [Ovadya, 2022], which refers to outcomes that are endorsed by
participants who otherwise hold divergent or opposing views. Although bridging has not yet been
defined in a fully rigorous manner, this core intuition has nonetheless been operationalized in a
variety of ways.

An example of bridging in action is given by Polis, one of the best-known online deliberation
platforms. In Polis, users may submit comments about the policy question at hand; they are also
shown select comments submitted by others and vote on whether they agree or disagree with
those comments — we refer to such votes as approval votes [Brams and Fishburn, 2007]. Polis then
partitions the users into cohesive groups with similar opinions by completing the matrix of votes,
projecting it onto the Euclidean plane through PCA, and running 𝑘-means clustering. Finally, the
user-submitted comments are ranked according to a bridging metric called group-aware consensus,
defined as the product of approval rates across the different groups in the partition [Small et al.,
2021].

Another platform called Remesh provides a closely related but distinct view of bridging. Under
Remesh, the groups are typically pre-specified, e.g., Israelis and Palestinians in a peacebuilding
setting [Konya et al., 2025]. Moreover, the bridging score of a comment is the minimum approval
rate across those groups rather than the product [Konya et al., 2023].

Polis and Remesh have both been influential; for example, Polis informed national ridesharing
policy in Taiwan, while Remesh was employed by the United Nations for peacebuilding efforts in
Libya. Nevertheless, we believe their approaches to bridging can be refined. At the heart of our
criticism is the reliance on a single partition into groups, which may fail to capture important
cleavages in the population. A challenge in exploring more nuanced notions, however, is that we
currently lack a framework for reasoning about bridging. Therefore, our goal is to

... develop a formalism for bridging and, within it, single out attractive bridging metrics
that take into account many plausible group structures.

1.1 Our approach and results
A key question that immediately arises is which groups should be taken into account when designing
bridging functions that measure the degree to which comments are bridging. Our answer builds on
the idea that participants are endogenously split into two groups based on whether they approve
or disapprove a comment 𝑦. A high approval rate for a comment 𝑥 from both groups induced by
another comment 𝑦— namely approvers and disapprovers of 𝑦— is a sign that 𝑥 bridges a specific
fault line defined by 𝑦. We measure the overall bridging score of 𝑥 by averaging over all of these
cleavages, that is, all of the partitions induced by comments 𝑦 other than 𝑥 itself. We call these
measures mean split functions.

While the focus on these functions may seem like a contestable design choice, we argue that it
is a restriction that arises naturally. Specifically, in Section 3, we prove that mean split bridging
functions are characterized by three basic axioms: (election) additivity, anonymity, and homogeneity.

Using the basic structure of bridging provided by mean split functions, the next task is to
decide how to quantify bridging with respect to a given partition into two groups (induced by
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a comment 𝑦) — which we call a split evaluator. In Section 4, we observe that Polis and Remesh
implicitly advance two different views of this question. Remesh favors proportionality, meaning that
a comment is more bridging the more proportionally its approving participants are split between
the groups. By contrast, Polis endorses connectivity, in the sense that a comment is more bridging
the more pairs of approving participants belong to two different groups. Taking each of these two
perspectives helps us identify appealing and practical bridging functions.

Starting with the connectivity principle, we develop a bridging function that we call pairwise
disagreement. It has an especially intuitive interpretation: the bridging score of 𝑥 is proportional to
the sum of disagreement between pairs of participants approving 𝑥 , where disagreement is defined
as the fraction of comments approved by one member of the pair but not by the other. In Section 5,
we prove that the split evaluator associated with pairwise disagreement is the only split evaluator
that is consistent with Polis and satisfies a few other simple axioms. We further justify pairwise
disagreement by establishing an independent characterization from first principles.

In Section 6, we adopt the proportionality viewpoint. It leads to a subfamily of split evaluators —
parameterized by 𝑝 — that we call 𝑝-mean. We show that this family, too, lends itself to an axiomatic
characterization.

A practical challenge in deploying our bridging functions is that online deliberation platforms
only obtain partial votes; that is, each participant only votes on a small subset of comments. In
Section 7, we provide sample complexity bounds for estimating the aforementioned bridging
functions under partial votes, showing that it suffices to have a number of participants that is
logarithmic in the number of comments.

Finally, in Section 8, we implement our bridging functions and test them on two datasets,
the French presidential elections (where we have access to complete votes) and Polis comments
(an instance of sparse vote data). We visually demonstrate how pairwise disagreement, 𝑝-mean,
and Polis bridging functions induce different bridging rankings depending on the distribution of
approvals and disapprovals. We also show that our bridging functions are significantly more robust
to missing votes than the approach used by Polis, which relies on a single partition into groups.

1.2 Related work
We discuss loosely related work in Appendix A, and focus here on the most closely related pa-
pers: those exploring how to measure (dis)agreement in elections with ordinal preferences. Two
approaches prevail: Averaging over disagreement between pairs of voters, and averaging over
disagreement of the population on pairs of alternatives. Both approaches have methodological
similarities to our metrics in this paper. We give a high-level overview and refer to Karpov [2017]
for a more extensive discussion. We note that neither approach has yet been extended specifically
to approval preferences, to the best of our knowledge.

Disagreement between pairs of voters: Esteban and Ray [1994] measure how polarized a population
is by, among others, summing over the antagonism between any pair of individuals in the population.
They define antagonism as (a monotone function of) the individuals’ distance in a 1-dimensional
metric space. Ozkes [2013], Hashemi and Ulle [2014], and Karpov [2017] apply this polarization
measure to ordinal elections, using the Kemeny distance and Spearman’s footrule to measure the
antagonism between pairs of voters. As we explain in more detail later, in spirit, this approach
resembles our pairwise disagreement function.
Disagreement on pairs of alternatives: Alcalde-Unzu and Vorsatz [2013], Can et al. [2015], and

Hashemi and Ulle [2014] consider for any pair of alternatives (𝑥,𝑦) the two groups consisting
of the voters preferring 𝑥 to 𝑦 and of the voters preferring 𝑦 to 𝑥 . They define the agreement on
(𝑥,𝑦) as the difference in the size of the groups, normalized by the number of voters, and let the
disagreement be 1 minus the agreement. They measure how contentious an election is by averaging
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(a monotone function of) the disagreement over all pairs of alternatives (𝑥,𝑦). Navarrete et al.
[2023] extend this approach to measuring how divisive a single alternative is, still in an election
with ordinal preferences. To calculate the divisiveness of an alternative 𝑥 , they average over (a
monotone function of) the absolute difference of the ‘score’ (e.g. the normalized Borda score) of
𝑥 between the two groups given by (𝑥,𝑦) for all alternatives 𝑦 ≠ 𝑥 . Colley et al. [2023] consider
upweighting pairs (𝑥,𝑦) with high disagreement (in the definition from this paragraph); Endriss
[2025] proposes also considering splits into two groups that are not necessarily due to a pair (𝑥,𝑦).
These approaches resemble our approach of averaging a score for an alternative over group splits
induced by the election. Notably, however, Navarrete et al. [2023], Colley et al. [2023], and Endriss
[2025] measure divisiveness by averaging over a different set of group splits for every 𝑥 , while we
use the same set of group splits for all alternatives.

2 Model
An approval election R = (𝑁,𝐶) consists of a finite collection of voters 𝑁 and a finite collection of
alternatives (which can be candidates in a political election or comments in a deliberation platform)
𝐶 . Since each voter approves a subset of alternatives in approval voting, we equivalently represent
each alternative 𝑥 ∈ 𝐶 as a subset of 𝑁 consisting of the voters who approve 𝑥 ; that is, voter 𝑖 ∈ 𝑁
approves alternative 𝑥 if 𝑖 ∈ 𝑥 . We denote 𝑥 = 𝑁 \𝑥 and say that voter 𝑖 ∈ 𝑁 disapproves alternative
𝑥 if 𝑖 ∈ 𝑥 . We denote the number of voters as 𝑛 = |𝑁 | and the number of alternatives as𝑚 = |𝐶 |.

A group is a subset of voters, denoted 𝐺 ⊆ 𝑁 . Its relative size is𝑤𝐺 = |𝐺 |/𝑛. For alternative 𝑥 and
group 𝐺 , the approval fraction of 𝑥 in 𝐺 is 𝑎𝑥 |𝐺 = |𝑥∩𝐺 |

|𝐺 | . For an alternative 𝑦 ∈ 𝐶 , we define the
(partition into) groups induced by 𝑦 as G𝑦 = (𝑦,𝑦), which consists of the group of voters approving
𝑦 and the group of voters disapproving 𝑦, with relative sizes𝑤𝑦 and𝑤𝑦 , respectively.

We are interested in metrics that measure how bridging an alternative 𝑥 is in an approval election
R. A bridging function B(𝑥 ;R) maps an alternative 𝑥 ⊆ 𝑁 and an approval election R = (𝑁,𝐶) to
a bridging score in [0, 1]. Note that it is not necessary that 𝑥 ∈ 𝐶 . When 𝑁 is clear from the context
and 𝐶 consists of a single alternative 𝑦, we will use B(𝑥 ;𝑦) as a shorthand for B(𝑥 ;R).

Our results in Section 3 show that, subject to mild axioms, bridging functions are composed
of a more fundamental building block, which we term split evaluators. Given a partition G =
(𝐺ℎ)ℎ∈[𝑟 ] of the set of voters 𝑁 and an alternative 𝑥 ∈ 𝐶 , a split evaluator 𝑏 returns the score
𝑏 (𝑎𝑥 |𝐺1 , . . . , 𝑎𝑥 |𝐺𝑟 ;𝑤𝐺1 , . . . ,𝑤𝐺𝑟 ) ∈ [0, 1]; notice that it depends only on the approval fractions of 𝑥
in the groups and the relative sizes of the groups. The Polis split evaluator is

𝑏Polis (𝑎𝑥 |𝐺1 , . . . , 𝑎𝑥 |𝐺𝑟 ;𝑤𝐺1 , . . . ,𝑤𝐺𝑟 ) =
∏
ℎ∈[𝑟 ] 𝑎𝑥 |𝐺ℎ ,

and the Remesh split evaluator is

𝑏Remesh (𝑎𝑥 |𝐺1 , . . . , 𝑎𝑥 |𝐺𝑟 ;𝑤𝐺1 , . . . ,𝑤𝐺𝑟 ) = minℎ∈[𝑟 ] 𝑎𝑥 |𝐺ℎ .

Polis and Remesh use 𝑏Polis and 𝑏Remesh, respectively, for a given partition into groups G as their
bridging functions B. By contrast, we work with groups defined endogenously. Informally, we
will use a split evaluator 𝑏 to measure how bridging alternative 𝑥 is among the approvers and
disapprovers of another alternative 𝑦— using the partition G𝑦 = (𝑦,𝑦) — and then aggregate the
resulting score across all 𝑦 to calculate the overall bridging score B(𝑥 ;R). The following example
instantiates these concepts.

Example 1. Consider an approval election R = (𝑁,𝐶) with the set of voters 𝑁 = [6] and the set of
alternatives𝐶 = {𝑥,𝑦} given by 𝑥 = {1, 2, 3, 4} and 𝑦 = {1, 5}; that is, voter 1 approves both 𝑥 and 𝑦;
voters 2, 3, and 4 approve only 𝑥 ; voter 5 approves only 𝑦; and voter 6 approves neither alternative.
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Let us evaluate how well each alternative bridges the groups of approvers and disapprovers of the
other alternative.

Evaluating 𝑥 under G𝑦 = (𝑦,𝑦). Alternative𝑦 induces the groups G𝑦 = (𝑦,𝑦) = ({1, 5}, {2, 3, 4, 6})
with relative sizes𝑤𝑦 = |𝑦 |

𝑛 = 1
3 and𝑤𝑦 = |𝑦 |

𝑛 = 2
3 . The approval rates of 𝑥 in these groups are

𝑎𝑥 |𝑦 =
|𝑥 ∩ 𝑦 |
|𝑦 | =

|{1}|
2 =

1
2 , 𝑎𝑥 |𝑦 =

|𝑥 ∩ 𝑦 |
|𝑦 | =

|{2, 3, 4}|
4 =

3
4 .

Hence,

𝑏Polis (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦) =
1
2 · 3

4 =
3
8 , 𝑏Remesh (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦) = min

{
1
2 ,

3
4

}
=

1
2 .

Evaluating𝑦 under G𝑥 = (𝑥, 𝑥). Alternative 𝑥 induces the groups G𝑥 = (𝑥, 𝑥) = ({1, 2, 3, 4}, {5, 6})
with relative sizes𝑤𝑥 = |𝑥 |

𝑛 = 2
3 and𝑤𝑥 = |𝑥 |

𝑛 = 1
3 . The approval rates of 𝑦 in these groups are

𝑎𝑦 |𝑥 =
|𝑦 ∩ 𝑥 |
|𝑥 | =

|{1}|
4 =

1
4 , 𝑎𝑦 |𝑥 =

|𝑦 ∩ 𝑥 |
|𝑥 | =

|{5}|
2 =

1
2 .

Hence,

𝑏Polis (𝑎𝑦 |𝑥 , 𝑎𝑦 |𝑥 ;𝑤𝑥 ,𝑤𝑥 ) =
1
4 · 1

2 =
1
8 , 𝑏Remesh (𝑎𝑦 |𝑥 , 𝑎𝑦 |𝑥 ;𝑤𝑥 ,𝑤𝑥 ) = min

{
1
4 ,

1
2

}
=

1
4 .

3 Mean Split Bridging Functions
So far, we have imposed no structure on the bridging function B; indeed, such a function can assign
an arbitrary score to every alternative 𝑥 in every approval election R, which may not reflect how
bridging the alternative is in any intuitive sense. Let us consider a natural structure for bridging
functions.

Definition 1. The mean split bridging function B corresponding to split evaluator 𝑏 is given by

B(𝑥 ;R) = 1
𝑚

∑︁
𝑦∈𝐶

𝑏 (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦),

for all alternatives 𝑥 and approval elections R.

The key idea is to use the split evaluator𝑏 (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦) to measure how bridging alternative
𝑥 for the two groups induced by another alternative 𝑦, voters in 𝑦 who approve it and voters in
𝑦 who disapprove it. Generally speaking, 𝑥 is a bridging alternative if it has a high approval rate
from both these groups. Then, an overall bridging score for 𝑥 for the entire election R is obtained
by averaging its bridging score with respect to all alternatives 𝑦.

It turns out that mean split bridging functions from Definition 1 can be characterized using three
standard axioms from social choice theory.
A1. Election Additivity. Let R′ = (𝑁,𝐶′) and R′′ = (𝑁,𝐶′′) be any two approval election

instances with the same set of voters 𝑁 , and with |𝐶′ | = 𝑚′ and |𝐶′′ | = 𝑚′′ alternatives,
respectively. Let R = (𝑁,𝐶′ ∪𝐶′′) be the combined election with𝑚 =𝑚′ +𝑚′′ alternatives.
Then,

B(𝑥 ;R) = 𝑚′

𝑚
· B(𝑥 ;R′) + 𝑚

′′

𝑚
· B(𝑥 ;R′′).

A2. Anonymity. For a permutation 𝜋 : 𝑁 → 𝑁 , define 𝜋 ◦ 𝑦 = {𝜋 (𝑖) ∈ 𝑁 : 𝑖 ∈ 𝑦} and 𝜋 ◦
𝐶 = {𝜋 ◦ 𝑦 : 𝑦 ∈ 𝐶}. For any permutation 𝜋 : 𝑁 → 𝑁 and elections R = (𝑁,𝐶) and
R′ = (𝑁, 𝜋 ◦𝐶), it holds that B(𝑥 ;R) = B(𝑥 ;R′).
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A3. Homogeneity. Take any 𝑘 ∈ Z⩾1. For a set 𝑆 , let 𝑆 (𝑘 ) = ∪𝑎∈𝑆
{
𝑎 (1) , . . . , 𝑎 (𝑘 )

}
be the set

that contains 𝑘 duplicates of every element of 𝑆 . For an election R = (𝑁,𝐶), the election
R (𝑘 ) = (𝑁 (𝑘 ) ,

{
𝑥 (𝑘 ) : 𝑥 ∈ 𝐶}) contains 𝑘 duplicates of each voter 𝑖 ∈ 𝑁 with each duplicate

approving the same subset of alternatives as 𝑖 . Then, it holds that B(𝑥 ;R) = B(𝑥 (𝑘 ) ;R (𝑘 ) )
for each 𝑥 ∈ 𝐶 .

Election additivity (Axiom A1) resembles the linearity axiom that plays a key role in characterizing
the Shapley value [Shapley, 1953]. Anonymity (Axiom A2) and homogeneity (Axiom A3) are
extremely mild axioms in voting theory [Brandt et al., 2016], satisfied by most common voting rules.
Anonymity (Axiom A2) embodies the “one person, one vote” principle, demanding no discrimination
among voters based on their identities, while homogeneity (Axiom A3) normalizes an election by
the number of voters, making bridging scores comparable across elections with different numbers
of voters.

Theorem 1. A bridging function satisfies Axioms A1, A2 and A3 if and only if it is a mean split
bridging function.

Proof. The “if” direction follows trivially: Axiom A1 from Definition 1, and Axioms A2 and A3
from the definition of split evaluators. We therefore focus on showing that a bridging function
satisfies Axioms A1, A2 and A3 only if it is a mean split bridging function.

Applying election additivity (Axiom A1) repeatedly, we get

B(𝑥 ;R) = 1
𝑚

∑︁
𝑦∈𝐶

B(𝑥 ;𝑦). (1)

This allows decomposing an overall bridging score of an alternative 𝑥 into the average of its bridging
scores with respect to other alternatives 𝑦. It remains to show that Axioms A2 and A3 can reduce
its bridging score with respect to alternative 𝑦, B(𝑥 ;𝑦), to a split evaluator.

We next show that anonymity (Axiom A2) implies that the pairwise bridging score B(𝑥 ;𝑦)
depends only on four numbers: the number of voters who approve/disapprove 𝑥 while approv-
ing/disapproving 𝑦. That is,

B(𝑥 ;𝑦) = 𝑓 ( |𝑥 ∩ 𝑦 |, |𝑥 ∩ 𝑦 |, |𝑥 ∩ 𝑦 |, |𝑥 ∩ 𝑦 |) (2)

for some function 𝑓 : Z4
⩾0 → [0, 1] for all 𝑥,𝑦. Consider any elections R = (𝑁,𝐶) and R′ = (𝑁,𝐶′),

and alternatives 𝑥,𝑦 ∈ 𝐶 and 𝑥 ′, 𝑦′ ∈ 𝐶′. Suppose we have

𝑠 = |𝑥 ∩ 𝑦 | = |𝑥 ′ ∩ 𝑦′ |, 𝑡 = |𝑥 ∩ 𝑦 | =
��𝑥 ′ ∩ 𝑦′��, 𝑢 = |𝑥 ∩ 𝑦 | =

��𝑥 ′ ∩ 𝑦′��, 𝑣 = |𝑥 ∩ 𝑦 | =
��𝑥 ′ ∩ 𝑦′��.

We want to prove that B(𝑥 ;𝑦) = B(𝑥 ′;𝑦′). Recall that this is shorthand for B(𝑥, (𝑁, {𝑦})) =
B(𝑥 ′, (𝑁, {𝑦′})). Consider a permutation 𝜋 : 𝑁 → 𝑁 such that

𝜋 (𝑥 ∩ 𝑦) = {1, . . . , 𝑠}, 𝜋 (𝑥 ∩ 𝑦) = {𝑠 + 1, . . . , 𝑠 + 𝑡},
𝜋 (𝑥 ∩ 𝑦) = {𝑠 + 𝑡 + 1, . . . , 𝑠 + 𝑡 + 𝑢}, 𝜋 (𝑥 ∩ 𝑦) = {𝑠 + 𝑡 + 𝑢 + 1, . . . , 𝑠 + 𝑡 + 𝑢 + 𝑣 = 𝑛}.

Then, anonymity (Axiom A2) implies that

B(𝑥 ;𝑦) = B({1, . . . , 𝑠 + 𝑡}, ( [𝑛], {{1, 𝑠} ∪ {𝑠 + 𝑡 + 1, 𝑠 + 𝑡 + 𝑢}}).
An analogous argument maps B(𝑥 ′;𝑦′) to the same value, yielding B(𝑥 ;𝑦) = B(𝑥 ′, 𝑦′), as desired.

Next, we show that homogeneity (Axiom A3) implies that the dependence on the four numbers
above can be reduced to the dependence on the corresponding fractions, normalized by the total
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number of voters in the instance. That is, there exists a function 𝑔 : Δ3 ∩Q → [0, 1] (with Δ3 being
the standard 3-simplex) such that

𝑓 ( |𝑥 ∩ 𝑦 |, |𝑥 ∩ 𝑦 |, |𝑥 ∩ 𝑦 |, |𝑥 ∩ 𝑦 |) = 𝑔
( |𝑥 ∩ 𝑦 |

𝑛
,
|𝑥 ∩ 𝑦 |
𝑛

,
|𝑥 ∩ 𝑦 |
𝑛

,
|𝑥 ∩ 𝑦 |
𝑛

)
for all 𝑥,𝑦. Consider any choices of 𝑛, 𝑛′ ∈ Z⩾1, 𝑥,𝑦 ⊆ [𝑛], R = ( [𝑛], {𝑦}), 𝑥 ′, 𝑦′ ⊆ [𝑛′], and
R′ = ( [𝑛′], {𝑦′}) such that

|𝑥 ∩ 𝑦 |
𝑛

=
|𝑥 ′ ∩ 𝑦′ |
𝑛′

,
|𝑥 ∩ 𝑦 |
𝑛

=

��𝑥 ′ ∩ 𝑦′��
𝑛′

,
|𝑥 ∩ 𝑦 |
𝑛

=

��𝑥 ′ ∩ 𝑦′��
𝑛′

, and |𝑥 ∩ 𝑦 |
𝑛

=

��𝑥 ′ ∩ 𝑦′��
𝑛′

.

Then, we want to show that B(𝑥 ;R) = B(𝑥 ′;R′). We use homogeneity (Axiom A3) on R duplicated
𝑛′ times and R′ duplicated 𝑛 times. Specifically, we get

B(𝑥 ;R) = B(𝑥 (𝑛′ ) ;R (𝑛′ ) ) = 𝑓 (𝑛′ · |𝑥 ∩ 𝑦 |, 𝑛′ · |𝑥 ∩ 𝑦 |, 𝑛′ · |𝑥 ∩ 𝑦 |, 𝑛′ · |𝑥 ∩ 𝑦 |) =
= 𝑓 (𝑛 · |𝑥 ′ ∩ 𝑦′ |, 𝑛 ·

��𝑥 ′ ∩ 𝑦′��, 𝑛 ·
��𝑥 ′ ∩ 𝑦′��, 𝑛 ·

��𝑥 ′ ∩ 𝑦′��) = B((𝑥 ′) (𝑛) ; (R′) (𝑛) ) = B(𝑥 ′;R′),
where the translation from B to 𝑓 and back uses Equation (2). This yields the desired equation
B(𝑥 ;R) = B(𝑥 ′;R′).

It only remains to note that
|𝑥 ∩ 𝑦 |
𝑛

= 𝑎𝑥 |𝑦𝑤𝑦,
|𝑥 ∩ 𝑦 |
𝑛

= (1 − 𝑎𝑥 |𝑦)𝑤𝑦,
|𝑥 ∩ 𝑦 |
𝑛

= 𝑎𝑥 |𝑦𝑤𝑦, and |𝑥 ∩ 𝑦 |
𝑛

= (1 − 𝑎𝑥 |𝑦)𝑤𝑦,
so we can define our split evaluator 𝑏 as

𝑏 (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦) = 𝑔
( |𝑥 ∩ 𝑦 |

𝑛
,
|𝑥 ∩ 𝑦 |
𝑛

,
|𝑥 ∩ 𝑦 |
𝑛

,
|𝑥 ∩ 𝑦 |
𝑛

)
,

yielding B(𝑥 ;𝑦) = 𝑏 (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦) as desired. □

Complementing Theorem 1, we remark that Axioms A1, A2 and A3 used in the characterization
are independent of each other; every pair of them is satisfied by a bridging function that does not
average split evaluations.

4 Two Perspectives on Bridging: Proportionality and Connectivity
The definition and axiomatic justification of mean split bridging functions reduces the problem of
designing a bridging function B to the simpler problem of designing a split evaluator 𝑏. In particular,
in mean split bridging functions, the split evaluator 𝑏 is applied only to induced group partitions
G𝑦 . To simplify notation moving forward, we will drop the subscripts for 𝑥 and 𝐺 whenever they
are clear from the context and abbreviate the notation to 𝑏 (𝑎1, 𝑎2;𝑤), where𝑤1 =𝑤 and𝑤2 = 1−𝑤 .
For 𝑏Polis and 𝑏Remesh that do not depend on𝑤 , we sometimes write only 𝑏 (𝑎1, 𝑎2).

Let us recall our intuitive understanding of bridging: an alternative is bridging if it is endorsed
by many participants who otherwise hold very opposing views. This identifies two dimensions in
which an alternative can be bridging:
Approval. An alternative that is more approved is more bridging. In particular, if the approvers of

one alternative are a subset of the approvers another alternative, the latter is more bridging.
Pluralism. An alternative with a more pluralistic set of approvers, i.e., having more disagreement

among them on other alternatives, is more bridging. In particular, if two alternatives have
the same number of approvers, the alternative where the approvers are spread more evenly
across groups is more bridging.

While the approval criterion is rather straightforward, the pluralism criterion is not: even 𝑏Polis

and 𝑏Remesh disagree on what a more even split of the approvers into groups is.
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Example 2. Consider two groups of relative sizes 𝑤1 = 𝑤 = 0.7 and 𝑤2 = 1 − 𝑤 = 0.3, and
an alternative with a total approval rate of 𝑎 = 0.6. We know that 𝑎 = 𝑎1𝑤 + 𝑎2 (1 −𝑤), but the
split of the total approval rate 𝑎 into group-approval rates (𝑎1, 𝑎2) can vary between (0.6/0.7, 0) and
(0.3/0.7, 1).

Along this axis, 𝑏Remesh (𝑎1, 𝑎2) = min {𝑎1, 𝑎2} is maximized at 𝑎1 = 𝑎2 = 0.6; this split for 100
voters is shown in Figure 1a.

Perhaps surprisingly, this is not the split that maximizes 𝑏Polis (𝑎1, 𝑎2) = 𝑎1 · 𝑎2. For example,
𝑏Polis (0.6, 0.6) = 0.36 whereas 𝑏Polis (3/7, 1) = 3/7 ≈ 0.43 > 0.36. Indeed, this is the maximizer: 𝑏Polis

is uniquely maximized when 𝑎1𝑤1 = 𝑎2𝑤2 = 0.6/2, which yields (𝑎1, 𝑎2) = (3/7, 1). This split for 100
voters is shown in Figure 1b.

Note that Polis aims to equalize the number of approvers from the two groups, while Remesh
aims to equalize the approval rates from the two groups.

70 voters

42

30 voters

18

(a) A proportional approval split

70 voters
30

30 voters

30

(b) A connective approval split

Fig. 1. Two different ways of distributing 60 approving voters across two groups of unequal size.

Based on the example, we further classify the pluralism dimension of bridging into two distinct
paradigms:
Proportionality. An alternative with a fixed number of approvers 𝑎 is most bridging if the number

of approvers in each group is proportional to the size of the group, i.e., if the approval rates
𝑎ℎ are the same across all groups.

Connectivity. We say an alternative creates a connection between every pair of its approvers who
come from different groups. An alternative with a fixed number of approvers 𝑎 is the most
bridging if it creates the highest number of connections. That is the case if the number of
approving voters 𝑛 · 𝑎ℎ ·𝑤ℎ per group is (as) equal (as possible) across all groups.

These observations, including the “as equal as possible” comment in the last sentence, are
formalized in the following result. The simple proof of the generalization to an arbitrary number of
groups appears in Section B.1.

Theorem 2. Fixing the total approval rate 𝑎 = 𝑎1𝑤1 + 𝑎2𝑤2, 𝑏Remesh is uniquely maximized
when 𝑎1 = 𝑎2 = 𝑎, while 𝑏Polis is uniquely maximized when 𝑎1𝑤 = min {𝑤, 𝑐} and 𝑎2 (1 − 𝑤) =
min {1 −𝑤, 𝑐}, where 𝑐 is the solution to min {𝑤, 𝑐} + min {1 −𝑤, 𝑐} = 𝑎.

In the next two sections, we consider which other split evaluators 𝑏 are consistent with connec-
tivity and proportionality, and provide axiomatic derivations for certain split evaluators.

5 Supporting Connectivity: Pairwise Disagreement
As demonstrated by Example 3 and formalized in Theorem 2, an obvious choice for a connective
split evaluator is the Polis split evaluator. However, 𝑏Polis (𝑎1, 𝑎2;𝑤) = 𝑎1 · 𝑎2 makes the peculiar
choice of disregarding the group sizes, since they consider only a single split into groups, so the fixed
group sizes do not influence the ranking. But our mean split approach averages a split evaluator
across many pairs of groups, which demands that the value of the split evaluator be comparable
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across group splits with different values of𝑤 . How should the group sizes be taken into account,
then? The following example is instructive.
Example 3. Consider a population of 𝑛 = 100 voters with two groups, and an alternative that has
𝑛𝑎1𝑤 = 𝑛𝑎2 (1 −𝑤) = 30 approvers in either group. In the first scenario, the groups are of uneven
sizes with𝑤 = 0.7 (and 1−𝑤 = 0.3), so that 𝑏Polis (𝑎1, 𝑎2) = 3/7 · 1 ≈ 0.43. In the second scenario, the
groups are of the same size𝑤1 =𝑤2 = 0.5, so that 𝑏Polis (𝑎1, 𝑎2) = 3/5 · 3/5 = 0.36. The two scenarios
are shown in Figure 2.

70 voters
30

30 voters

30

50 voters

30

50 voters

30

Fig. 2. Two possible splits of the population into two groups with 30 approvers each.

Observe that the only difference between the two scenarios is how the disapproving voters are
distributed between the groups. We observe that 𝑏Polis assigns a higher score to the alternative in
the case where the disapproving voters are less pluralistic (all from the same group). This may be
argued for by extending our intuitive definition of bridging: If we want to value approvals more
highly if they come from a pluralistic group of approvers, we may also be more concerned about
disapprovals from a pluralistic group, as is the case in the (50,50) split. By contrast, a line of work
in social choice on veto power [Halpern et al., 2025, Moulin, 1981] argues that large, homogeneous
groups of dissatisfied voters are undesirable, and that consequently homogeneous groups should
have power to ‘veto’ proposals.

In the absence of a decisive resolution to the above debate, we propose to consider split evaluators
that are agnostic to the distribution of the disapproving voters.
A4. Independence of disapproving voters. For any 𝑤, 𝑎1, 𝑎2 ∈ [0, 1] and 𝑤 ′, 𝑎′1, 𝑎

′
2 ∈ [0, 1]

such that the number of approving voters in each group is the same, i.e., 𝑎1𝑤 = 𝑎′1𝑤
′ and

𝑎2 (1 −𝑤) = 𝑎′2 (1 −𝑤 ′), it holds that 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑏 (𝑎′1, 𝑎′2;𝑤 ′).
In particular, we propose the following split evaluator. Recall that a connection is created between

any two voters that are in different groups but are both approving; thus, the number of bridges
in an instance is (𝑛𝑎1𝑤1) · (𝑛𝑎2𝑤2). A natural, connective approach to measure how bridging
an alternative is, with no regard to the disapproving voters, is to simply count the number of
connections, normalized to lie in [0, 1] so it can be compared across different values of 𝑛:
Definition 2. The pairwise disagreement split evaluator is

𝑏PD (𝑎1, 𝑎2;𝑤) = 4 · 𝑎1𝑤 · 𝑎2 (1 −𝑤) = 4𝑤 (1 −𝑤) · 𝑎1𝑎2.

The respective pairwise disagreement mean split bridging function is
BPD (𝑥 ;R) = 1

𝑚

∑
𝑦∈𝐶 𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦).

Our arguments in favor of 𝑏PD are threefold: First, we show that (up to normalization), it is the
only split evaluator that resembles 𝑏Polis in two key features, while being agnostic to disapproving
voters. Then, we provide a different set of intuitive axioms with no reference to Polis and show
that they also uniquely characterize 𝑏PD (up to normalization). Finally, we introduce a natural
bridging function based on ideological distances between voters and prove that it is equivalent to
𝑏PD — thereby explaining the choice of the name pairwise disagreement. Based on this, we highlight
connections between 𝑏PD and existing notions of measuring disagreement among voters.
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5.1 Resembling Polis
We want our split evaluator to be 𝑏Polis-like by inducing the same ranking as 𝑏Polis for any fixed
group sizes𝑤, 1 −𝑤 .
A5. Polis Ranking. For any𝑤 ∈ [0, 1], 𝑏 (𝑎1, 𝑎2;𝑤) induces the same ordering over (𝑎1, 𝑎2) as

𝑏Polis (𝑎1, 𝑎2;𝑤). That is,

𝑏 (𝑎1, 𝑎2;𝑤) ⩾ 𝑏 (𝑎′1, 𝑎′2;𝑤) ⇔ 𝑏Polis (𝑎1, 𝑎2;𝑤) ⩾ 𝑏Polis (𝑎′1, 𝑎′2;𝑤).
Additionally, we enforce that 𝑏 conserves the linearity of 𝑏Polis, at least when both groups are of

equal size.
A6. Diagonal Linearity. For any 𝑎,𝑤 ∈ [0, 1] and 𝜆 ∈ [0, 1/𝛼], 𝑏 (𝜆𝑎, 𝜆𝑎;𝑤) = 𝜆2𝑏 (𝑎, 𝑎;𝑤).
This already suffices to uniquely characterize 𝑏PD up to normalization, and in this class, 𝑏PD is

the natural choice that has range [0, 1] — see the proof in Section B.2.

Theorem 3. Up to multiplication by a constant 𝑐 > 0 independent of 𝑎1, 𝑎2,𝑤 , Axioms A4, A5
and A6 uniquely characterize 𝑏PD.

5.2 An independent axiomatic characterization of 𝑏PD

Given the success of Polis, generalizing𝑏Polis is arguably already a desirable property in practice. Still,
we can further place 𝑏PD on a theoretically sound foundation by giving a different axiomatization,
independent of 𝑏Polis.

To that end, recall that one of the two factors determining how bridging an alternative is how
evenly split the approvers are among the groups. We quantify this as an axiom by demanding
that the effect of moving towards a more even group split should be proportional to the current
difference in the number of approvers in the two groups. This is a strengthened version of assuming
that 𝑏 is maximizing connectivity.
A7. Linear Pigou-Dalton Principle. The marginal effect of one additional voter in the first

group being approving and one less voter in the second group being approving should depend
linearly on the difference in approving voters across the two groups. That is,[

𝜕

𝜕𝜀
𝑏

(
𝑎1𝑤 + 𝜀
𝑤

,
𝑎2 (1 −𝑤) − 𝜀

1 −𝑤 ;𝑤
) ]

𝜀=0
∝ (𝑎2 (1 −𝑤) − 𝑎1𝑤),

with a positive proportionality constant.
We furthermore impose for normalization that an alternative that has no approval in either group
is not bridging.
A8. Single-Group Approval. For any 𝑎1, 𝑎2,𝑤 ∈ [0, 1], 𝑏 (𝑎1, 0,𝑤) = 𝑏 (0, 𝑎2,𝑤) = 0.
Together with the diagonal linearity axiom from before, Axiom A6, this again pins down 𝑏PD, as

shown in the following theorem, whose proof is relegated to Section B.3.

Theorem 4. Up to multiplication by a constant 𝑐 > 0 independent of 𝑎1, 𝑎2,𝑤 , Axioms A4, A6, A7
and A8 uniquely characterize 𝑏PD.

The reader may have noticed that so far, we have not argued for diagonal linearity (Axiom A6)
beyond it being a property of 𝑏Polis. While Axiom A6 is one natural choice to make for the behavior
of a split evaluator 𝑏 along the diagonal of 𝑎1 = 𝑎2, we point out that there is a second, equally
natural, choice.
A9. Diagonal Linearity 2. For any 𝑎,𝑤 ∈ [0, 1] and 𝜆 ∈ [0, 1/𝛼], 𝑏 (𝜆𝑎, 𝜆𝑎;𝑤) = 𝜆𝑏 (𝑎, 𝑎;𝑤).
This change to the diagonal linearity axiom leads to a slightly different split evaluator.
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Definition 3. The harmonic pairwise disagreement split evaluator is

𝑏HPD (𝑎1, 𝑎2;𝑤) = 4𝑎1𝑤𝑎2 (1 −𝑤)
𝑎1𝑤 + 𝑎2 (1 −𝑤) .

The respective harmonic pairwise disagreement mean split bridging function is
BHPD (𝑥 ;R) = 1

𝑚

∑
𝑦∈𝐶 𝑏HPD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦).

Theorem 5. Up to multiplication by a constant 𝑐 > 0 independent of 𝑎1, 𝑎2,𝑤 , Axioms A4 and A7
to A9 uniquely characterize 𝑏HPD.

We give a proof in Section B.4. Note that the term ‘harmonic’ indicates two properties: First,
𝑏HPD (𝑎1, 𝑎2;𝑤) is the harmonic mean of 𝑎1𝑤 and 𝑎2 (1 −𝑤), multiplied by 2. Second, since 𝑏HPD is
equal to 𝑏PD divided by the approval rate of the alternative, 𝑎1𝑤 + 𝑎2 (1 −𝑤), it holds that 𝑏HPD

(and BHPD) value pluralism (‘harmony’) more and approval rate less than 𝑏PD (and BPD). We revisit
harmonic pairwise disagreement in more detail, together with (normal) pairwise disagreement, in
the next subsection.

5.3 Bridging voter disagreement
To conclude the discussion of connective bridging functions, we briefly consider an approach to
bridging different from the mean split approach. We prove that BPD and BHPD are equivalent to
variants of this approach and have similarities to existing notions of voter disagreement.

Let us once again recall our intuitive definition of an alternative being bridging: It is approved
by voters that usually disagree. Thus, given a disagreement metric (𝑑𝑖, 𝑗 (R))𝑖, 𝑗∈𝑁 capturing how
divergent the views of voters 𝑖 and 𝑗 are in election R, we may want to measure the bridging score
of an alternative 𝑥 by summing over all the disagreements of the voters that approve 𝑥 , to get (with
a normalizing factor) the bridging function

B𝑑 (𝑥 ;R) = 1
𝑛2

∑︁
𝑖, 𝑗∈𝑥

𝑑𝑖, 𝑗 (R). (3)

It is not surprising that for most distance metrics, B𝑑 will not be a mean split bridging func-
tion. However, for one very natural choice, we actually recover pairwise disagreement, up to
multiplication by a normalizing constant — proof in Section B.5.

Theorem 6. Let the Hamming disagreement of two voters 𝑖, 𝑗 ∈ 𝑁 be the fraction of alternatives
for which their vote differs so that

𝑑𝑖, 𝑗 (R) = 1
𝑚

∑
𝑦∈𝐶 1 [(𝑖 ∈ 𝑦 ∧ 𝑗 ∉ 𝑦) ∨ (𝑖 ∉ 𝑦 ∧ 𝑗 ∈ 𝑦)] .

For this 𝑑 ,
B𝑑 (𝑥 ;R) = BPD (𝑥 ;R).

Using a disagreement metric 𝑑 to measure how much disagreement is present in an election as

Δ𝑑 (R) = 1
𝑛2

∑︁
𝑖, 𝑗∈𝑁

𝑑𝑖, 𝑗 (R)

has previously been used for elections R with ordinal preferences [Alcalde-Unzu and Vorsatz, 2013,
Can et al., 2015, Hashemi and Ulle, 2014], In particular, Hashemi and Ulle [2014] propose using
Spearman’s footrule as a disagreement metric for strict ordinal preferences, which reduces to our
notion of Hamming disagreement for approval preferences.

Hence, it becomes apparent that our notion of how bridging an alternative 𝑥 is based on a
disagreement metric as put forth in Equation (3) is equivalent to measuring the disagreement
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among the approvers of 𝑥 using Δ𝑑 , then upweighting the result by the approval rate of 𝑥 — see
Section B.6 for the immediate proof.
Corollary 1. Let R|𝑥 = (𝑁 ∩ 𝑥, {𝑦 ∩ 𝑥 : 𝑦 ∈ 𝐶}) be the election R = (𝑁,𝐶) restricted to the voters
approving 𝑥 . Let 𝑑 be Hamming disagreement and recall that𝑤𝑥 = |𝑥 |/𝑛 is the fraction of voters
that approve 𝑥 . It holds that

BPD =𝑤2
𝑥 · Δ𝑑 (R|𝑥 ), BHPD =𝑤𝑥 · Δ𝑑 (R|𝑥 ).

We believe that bridging functions of the structure described in this section, with other disagree-
ment metrics 𝑑𝑖, 𝑗 to measure disagreement between pairs of voters or other functions Δ to measure
disagreement among entire groups of voters, are an interesting subject for future work. We describe
some potential extensions in Section 9.

6 Supporting Proportionality: 𝑝-Mean Bridging
We now focus on bridging functions that satisfy proportionality: for a fixed number of approving
voters in the population, an alternative is most bridging if these approving voters are split across
groups evenly, in proportion to the groups sizes. Thus, supplementing the pairwise disagreement
functions proposed above, we now introduce a different family of split evaluators to better capture
this notion of proportionality, and give the axioms that uniquely characterize it.
Definition 4. The 𝑝-mean with parameter 𝑝 ∈ R ∪ {±∞}, is

𝑀𝑝 (𝑎1, 𝑎2;𝑤) =


(𝑤 (𝑎1)𝑝 + (1 −𝑤) (𝑎2)𝑝 )1/𝑝 for 𝑝 ∈ (−∞, 0) ∪ (0,∞)
𝑎𝑤1 𝑎

1−𝑤
2 for 𝑝 = 0

min {𝑎1, 𝑎2} for 𝑝 = −∞
max {𝑎1, 𝑎2} for 𝑝 =∞

.

The 𝑝-mean split evaluator, with parameter 𝑝 ∈ {−∞} ∪ (−∞, 1], is
𝑏𝑝-mean (𝑎1, 𝑎2;𝑤) =𝑀𝑝 (𝑎1, 𝑎2;𝑤).

The respective bridging function is B𝑝-mean (𝑥 ;R) = 1
𝑚

∑
𝑦∈𝐶 𝑏𝑝-mean(𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦).

The 𝑝-mean split evaluator can be interpreted as assuming that a group derives utility from
approving voters equal to the approval fraction in this group, then using a 𝑝-mean welfare function
on the groups’ ‘utilities’ as the split evaluator. The parameter 𝑝 is interpolating between the two
dimensions of bridging, approval and pluralism. At 𝑝 = 1, 𝑏1-mean = 𝑎1𝑤 + 𝑎2 (1 −𝑤) is the fraction
of approving voters — the value of the split evaluator is independent of how they are distributed
across the groups. At the other extreme, 𝑝 = −∞, where 𝑏 (−∞)-mean ≡ 𝑏Remesh, only the smaller
of the two approval ratings matters; gaining approval in the other group does not increase the
split evaluator’s value — only pluralistic approval matters. Values of 𝑝 between −∞ to 1 interpolate
between these extremes. Note that we do not consider 𝑝 > 1 as this assigns higher bridging scores
to alternatives that have a more uneven, thus less pluralistic, split of approvers.

The 𝑝-mean split evaluator is proportional, as shown in the following result, whose trivial proof
appears in Section B.7.

Theorem 7. Let 𝑎,𝑤 ∈ [0, 1]. On the line 𝑎 = 𝑎1𝑤 + 𝑎2 (1 −𝑤) for 𝑎1, 𝑎2,𝑤 ∈ [0, 1], it holds that
𝑏𝑝-mean(𝑎1, 𝑎2;𝑤) is maximized when 𝑎1 = 𝑎2 = 𝑎.

Similarly to pairwise disagreement in the previous section, we provide two axiomatic justifications
for 𝑝-mean split evaluators: First, we show that 𝑏 (−∞)-mean is only split evaluator that resembles
𝑏Remesh in two key features. Then, we provide a different set of axioms with no reference to Remesh
and show that they uniquely characterize the family of 𝑝-mean split evaluators.
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6.1 Resembling Remesh
We want our split evaluator to be 𝑏Remesh-like by inducing the same ranking as 𝑏Remesh for any
fixed group sizes𝑤, 1 −𝑤 .
A10. Remesh Ranking. For any𝑤 ∈ [0, 1], 𝑏 (𝑎1, 𝑎2;𝑤) induces the same ordering over (𝑎1, 𝑎2)

as 𝑏Remesh (𝑎1, 𝑎2;𝑤). That is,

𝑏 (𝑎1, 𝑎2;𝑤) ⩾ 𝑏 (𝑎′1, 𝑎′2;𝑤) ⇔ 𝑏Remesh (𝑎1, 𝑎2;𝑤) ⩾ 𝑏Remesh (𝑎′1, 𝑎′2;𝑤).
Additionally, in the spirit of proportionality, we enforce that whenever the approval rate is

homogeneous across groups, 𝑏 assigns this approval rate as the split evaluation score.
A11. Diagonal Idempotency. For any 𝑎,𝑤 ∈ [0, 1], 𝑏 (𝑎, 𝑎;𝑤) = 𝑎.

These axioms yield a characterization of 𝑏 (−∞)-mean, as shown in Section B.8.

Theorem 8. Axioms A10 and A11 uniquely characterize 𝑏 (−∞)-mean.

6.2 An independent axiomatic characterization of the 𝑏𝑝-mean family
The family of weighted 𝑝-means for more than two elements (that is, groups) has been shown to
be uniquely characterized by a set of intuitive axioms, including work by Cousins [2021] building
on Debreu [1959]. In a similar spirit, we give a set of axioms that uniquely identify 𝑏𝑝-mean.
A12. Additivity. There exist continuous functions 𝑔 and ℎ so that 𝑏 (𝑎1, 𝑎2;𝑤) = ℎ(𝑤𝑔(𝑎1) + (1 −

𝑤)𝑔(𝑎2)).
A13. Linearity. For any𝑎1, 𝑎2,𝑤 ∈ [0, 1] and 𝜆 ∈ [0,min {1/𝑎1, 1/𝑎2}],𝑏 (𝜆𝑎1, 𝜆𝑎2;𝑤) = 𝜆𝑏 (𝑎1, 𝑎2;𝑤).
A14. Weak Proportionality. For a fixed total approval share 𝑎 = 𝑎1𝑤 + 𝑎2 (1 −𝑤), it holds that

𝑏 (𝑎1, 𝑎2;𝑤) is maximized when 𝑎1 = 𝑎2.
We show (in Section B.9) that up to multiplication by a positive constant, 𝑏𝑝-mean is the class of

all split evaluators that are additive, linear, and (weakly) proportional.

Theorem 9. Up to multiplication by a constant 𝑐 ⩾ 0, Axioms A12 to A14 uniquely characterize
𝑏𝑝-mean.

7 Estimating Bridging Functions With Partial Votes
Now we address the practicality of deploying our bridging functions on online platforms such as
Polis and Remesh by considering the constraint of partially observed preferences. On digital democ-
racy platforms, comments are shown to voters through a comment routing algorithm (described in
Section 8), so not all voters will vote on every comment, and voters can choose to skip a comment if
shown. Thus, the vote matrix 𝐴 from which we compute the bridging scores — where rows denote
voters, columns denote comments, and a 1 or -1 in 𝐴𝑖 𝑗 means voter 𝑖 approved/disapproved com-
ment 𝑗 — will often be sparse. Polis handles this through simple matrix completion by imputing the
column-wise mean for unknown votes. We, however, work with partial votes and derive consistent
estimators for the pairwise disagreement and 𝑝-mean bridging scores.

For simplicity, we assume each voter 𝑖 independently votes on comment 𝑥 with probability
𝑞𝑥 , which depends on the comment but not the voter. For each voter 𝑖 and comment 𝑥 , define
𝑉(𝑖,𝑥 ) ∼ Ber(𝑞𝑥 ) to track whether 𝑖 votes on 𝑥 , where the 𝑉(𝑖,𝑥 ) are mutually independent for all
𝑖 ∈ 𝑁 and 𝑥 ∈ 𝐶 by assumption. Using these partial votes from all voters, our goal is to estimate
bridging functions applied to the full election.

To estimate𝑤𝑥 , we let 𝑠𝑥 , 𝑠𝑥 denote the counts of approvers, disapprovers of comment 𝑥 , and
to estimate 𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 for comment pairs 𝑥,𝑦 with 𝑥 ≠ 𝑦, we additionally define 𝑠 (𝑎,𝑏 ) for (𝑎, 𝑏) ∈
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{𝑥, 𝑥} × {𝑦,𝑦}:
𝑠𝑥 ∼

∑︁
𝑖∈𝑥

𝑉(𝑖,𝑥 ) , 𝑠𝑥 ∼
∑︁
𝑖∈𝑥

𝑉(𝑖,𝑥 ) , 𝑠 (𝑎,𝑏 ) ∼
∑︁
𝑖∈𝑎∩𝑏

𝑉(𝑖,𝑥 ) .

We can use these random variables to define empirical proxies of the inputs to the bridging functions:

𝑤𝑦 :=
𝑠𝑦

𝑠𝑦 + 𝑠𝑦
, 𝑎𝑥 |𝑦 :=

𝑠 (𝑥,𝑦)
𝑠 (𝑥,𝑦) + 𝑠 (𝑥,𝑦)

, 𝑎𝑥 |𝑦 :=
𝑠𝑥,𝑦

𝑠 (𝑥,𝑦) + 𝑠 (𝑥,𝑦)
.1

To estimate bridging functions given incomplete information about voters’ preferences, a natural
approach is to substitute the inputs𝑤𝑦, 𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 with their empirical proxies. In fact, this approach
is sufficient for bridging estimators with good asymptotic behavior. We will show that naive
estimators for BPD (𝑥 ;R) and B𝑝−mean(𝑥 ;R), which simply replace input quantities with their
empirical estimates, converge to the true quantities with high probability for large values of 𝑛.
Specifically, we consider the following estimators for BPD and B𝑝−mean, respectively:

B̂PD (𝑥 ;R) := 1
𝑚

∑︁
𝑦∈𝐶

𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) = 4
𝑚

∑︁
𝑦∈𝐶

𝑎𝑥 |𝑦𝑎𝑥 |𝑦𝑤𝑦 (1 −𝑤𝑦), (4)

B̂𝑝-mean(𝑥 ;R) := 1
𝑚

∑︁
𝑦∈𝐶

𝑏𝑝-mean (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) = 1
𝑚

∑︁
𝑦∈𝐶

(
𝑤𝑦 (𝑎𝑥 |𝑦)𝑝 + (1 −𝑤𝑦) (𝑎𝑥 |𝑦)𝑝

) 1
𝑝

. (5)

The latter estimator is for the case 𝑝 ∈ (−∞, 0) ∪ (0, 1]. Conditional on seeing approvals and
disapprovals sufficiently often, we can bound the absolute difference between the estimators and
true statistics. The following conditions make the problem of estimation tractable:
C1. There exists a 𝑞min > 0 such that 𝑞min := min𝑥∈𝐶 𝑞𝑥 and a 𝑤min ∈ (0, 1

2 ] such that for all
𝑥 ∈ 𝐶 ,𝑤𝑥 ∈ [𝑤min, 1 −𝑤min].2

C2. There exists 𝑎min ∈ (0, 1] such that for all 𝑥,𝑦 ∈ 𝐶 with 𝑥 ≠ 𝑦, 𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ⩾ 𝑎min .

C1 is quite mild and requires only that comments are shown to voters often enough and that
approval is not close to 0 or 1; if a comment has approval 𝑜 (𝑛), we can safely disregard it, and if
a comment has approval 1 − 𝑜 (𝑛), we can say it is most bridging. While C2 is stronger, it is used
only for the estimation bound of B𝑝−mean when 𝑝 ∈ (−∞, 0) ∪ (0, 1], and without it, estimation of
BPD and B𝑝−mean for 𝑝 ∈ {−∞, 0} is still possible. The following theorem formally states how the
assumptions are used to derive sample complexity bounds.

Theorem 10 (Estimator consistency for partial votes setting.). Fix instance R, 𝑥 ∈ 𝐶 , and
some 𝜖, 𝛿 ∈ (0, 1).

(i) Under condition C1, let 𝛾 := min{𝑞min,𝑤min}. Then, taking a particular3

𝑛 ∈ 𝑂
( ln(𝑚𝛿 )
𝜖2𝛾3

)
(6)

suffices to ensure the following:

P[|B̂PD (𝑥 ;R) − BPD (𝑥 ;R)| ⩾ 𝜖] ⩽ 𝛿. (7)

1For the purpose of theoretical guarantees, each of these empirical estimates may take arbitrary value when its denominator
is 0 since our high-probability bounds condition on a positive denominator for each term.
2Importantly, this imposes an upper bound on approval so that both “approvers” and “disapprovers” of 𝑥 are Ω (𝑛) .
3Setting 𝑛 =

9000 ln(𝑚
𝛿
)

𝜖2𝛾3 is sufficient.
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(ii) Fix some 𝑝 ∈ (−∞, 0) ∪ (0, 1]. Under conditions C1 and C2, let 𝜂 := min{𝑎min/2, 𝑞min,𝑤min}.
Then, taking a particular4

𝑛 ∈ 𝑂
(

ln(𝑚𝛿 )𝜂2𝑝−7 (𝑝2 + 1)
𝜖2𝑝2

)
(8)

suffices to ensure the following:

P[|B̂𝑝−mean (𝑥 ;R) − B𝑝−mean (𝑥 ;R)| ⩾ 𝜖] ⩽ 𝛿. (9)

The theorem’s proof is technical but mostly employs standard concentration inequalities; it is
relegated to Section B.10. We further provide tighter special cases for 𝑝 = −∞ and 𝑝 = 0.

While one might worry that these worst-case bounds require values of 𝑛 that are infeasible
for online platforms like Polis at their current scale, they give a qualitative dependence on the
parameters. The experiments in the next section show that these estimators work well in practice.

8 Experiments
Sections 5 and 6 develop two bridging metrics, pairwise disagreement (PD) and the 𝑝-mean,
with axiomatic characterizations. A natural question is how theoretical differences translate to
applications with real data.

We compare PD and the 𝑝-mean against the group-aware consensus metric (GAC) deployed
by Polis [Small et al., 2021]. We do not compare with the Remesh bridging metric [Konya et al.,
2025] for two reasons. First, Remesh requires pre-specified demographic groups unavailable in our
datasets. Second, the Remesh metric 𝑏Remesh = min{𝑎1, 𝑎2} coincides with the 𝑝 → −∞ limit of the
𝑝-mean family, which we already include in our experiments, albeit applied to different groups.

We aim to answer three questions. First, on fully observed approval elections, do PD, GAC, and
𝑝-mean favor qualitatively different candidates? Second, how stable are the rankings returned by
each metric as observations become sparser? Third, on naturally sparse approval data from Polis
conversations, what kind of comments does each metric find most bridging?

8.1 Data
Our primary analysis focuses on two datasets which allow for evaluation under complete and natu-
rally sparse approval data. We include three additional complete approval datasets in Section C.4.

French approval elections (complete data). We use two approval voting datasets collected during
the French presidential elections in 2002 and 2007 from PrefLib [Mattei and Walsh, 2013]. The 2002
dataset has 2597 voters with 16 candidates, and the 2007 data has 2836 voters with 12 candidates.

Polis conversation (naturally sparse data). We also use approval data from the Seattle $15 minimum
wage Polis discussion, sourced from PrefLib [Mattei and Walsh, 2013]. This dataset has 54 comments,
339 voters, and an observation rate 𝑞, defined as the fraction of possible alternative–voter approval
entries that are observed, of 15.7%.

8.2 Mean Split Bridging Function Computation
We briefly describe how each function handles missing data. On complete data, PD and 𝑝-mean
reduce to the formulas given in Section 5 and 6 respectively.

4Setting 𝑛 =
288 ln(𝑚

𝛿
)𝜂2𝑝−7 (𝑝2+1)
𝜖2𝑝2 is sufficient.
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−3 −2 −1 0 1 2 3 4 5
PC1 Score

Chevènement 30% 4 1 1

Jospin 40% 1 3 2

Bayrou 33% 3 2 3

Chirac 36% 2 5 4

Mamère 29% 5 6 5

Candidate Approver Distribution Appr. PD Polis ?-mean
French Election 2002

−2 −1 0 1 2 3 4 5
PC1 Score

Bayrou 47% 1 11 1

Royal 41% 2 2 2

Laguiller 43% 3 1 3

Besancenot 22% 4 3 4

Voynet 16% 5 4 5

Candidate Approver Distribution Appr. PD Polis ?-mean
French Election 2007

Fig. 3. Top 5 candidates by 𝑝-mean bridging score in the French presidential elections of 2002 (left) and 2007
(right). Ridgeline plots show the distribution of approving voters along the first principal component (PC1).
Columns report overall approval rate and each candidate’s rank under PD, Polis GAC, and 𝑝-mean.

Pairwise Disagreement and 𝑝-Mean. To calculate the bridging scores for these functions we first
estimate𝑤𝑦, 𝑎𝑥 |𝑦 and 𝑎𝑥 |𝑦 from the data. We then use Equation (4) and Equation (5) to estimate PD
and 𝑝-mean respectively. Unless otherwise stated, all experiments use 𝑝 = −∞ in 𝑝-mean.

Group-Aware Consensus. GAC follows the Polis pipeline [Small et al., 2021]: after filtering out
voters with fewer than min{7,𝑚} responses and imputing missing entries with per-comment
mean approval, we compute a 2D PCA embedding of the vote matrix and cluster voters via 𝑘-
means, selecting 𝑘 ∈ {2, 3, 4, 5} by silhouette score. The GAC score of item 𝑥 is the product of
Laplace-smoothed per-cluster approval rates, GAC(𝑥) = ∏𝐾

𝑔=1
𝐴𝑔 (𝑥 )+1
𝑅𝑔 (𝑥 )+2 , where 𝐴𝑔 (𝑥) and 𝑅𝑔 (𝑥) are

the observed approval count and total response count in cluster 𝑔. One difference from the Polis
implementation is that Polis updates the clustering incrementally as additional voters are observed,
using the previous clustering to inform the next update, whereas we perform a one-shot clustering
on the final dataset. Section C.1 validates our GAC implementation against official Polis scores.

8.3 Experiment 1: AQualitative Comparison on Fully Observed Elections
On complete data, all three metrics can be computed without estimation error, so any ranking
differences reflect genuine disagreements about what constitutes bridging.

Setup. For each French election dataset, we compute all three metrics and display the top five
candidates by 𝑝-mean with each candidate’s overall approval rate and rank under each metric. To
visualize each candidate’s support distribution, we project voters onto the first principal component
(PC1) of the centered vote matrix and plot a kernel density estimate of each candidate’s approvers
along this axis. We also plot each candidate in approval-heterogeneity space (Figure 4), where the
𝑦-axis measures approval and the 𝑥-axis measures mean Hamming distance among approvers.

Results. The results appear in Figures 3 and 4. In both elections, the candidate ranked first by
𝑝-mean has an approver distribution that spans the PC1 axis evenly, appearing visually bridging. In
the 2002 election, no method selects a Pareto-dominated candidate in the approval-heterogeneity
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Fig. 4. Candidates plotted in approval-heterogeneity space for the 2002 (left) and 2007 (right) French presi-
dential elections. Heterogeneity is measured as the mean Hamming distance among a candidate’s approvers.
The candidate with the highest score is highlighted for each bridging function.

plot. PD selects Jospin, who has higher approval but lower approver heterogeneity, while 𝑝-mean
and GAC select Chèvenement, who has lower approval but whose approvers are more diverse. In
the 2007 election, the candidate selected by PD and 𝑝-mean (Bayrou, a centrist) Pareto-dominates
the candidate selected by GAC (Laguiller, a candidate with concentrated support). GAC ranks
Bayrou 11th out of 12, highlighting the sensitivity of Polis GAC to the choice of partition: despite
Bayrou’s broad support, the particular clustering induces a low GAC score.

8.4 Experiment 2: Robustness Under Missing Data
In practice, Polis conversations are sparse: most voters see only a subset of comments. On the
complete French election data, we test how stable each metric’s ranking is as the observation
rate decreases under two missingness models. For each election and metric, we treat the ranking
induced by the complete matrix as ground truth and report Kendall’s 𝜏 between this and the ranking
estimated from a partially observed matrix. We use the estimation procedure described in Section 8.2.
We run 20 independent trials per condition across observation rates 𝑞 ∈ {0.05, 0.10, . . . , 0.95}.

Missing completely at random (MCAR). We retain each matrix entry independently with proba-
bility 𝑞 and compute all three metrics on the masked matrix.

Simulated Polis routing. Polis uses a routing algorithm to prioritize comments. We simulate this
process to evaluate our metrics under non-uniform missingness. Each comment 𝑐 receives a priority
score following the production formula

𝜋 (𝑐) =
(
(1 − 𝑝 (𝑐)) (1 + 𝐸 (𝑐)) 𝑎(𝑐) · (

1 + 8 · 2−𝑆 (𝑐 )/5) )2
,

where 𝑎(𝑐) and 𝑝 (𝑐) are approval and pass rates, and 𝑆 (𝑐) is the number of responses collected so
far. 𝐸 (𝑐) measures the distance from the center of the embedding to a theoretical participant who
disapproved5 comment 𝑐 (and voted on no other comments), scaled to account for the sparsity of
that single vote. For each voter, comments are sampled without replacement with probabilities
proportional to 𝜋 (𝑐).
Results. Figure 5 shows the results. Under MCAR, PD and 𝑝-mean both maintain high rank

correlation with the ground truth, while GAC degrades noticeably when the observation rate is
5The Polis white paper [Small et al., 2021] states they create a hypothetical voter that agrees with comment 𝑐 while the
Polis source code creates a hypothetical voter that disagrees. We follow the source code in our implementation.
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Fig. 5. Kendall’s 𝜏 between estimated and ground-truth rankings as a function of observation rate. Lines
show means over 20 trials. Shaded bands show ±1 standard deviation.

less than 0.5. Under simulated Polis routing, the gap widens: PD and 𝑝-mean remain stable, but
GAC shows negative correlation at low observation rates in both elections. A likely explanation is
that GAC concentrates its sensitivity into a single clustering step, which becomes unreliable at
low observation rates. It is worth noting that the median observation rate across the Polis datasets
on PrefLib is 15.5%, squarely in the range where GAC degrades in this experiment. In addition to
the analysis of the full ranking here, we report top-1 accuracy in Section C.2. We also vary 𝑝 in
Section C.3 and confirm that robustness is largely insensitive to the choice of 𝑝 .

8.5 Experiment 3: Polis Case Study
We apply all metrics to a Polis conversation from the Seattle $15 minimum wage discussion.
Because missingness here is endogenous to both the routing algorithm and participants’ choices,
this experiment is descriptive. PCA requires a complete vote matrix, so we instead embed voters
into one dimension using metric multidimensional scaling (MDS) on a voter-voter dissimilarity
matrix 𝛿 (𝑖, 𝑗), defined as the fraction of co-observed items on which voters 𝑖 and 𝑗 disagree.

Results. The results are shown in Figure 6. Arguably, 𝑝-mean picks the comment that appears the
most bridging from the perspective of the approver distribution. Further, the comment chosen by
𝑝-mean Pareto-dominates the comment chosen by the Polis GAC in approval-heterogeneity space.

9 Discussion
At a conceptual level, our approach treats bridging as a property of an alternative’s approver
structure: an alternative is considered more bridging when it is approved by voters who otherwise
tend to disagree. This interpretation is deliberately agnostic to semantic content and instead focuses
on observable approval behavior. As a result, our metrics are well suited for platforms like Polis or
Remesh, where approval votes are the primary signal available. At the same time, this abstraction
means that our notion of bridging does not attempt to distinguish between different sources
of disagreement — such as ideological distance, issue salience, or strategic voting — and instead
collapses them into a single disagreement signal induced by the vote matrix.

Our approach hinges on the alternatives being a meaningful proxy for inferring opinion splits
in the population. We believe that this generally holds true, especially in online deliberation
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Fig. 6. (Left) Top-ranked comment under each metric for the Seattle $15 minimum wage Polis conversa-
tion. Each row shows the approver distribution along the MDS axis and approval rate. (Right) Approval-
heterogeneity plot showing the comment ranked highest by each function.

platforms such as Polis: More contentious issues will be the subject of more comments while
off-topic comments, leading to irrelevant opinion splits, will be filtered out with moderation.
Automating this process is a natural direction for future work. We suggest a mean-split approach
where the split evaluators for the splits induced by the comments are not evenly weighted. Through
human moderation or LLM support, one may rate the substantiality of a comment, to downweight
comments for being platitudes or off-topic and upweight comments with clear and relevant ideas.

The metrics we propose measure how much an alternative bridges disagreement. Faliszewski et al.
[2023] point out that disagreement in a population can stem both from diversity — a large variety of
distinct opinions — or polarization/fragmentation — a small number of groups with homogeneous
opinions within but substantial disagreement across groups. Our mean-split approach is not suited
to differentiate between these two settings, since it only considers pairs of alternatives. One may
account for this by changing the pairwise voter disagreement metric𝑑𝑖, 𝑗 or the election disagreement
metric Δ, as discussed in Section 5.3, to place higher value on polarization or diversity. For example,
using Euclidean distance (or any 𝐿𝑝 norm for 𝑝 > 1) instead of the Hamming distance will value
alternatives that bridge a polarized set of voters more highly, while using a 𝐿𝑝 ‘norm’ for 𝑝 < 1
(where it is no longer a norm) will emphasize diversity.

Throughout our paper we treat the two induced groups in the split due to some comment,
the approvers and the disapprovers, as identical. Switching the approvers and disapprovers of
an alternative will not change the bridging score of any other alternative. In the case of online
deliberation, this is rooted in the observation that a rational voter would flip their vote if a comment
was changed to its logical negation. However, in other use cases such as elections (or even in online
deliberation with irrational voters), one may argue that if two voters approve the same candidate,
this makes them more similar than if they disapprove the candidate. To account for this, one may
consider using the Jaccard distance instead of the Hamming distance as the distance metric 𝑑𝑖, 𝑗 .

While there is much room to continue refining our framework for bridging, we believe it sets
the stage for a more nuanced and rigorous understanding of the concept. Given the destructive
role polarization plays in shaping discourse, developing ways to identify bridging outcomes is not
just a technical challenge but a foundational one for democratic deliberation.
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A Additional Related Work
Faliszewski et al. [2023] point out that disagreement in the voting body can come from multiple
sources. They argue that an election is polarized (or fragmented) if there are two (or more) groups
where voters within a group hold very similar viewpoints but voters between groups disagree
heavily; an example being half the voters having one preference ranking and the other half having
its inverse. They argue that an election is diverse if there are many different viewpoints present;
an example being every possible preference ranking being equally likely in the population. They
present metrics to measure whether an election is polarized or diverse.

Dong et al. [2025] explore a related problem of selecting interlacing committees based on approval
votes. Their Pairs objective counts the number of pairs of voters who approve a common alternative
in the committee, and their Cons objective counts the number of pairs of voters that are connected
by a sequence of alternatives in the committee. In our case of a singleton “committee,” both objectives
reduce to

(𝑛𝑎
2
)
, where 𝑛𝑎 is the number of voters approving alternative 𝑎.

Halpern et al. [2025] propose an adaptation of the proportional veto core [Moulin, 1981] to approval
votes. The key idea behind their notion is that the more “flexible” voters are (the more alternatives
they approve), the more power they have. It can be argued that this notion provides another formal
way to reason about bridging, and indeed it was the starting point for our work. However, we found
that the formulation of Halpern et al. [2025] is incompatible with online deliberation platforms.
For example, in the reasonable case where the set of alternatives is considered to be closed under
negation, all (rational) voters are equally flexible regardless of their preferences.

There are several approaches to bridging that strongly rely on machine learning. One example
is the Community Notes system developed by X [Wojcik et al., 2022]. Under this system, users
propose notes providing context or corrections on posts; other contributors then rate these notes on
helpfulness. The system uses a machine-learning model based on matrix factorization to infer both
note quality and rater viewpoints from historical rating patterns. A note is identified as bridging
when it is rated as helpful by contributors whose inferred viewpoints are meaningfully different
from one another, and only notes that achieve this broad, cross-group helpfulness threshold are
shown publicly. Another recent example is the Habermas Machine [Tessler et al., 2024], a system
that uses large language models and voting to generate new statements that find common ground
among participants. The latter uses a voting rule (specifically, the Schulze method) to select the
most bridging statement.

B Missing Proofs
B.1 Proof of Theorem 2
To establish the claim about Remesh, note that if 𝑎1 = 𝑎2 = 𝑎, 𝑏Remesh (𝑎1, 𝑎2) = 𝑎, but if this is
not the case, then due to 𝑎1𝑤 + 𝑎2 (1 − 𝑤) = 𝑎, we have either 𝑎1 < 𝑎 or 𝑎2 < 𝑎, which yields
𝑏Remesh (𝑎1, 𝑎2) < 𝑎.

To establish the claim about Polis, observe that since 𝑤 is fixed, maximizing 𝑏Polis = 𝑎1 · 𝑎2 is
equivalent to maximizing (𝑎1𝑤 · 𝑎2 (1−𝑤))1/2. Thus, we are maximizing the geometric mean of two
terms, 𝑎1𝑤 and 𝑎2 (1 −𝑤), with individual upper bound (𝑤 and 1 −𝑤 , respectively) and a fixed sum
(𝑎), which has a well-known closed form obtained by water-filling (which can be easily verified via
the KKT conditions). Specifically, we find a unique value 𝑐 such that both terms 𝑎1𝑤 and 𝑎2 (1 −𝑤)
are made equal to 𝑐 , except when their upper bounds are less than 𝑐 (so, we set 𝑎1𝑤 =𝑤 if𝑤 < 𝑐

and 𝑎2 (1 −𝑤) = 1 −𝑤 if 1 −𝑤 < 𝑐). □
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B.2 Proof of Theorem 3
First, we’ll show that we can write 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑔0 (𝑎1𝑎2;𝑤) for some function 𝑔0. Assume towards
a contradiction that for some 𝑤 ∈ [0, 1] there exist 𝑎1, 𝑎2, 𝑎

′
1, 𝑎

′
2 ∈ [0, 1] so that 𝑎1𝑎2 = 𝑎′1𝑎

′
2

but 𝑏 (𝑎1, 𝑎2;𝑤) ≠ 𝑏 (𝑎1, 𝑎2;𝑤). We know that in this case 𝑏Polis (𝑎1, 𝑎2;𝑤) = 𝑎1𝑎2 = 𝑎′1𝑎
′
2 =

𝑏Polis (𝑎′1, 𝑎′2;𝑤), so Axiom A5 implies that 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑏 (𝑎′1, 𝑎′2;𝑤); the desired contradiction.
By Axiom A5 it furthermore follows that 𝑔0 is strictly monotonically increasing in 𝑎1𝑎2.

By Axiom A6, 𝑔0 (𝑎1𝑎2;𝑤) = 𝑏 (√𝑎1𝑎2,
√
𝑎1𝑎2;𝑤) = 𝑎1𝑎2𝑏 (1, 1;𝑤) = 𝑎1𝑎2𝑔0 (1;𝑤), so we can write

𝑏 (𝑎1, 𝑎2;𝑤) = 𝑔(𝑤)𝑎1𝑎2 for 𝑔(𝑤) = 𝑔0 (1;𝑤). Axiom A4 implies that for fixed 𝑠1, 𝑠2, the function
𝑏 ( 𝑠1

𝑤 ,
𝑠2

1−𝑤 ,𝑤) is constant for all 𝑤 with 𝑠1 ⩽ 𝑤 ⩽ 1 − 𝑠2. Since 𝑏 ( 𝑠1
𝑤 ,

𝑠2
1−𝑤 ,𝑤) = 𝑔 (𝑤 )

𝑤 (1−𝑤 ) 𝑠1𝑠2, this
implies that 𝑔(𝑤) = 𝑐 ·𝑤 (1 −𝑤) for all 0 < 𝑠1 ⩽ 𝑤 ⩽ 1 − 𝑠2 < 1, thus for all𝑤 ∈ (0, 1). For𝑤 = 0,
note that by Axiom A4, 𝑏 (𝑎1, 𝑎2; 0) = 𝑏 (𝑎′1, 𝑎2; 0) for any 𝑎1, 𝑎

′
1, 𝑎2 ∈ [0, 1]. In particular, we get

𝑔(0)𝑎1𝑎2 = 𝑏 (𝑎1, 𝑎2; 0) = 𝑏 (𝑎′1, 𝑎2; 0) = 𝑔(0)𝑎′1𝑎2, which for any for any 𝑎2 > 0 and 𝑎1 ≠ 𝑎′1 implies
that 𝑔(0) = 0. Analogously, for 𝑤 = 1, note that by Axiom A4, 𝑏 (𝑎1, 𝑎2; 1) = 𝑏 (𝑎1, 𝑎

′
2; 1) for any

𝑎1, 𝑎2, 𝑎
′
2 ∈ [0, 1]. In particular, we get 𝑔(1)𝑎1𝑎2 = 𝑏 (𝑎1, 𝑎2; 1) = 𝑏 (𝑎1, 𝑎

′
2; 1) = 𝑔(1)𝑎1𝑎

′
2, which for

any for any 𝑎1 > 0 and 𝑎2 ≠ 𝑎′2 implies that 𝑔(1) = 0. Thus, 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑐𝑤 (1 −𝑤)𝑎1𝑎2 for some
constant 𝑐 ; Axiom A5 implies 𝑐 > 0.

It follows that no function other than 𝑐 · 𝑏PD for 𝑐 > 0 satisfies all three axioms. Verifying that all
such functions indeed satisfies the three axioms is trivial. □

B.3 Proof of Theorem 4
First, we will show that we can write 𝑏 (𝑎1, 𝑎2;𝑤) = ℎ(𝑎1𝑤, 𝑎2 (1 −𝑤)) for some function ℎ. Assume
that there exist 𝑎1, 𝑎2,𝑤, 𝑎

′
1, 𝑎

′
2,𝑤

′ ∈ [0, 1] so that 𝑎1𝑤 = 𝑎′1𝑤
′ and 𝑎2 (1 − 𝑤) = 𝑎′2 (1 − 𝑤 ′) but

𝑏 (𝑎1, 𝑎2;𝑤) ≠ 𝑏 (𝑎1, 𝑎2;𝑤). This is a contradiction to Axiom A4, the claim follows.
Now, consider a fixed 𝑎 = 𝑎1𝑤 + 𝑎2 (1 −𝑤) ∈ [0, 1] and define 𝑔𝑎 (𝑥) = ℎ(𝑥, 𝑎 − 𝑥). We get that

𝑑
𝑑𝑥𝑔𝑎 (𝑥) = 𝑑

𝑑𝑥ℎ(𝑥, 𝑎 − 𝑥) =
[
𝑑
𝑑𝜀𝑏 ( 𝑎1𝑤+𝜀

𝑤 ,
𝑎2 (1−𝑤 )−𝜀

1−𝑤 ;𝑤)
]
𝜀=0

, so Axiom A7 implies that 𝑑
𝑑𝑥𝑔𝑎 (𝑥) =

𝑐𝑎 ((𝑎 − 𝑥) − 𝑥) for some constant 𝑐𝑎 > 0 for every 𝑎. Integrating, we get that 𝑔𝑎 (𝑥) = 𝑐𝑎 (𝑎𝑥 −
𝑥2) + 𝑐′𝑎 = 𝑐𝑎 (𝑎 − 𝑥)𝑥 + 𝑐′𝑎 for some constant 𝑐′𝑎 . Thus, for any fixed 𝑎, we can write 𝑏 (𝑎1, 𝑎2;𝑤) =
𝑐𝑎 (𝑎1𝑤) (𝑎2 (1 −𝑤)) + 𝑐′𝑎 .

By Axiom A8 we know that 𝑏 (1, 0,𝑤) = 𝑐′𝑎 = 0 for all 𝑎 ∈ [0, 1]. Axiom A6 now implies
that 𝑐𝜆𝑎 (𝜆𝑎𝑤) (𝜆𝑎(1 − 𝑤)) = 𝑏 (𝜆𝑎, 𝜆𝑎;𝑤) = 𝜆2𝑏 (𝑎, 𝑎;𝑤) = 𝜆2𝑐𝑎 (𝑎𝑤) (𝑎(1 − 𝑤)). Thus, for any
𝑎, 𝑎′ ∈ (0, 1], 𝑐𝑎 = 𝑐𝑎′ . Since 𝑏 ≡ 0 whenever 𝑎 = 0, we may w.l.o.g. also assume that 𝑐0 = 𝑐𝑎 for all
𝑎 ∈ [0, 1].

It follows that we can write 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑐 (𝑎1𝑤) (𝑎2 (1 −𝑤)) = 𝑐𝑏PD (𝑎1, 𝑎2;𝑤) for some 𝑐 > 0,
so no function other than 𝑐 · 𝑏PD for 𝑐 > 0 satisfies all four axioms. Verifying that all such functions
indeed satisfy the four axioms is trivial. □

B.4 Proof of Theorem 5
Analogously to the proof of Theorem 4 up to invoking Axiom A6, we obtain that we can write
𝑏 (𝑎1, 𝑎2;𝑤) = 𝑐𝑎 (𝑎1𝑤) (𝑎2 (1 − 𝑤)) for some 𝑐𝑎 > 0 where 𝑎 = 𝑎1𝑤 + 𝑎2 (1 − 𝑤). Axiom A9 now
implies that 𝑐𝜆𝑎 (𝜆𝑎𝑤) (𝜆𝑎(1 −𝑤)) = 𝑏 (𝜆𝑎, 𝜆𝑎;𝑤) = 𝜆𝑏 (𝑎, 𝑎;𝑤) = 𝜆𝑐𝑎 (𝑎𝑤) (𝑎(1 −𝑤)). Thus, for any
𝑎 ∈ (0, 1], 𝑐𝜆𝑎 = 1

𝜆𝑐𝑎 . Since 𝑏 ≡ 0 whenever 𝑎 = 0, we may w.l.o.g. assume that 𝑐𝑎 = 1
𝑎𝑐1 for all

𝑎 ∈ [0, 1]. It follows that we can write

𝑏 (𝑎1, 𝑎2;𝑤) = 𝑐 (𝑎1𝑤) (𝑎2 (1 −𝑤))
𝑎1𝑤 + 𝑎2 (1 −𝑤) = 𝑐𝑏HPD (𝑎1, 𝑎2;𝑤)

for some 𝑐 > 0, so no function other than 𝑐 · 𝑏HPD for 𝑐 > 0 satisfies all four axioms. Verifying that
all such functions indeed satisfy the four axioms is trivial. □
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B.5 Proof of Theorem 6
By plugging in the definition of 𝑑𝑖, 𝑗 (R) and changing the order of summation, we get

B𝑑 (𝑥 ;R) = 1
𝑛2

∑︁
𝑖, 𝑗∈𝑥

𝑑𝑖, 𝑗 (R) = 1
𝑚

∑︁
𝑦∈𝐶

1
𝑛2

∑︁
𝑖, 𝑗∈𝑥

1 [(𝑖 ∈ 𝑦 ∧ 𝑗 ∉ 𝑦) ∨ (𝑖 ∉ 𝑦 ∧ 𝑗 ∈ 𝑦)] .

The second summation is the number of pairs of voters that disagree on a given alternative 𝑦 while
both approving alternative 𝑥 , this is |𝑥 ∩ 𝑦 | |𝑥 ∩ 𝑦 | = 𝑛2𝑎𝑥 |𝑦𝑤𝑦𝑎𝑥 |𝑦𝑤𝑦 . We obtain

B𝑑 (𝑥 ;R) = 1
𝑚

∑︁
𝑥∈𝐶

𝑎𝑥 |𝑦𝑤𝑦𝑎𝑥 |𝑦𝑤𝑦 =
1
𝑚

∑︁
𝑥∈𝐶

𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦,𝑤𝑦) = BPD (𝑥 ;R)

□

B.6 Proof of Corollary 1
Plugging in the definitions and noting that 𝑑𝑖, 𝑗 (R |𝑥 ) = 𝑑𝑖, 𝑗 (R) for all 𝑖, 𝑗 ∈ 𝑥 , we get

𝑤2
𝑥 · Δ𝑑 (R|𝑥 ) =

( |𝑥 |
𝑛

)2 1
|𝑥 |2

∑︁
𝑖, 𝑗∈𝑥

𝑑𝑖, 𝑗 (R) = B𝑑 (𝑥 ;R) = BPD (𝑥 ;R),

where the last equality follows from Theorem 6. The second part of the corollary follows since by
definition, BHPD (𝑥 ;R) = 1

𝑤𝑐
BPD (𝑥 ;R). □

B.7 Proof of Theorem 7
By the generalized mean inequality, 𝑀𝑝 (𝑎1, 𝑎2;𝑤) ⩽ 𝑀𝑞 (𝑎1, 𝑎2;𝑤) whenever 𝑝 < 𝑞. We know that
𝑀𝑝 (𝑎, 𝑎;𝑤) = 𝑎. For any 𝑎1, 𝑎2 such that 𝑎 = 𝑎1𝑤 + 𝑎2 (1 −𝑤), it thus holds that

𝑀𝑝 (𝑎1, 𝑎2;𝑤) ⩽ 𝑀1 (𝑎1, 𝑎2;𝑤) =𝑤𝑎1 + (1 −𝑤)𝑎2 = 𝑎 =𝑀𝑝 (𝑎, 𝑎;𝑤).
□

B.8 Proof of Theorem 8
First, we’ll show that we can write 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑔(min {𝑎1, 𝑎2};𝑤) for some function 𝑔. Assume to-
wards a contradiction that for some𝑤 ∈ [0, 1] there exist 𝑎1, 𝑎2, 𝑎

′
1, 𝑎

′
2 ∈ [0, 1] so that min {𝑎1, 𝑎2} =

min
{
𝑎′1, 𝑎

′
2
}

but𝑏 (𝑎1, 𝑎2;𝑤) ≠ 𝑏 (𝑎1, 𝑎2;𝑤). We know that in this case𝑏Remesh (𝑎1, 𝑎2;𝑤) = min {𝑎1, 𝑎2} =
min

{
𝑎′1, 𝑎

′
2
}
= 𝑏Remesh (𝑎′1, 𝑎′2;𝑤), so Axiom A10 implies that 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑏 (𝑎′1, 𝑎′2;𝑤); the desired

contradiction.
By Axiom A11, it follows that for any 𝑎,𝑤 ∈ [0, 1], 𝑔(𝑎;𝑤) = 𝑔(min {𝑎, 𝑎};𝑤) = 𝑏 (𝑎, 𝑎;𝑤) = 𝑎.

Thus, no function other than 𝑏 (−∞)-mean satisfies both axioms. Verifying that it indeed satisfies the
two axioms is trivial. □

B.9 Proof of Theorem 9
Combining Axioms A12 and A13, we get that for any 𝑎 ∈ [0, 1] it holds that 𝑎𝑏 (1, 1;𝑤) = 𝑏 (𝑎, 𝑎;𝑤) =
ℎ(𝑤𝑔(𝑎) + (1 −𝑤)𝑔(𝑎)) = ℎ(𝑔(𝑎)), to get that ℎ(𝑔(𝑎)) = 𝑐 · 𝑎 for all 𝑎 ∈ [0, 1]. Thus, we can write
𝑏 (𝑎1, 𝑎2;𝑤) = 𝑐𝑔−1 (𝑤𝑔(𝑎1) + (1 −𝑤)𝑔(𝑎2)) = 𝑐𝑀𝑔 (𝑎1, 𝑎2;𝑤), the generalized mean generated by 𝑔,
𝑀𝑔 , multiplied by a constant. It is well known that all generalized means generated by a continuous
function that satisfy linearity, Axiom A13, are 𝑝-means [Hardy et al., 1934].

Now, assume towards a contradiction that there exists a function 𝑓 ≡ 𝑐𝑀𝑔 that is 𝑐 times a linear,
generalized mean generated by a continuous function 𝑔, but not 𝑐 times a 𝑝-mean, i.e. 𝑓 . 𝑐𝑀𝑝 .
Since linearity is unaffected by multiplication by a constant, dividing this 𝑓 by 𝑐 gives a linear,
generalized mean generated by a continuous function 𝑔, 𝑀𝑔, that is not equivalent to a 𝑝-mean, a
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contradiction. Thus, we can conclude that 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑐𝑀𝑝 (𝑎1, 𝑎2;𝑤) for some constant 𝑐 and
𝑝 ∈ R ∪ {±∞}.

Since 𝑀𝑝 (𝑎1, 𝑎2;𝑤) ⩾ 0 and 𝑏 (𝑎1, 𝑎2;𝑤) ∈ [0, 1], we know that 𝑐 ⩾ 0. For any 𝑝 ∈ (1,∞),
𝑏 (1/2, 1/2; 1/2) =𝑀𝑝 (1/2, 1/2; 1/2) = 1/2 < (1/2)1/𝑝 =𝑀𝑝 (1, 0; 1/2) = 𝑏 (1, 0; 1/2),

and for 𝑝 =∞ it holds that
𝑏 (1/2, 1/2; 1/2) =𝑀𝑝 (1/2, 1/2; 1/2) = 1/2 < 1 =𝑀𝑝 (1, 0; 1/2) = 𝑏 (1, 0; 1/2),

which all are in violation of Axiom A14.
Thus, all functions abiding by all three axioms are 𝑝-means for 𝑝 ⩽ 1, multiplied by a constant

𝑐 ⩾ 0. It is trivial to check that all 𝑝-means satisfy Axioms A12 and A13. By Theorem 7, we know
that these functions satisfy Axiom A14. □

B.10 Proof of Theorem 10
First, we prove a concentration bound for empirical estimates of means given incomplete informa-
tion, which allows us to bound the atomic quantities𝑤𝑦 , 𝑎𝑥 |𝑦 , and 𝑎𝑥 |𝑦 :

Lemma 1. Fix a finite population of size 𝐿 with exactly 𝐾 “successes,” and let 𝜃 := 𝐾/𝐿. Include each
population element independently with probability 𝜋 ∈ (0, 1]. Let
(1) 𝐷 := number included,
(2) 𝑋 := number of included successes,
(3) 𝜃 := 𝑋/𝐷 when 𝐷 > 0.

Let 𝜇 := E[𝐷] = 𝜋𝐿. Then for any 𝜖 ∈ (0, 1),
P[|𝜃 − 𝜃 | ⩾ 𝜖] ⩽ 3 exp(−𝜖2𝜇/8). (10)

Proof. Since 𝐷 ∼ Bin(𝐿, 𝜋) and E[𝐷] = 𝜇, Chernoff’s bound gives

P[𝐷 ⩽
𝜇

2 ] ⩽ exp(−𝜇8 ). (11)

Then, conditional on 𝐷 = 𝑑 , we want to bound the absolute difference |𝜃 − 𝜃 |. To do so, we define
the random variables 𝑋1, . . . , 𝑋𝑑 , where 𝑋𝑖 := I[draw 𝑖 is a success], and so

𝜃 =
𝑋

𝑑
=

𝑑∑
𝑖=1
𝑋𝑖

𝑑
.

Note that E[𝜃 ] = 𝐾
𝐿 = 𝜃 ,6 where the randomness is now only over the particular elements of the

population included, and the realization 𝑑 ∼ 𝐷 is fixed.
Hoeffding’s inequality applies to sampling without replacement, giving the bound:

P[|𝜃 − 𝜃 | ⩾ 𝜖] = P[|𝑋 − E[𝑋 ] | ⩾ 𝜖𝑑] ⩽ 2 exp(−2𝜖2𝑑). (12)
Taking a union bound over (11) and (12) for the case that 𝑑 ⩾ 𝜇

2 yields the following inequality:

P[|𝜃 − 𝜃 | ⩾ 𝜖] ⩽ exp(−𝜇/8) + 2 exp(−𝜖2𝜇). (13)
The RHS ⩽ 3 exp(−𝜖2𝜇/8), giving the result. □

Corollary 2 (Error Bounds for Atomic Quantities). Fix some 𝑥,𝑦 ∈ 𝐶 and some 𝜖 ∈ (0, 1). Under
assumption 𝐶1, the following hold:
6To see this, note that 𝑋 ∼ Hypergeometric(𝑁,𝐾,𝑑 ) , whose expectation is 𝑑 𝐾

𝑁
.
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(i)
P[|𝑤𝑦 −𝑤𝑦 | ⩾ 𝜖] ⩽ 3 exp(−𝜖2𝑛𝑞min/8). (14)

(ii)
P[|𝑎𝑥 |𝑦 − 𝑎𝑥 |𝑦 | ⩾ 𝜖] ⩽ 3 exp(−𝜖2𝑛𝑤min𝑞

2
min/8). (15)

(iii)
P[|𝑎𝑥 |𝑦 − 𝑎𝑥 |𝑦 | ⩾ 𝜖] ⩽ 3 exp(−𝜖2𝑛𝑤min𝑞

2
min/8). (16)

Proof. Each result follows from a straightforward application of Lemma 1:
(i) Applying Lemma 1 with 𝐿 = 𝑛, 𝜋 = 𝑞𝑦 , 𝜃 = 𝑤𝑦 , 𝜃 = 𝑤𝑦 , and 𝜇 = E[𝑠𝑦 + 𝑠𝑦] = 𝑛𝑞𝑦 ⩾ 𝑛𝑞min

gives (14).
(ii) To estimate 𝑎𝑥 |𝑦 for 𝑥 ≠ 𝑦7, we work within the subpopulation of voters 𝑦, which satisfies

|𝑦 | = 𝑛𝑤𝑦 . In the language of Lemma 1, a voter 𝑖 in this subpopulation is a “success” if he
additionally approves𝑥 . We say voter 𝑗 is “drawn” if she votes on𝑥 and𝑦 (so𝑉(𝑖,𝑥 ) =𝑉(𝑖,𝑦) = 1),
which occurs with probability 𝑞𝑥𝑞𝑦 . Thus, we can apply Lemma 1 with 𝐿 = 𝑛𝑤𝑦 ⩾ 𝑛𝑤min,
𝜋 = 𝑞𝑥𝑞𝑦 , 𝜃 = 𝑎𝑥 |𝑦 , 𝜃 = 𝑎𝑥 |𝑦 , and 𝜇 = 𝑛𝑤𝑦𝑞𝑥𝑞𝑦 ⩾ 𝑛𝑤min𝑞

2
min, giving (15).

(iii) An analogous argument for 𝑎𝑥 |𝑦 using the upper bound on𝑤𝑦 implicit in C1 gives (16).
□

Next, we will compose these inequalities to bound the deviations |𝑏PD (𝑎𝑥,𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦)−𝑏PD (𝑎𝑥,𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) |,
|𝑏𝑝−mean(𝑎𝑥,𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 𝑏𝑝−mean(𝑎𝑥,𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) | for pairs of comments 𝑥,𝑦 when 𝑥 ≠ 𝑦.

Lemma 2 (Composition of Error Bounds: PD). Suppose𝑤,𝑤, 𝑎1, 𝑎1, 𝑎2, 𝑎2 ∈ [0, 1].
Define 𝜖 := max{|𝑎1 − 𝑎1 |, |𝑎2 − 𝑎2 |, |𝑤 −𝑤 |}. Then,

|𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤) | ⩽ 15𝜖. (17)

Proof. First, write

|𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤) | = max{𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤), 𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤)}.
First, we bound 𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤):

𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤) ⩽ (𝑎1 + 𝜖) (𝑎2 + 𝜖) (𝑤 + 𝜖) ((1 −𝑤) + 𝜖) − 𝑎1𝑎2𝑤 (1 −𝑤)
= (𝑎1𝑎2 + 𝑎1𝜖 + 𝑎2𝜖 + 𝜖2) (𝑤 (1 −𝑤) +𝑤𝜖 + (1 −𝑤)𝜖 + 𝜖2) − 𝑎1𝑎2𝑤 (1 −𝑤)
⩽ 15𝜖.

The final inequality holds because there are 15 terms remaining after subtracting 𝑎1𝑎2𝑤 (1 −𝑤),
and each includes 𝜖 multiplied by a term no greater than 1.

By writing
𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤) ⩽ 𝑎1𝑎2𝑤 (1 −𝑤) − (𝑎1 − 𝜖) (𝑎2 − 𝜖) (𝑤 − 𝜖) ((1 −𝑤) − 𝜖),

one can perform a similar computation to verify that 𝑏PD (𝑎1, 𝑎2;𝑤) − 𝑏PD (𝑎1, 𝑎2;𝑤) ⩽ 15𝜖 as well,
giving the result. □

Lemma 3 (Composition of Error Bounds: 𝑝-mean). We bound |𝑏𝑝−mean (𝑎1, 𝑎2;𝑤)−𝑏 (𝑎1, 𝑎1;𝑤) |
separately for the cases 𝑝 ∈ (−∞, 0) ∪ (0, 1]; 𝑝 = −∞; and 𝑝 = 0:
7Note that when 𝑥 = 𝑦, 𝑎𝑥 |𝑦 = 1 and 𝑎𝑥 |𝑦 = 0, so deterministically, 𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦 ) = 𝑏𝑝−mean (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦 ) = 0 for
𝑝 ∈ {−∞, 0}, and there is no need for estimation. When 𝑝 ∈ (−∞, 0) ∪ (0, 1], 𝑏𝑝−mean (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦 ) = (𝑤𝑦 )1/𝑝 , and so
we have the bound from with |𝑎1 − 𝑎1 | = |𝑎2 − 𝑎2 | = 0 despite 𝑎min not applying here. Thus, we don’t consider the case
𝑥 = 𝑦 separately. Technically, 𝑎𝑥 |𝑥 would be undefined in the case that 𝑥 = ∅ or 𝑥 = ∅, but these cases are ruled out by C2.
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(i) (𝑝 ∈ (−∞, 0) ∪ (0, 1]):
Fix 𝑝 ∈ (−∞, 0) ∪ (0, 1]. Suppose 𝑤,𝑤 ∈ [0, 1]; 𝑎1, 𝑎2 ∈ [𝑎min, 1]; and 𝑎1, 𝑎2 ∈ [𝛼, 1], where
𝛼 = 𝑎min/2. For ease of notation, define

𝑏 :=𝑤𝑎𝑝1 + (1 −𝑤)𝑎𝑝2 ,
𝑏 :=𝑤𝑎𝑝1 + (1 −𝑤)𝑎𝑝2 ,

and so (𝑏)1/𝑝 = 𝑏𝑝−mean (𝑎1, 𝑎2;𝑤), (𝑏)1/𝑝 = 𝑏𝑝−mean(𝑎1, 𝑎2;𝑤).
Then ���(𝑏) 1

𝑝 − (𝑏) 1
𝑝

��� ⩽ ((𝑎min/2)𝑝−1) ( 1
|𝑝 | |𝑤̂ −𝑤 | + max{|𝑎1 − 𝑎1 |, |𝑎2 − 𝑎2 |}). (18)

(ii) (𝑝 = −∞):
Assume 𝑝 = −∞. Suppose 𝑎1, 𝑎1, 𝑎2, 𝑎2 ∈ [0, 1]. Define 𝜖 := max{|𝑎1 − 𝑎1 |, |𝑎2 − 𝑎2 |}.
Then ��𝑏𝑝−mean(𝑎1, 𝑎2;𝑤) − 𝑏𝑝−mean(𝑎1, 𝑎2;𝑤)

�� ⩽ 𝜖 (19)
(iii) (𝑝 = 0): Assume 𝑝 = 0. From our definitions, we know that 𝑏0−mean (𝑎1, 𝑎2;𝑤) = 𝑎𝑤1 𝑎1−𝑤

2 and
𝑏0−mean (𝑎1, 𝑎2;𝑤) = 𝑎𝑤1 𝑎1−𝑤

2 . Then

|𝑏𝑝−mean − 𝑏𝑝−mean | ⩽ ln
(

1
𝛼

)
|𝑤 −𝑤 | + 1

𝛼
max{|𝑎1 − 𝑎1 |, |𝑎2 − 𝑎2 |} (20)

Proof. We present proofs for the cases 𝑝 ∈ (−∞, 0) ∪ (0, 1]; 𝑝 = −∞; and 𝑝 = 0:
(i) First, we bound the quantity |𝑏 − 𝑏 |. We add and subtract𝑤𝑎𝑝1 + (1 −𝑤)𝑎𝑝2 :

𝑏 − 𝑏 = (𝑤 −𝑤) (𝑎𝑝1 − 𝑎𝑝2 ) +𝑤 (𝑎𝑝1 − 𝑎𝑝1 ) + (1 −𝑤) (𝑎𝑝2 − 𝑎𝑝2 ).
Hence

|𝑏 − 𝑏 | ⩽ |𝑤 −𝑤 | · |𝑎𝑝1 − 𝑎𝑝2 | + max{|𝑎𝑝1 − 𝑎𝑝1 |, |𝑎
𝑝
2 − 𝑎𝑝2 |}. (21)

Next, we bound |𝑎𝑝1 − 𝑎𝑝2 |.
If 0 < 𝑝 ⩽ 1, then 𝑎𝑝𝑗 ∈ [0, 1], so |𝑎𝑝1 − 𝑎𝑝2 | ⩽ 1.
If 𝑝 < 0, then 𝑎 𝑗 ∈ [𝛼, 1] implies 𝑎𝑝𝑗 ∈ [1, 𝛼𝑝 ], so |𝑎𝑝1 − 𝑎𝑝2 | ⩽ 𝛼𝑝 − 1.
Thus, in any case,

|𝑎𝑝1 − 𝑎𝑝2 | ⩽ 𝛼𝑝−1. (22)
Next, we apply a Lipschitz bound for 𝑥 ↦→ 𝑥𝑝 on [𝛼, 1]. For any 𝑝 ≠ 0, the derivative satisfies
𝑑
𝑑𝑥 𝑥

𝑝 = 𝑝𝑥𝑝−1, and on [𝛼, 1], |𝑝𝑥𝑝−1 | ⩽ |𝑝 |𝛼𝑝−1 . We can apply mean value theorem with
𝑥,𝑦 ∈ [𝛼, 1]:

|𝑥𝑝 − 𝑦𝑝 | ⩽ |𝑝 |𝛼𝑝−1 |𝑥 − 𝑦 |.
Applying this to (𝑎1, 𝑎1) or (𝑎2, 𝑎2), we obtain

|𝑎𝑝𝑗 − 𝑎
𝑝
𝑗 | ⩽ |𝑝 |𝛼𝑝−1 |𝑎 𝑗 − 𝑎 𝑗 |. (23)

Plugging (22), (23) into (21) gives

|𝑏 − 𝑏 | ⩽ 𝛼𝑝−1( |𝑤 −𝑤 | + |𝑝 | max{|𝑎1 − 𝑎1 |, |𝑎2 − 𝑎2 |}). (24)
Finally, we give a Lipschitz bound for the outer map 𝑡 ↦→ 𝑡1/𝑝 . First, let 𝑓 (𝑡) = 𝑡1/𝑝 .
If 0 < 𝑝 ⩽ 1 : 𝑡 ∈ [0, 1] since 𝑏, 𝑏 ∈ [0, 1], and

𝑓 ′ (𝑡) = 1
𝑝
𝑡1/𝑝−1

Since 1/𝑝 − 1 ⩾ 0 and 𝑡 ⩽ 1, we have 𝑡1/𝑝−1 ⩽ 1, hence |𝑓 ′ (𝑡) | ⩽ 1/𝑝 = 1/|𝑝 |.
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If 𝑝 < 0 : 𝑏, 𝑏 ⩾ 1, so 𝑡 ∈ [1,∞). Also

|𝑓 ′ (𝑡) | =
���� 1𝑝 𝑡1/𝑝−1

���� = 1
|𝑝 | 𝑡

1/𝑝−1.

Since 1/𝑝 − 1 < 0 and 𝑡 ⩾ 1, we have 𝑡1/𝑝−1 ⩽ 1, hence |𝑓 ′ (𝑡) | ⩽ 1/|𝑝 |.
In either case,

|𝑓 (𝑏) − 𝑓 (𝑏) | ⩽ 1
|𝑝 | |𝑏 − 𝑏 |. (25)

Combining (24) and (25) gives (18).
(ii) Without loss of generality, assume 𝑏𝑝−mean (𝑎1, 𝑎2;𝑤) = min{𝑎1, 𝑎2} = 𝑎1.

Case 1: 𝑎1 ⩽ 𝑎2.
Here, 𝑏 (𝑎1, 𝑎2;𝑤) = 𝑎1, so |𝑏 (𝑎1, 𝑎2;𝑤) − 𝑏 (𝑎1, 𝑎2;𝑤) | = |𝑎1 − 𝑎1 | ⩽ max{|𝑎1 − 𝑎1 |, |𝑎2 − 𝑎2 |}.
Case 2: 𝑎1 > 𝑎2.
We will split this case further:
Case 2a: |𝑎2 − 𝑎1 | ⩽ |𝑎1 − 𝑎1 |.
When this holds, |𝑏 (𝑎1, 𝑎2;𝑤) − 𝑏 (𝑎1, 𝑎2;𝑤) | = |𝑎2 − 𝑎1 | ⩽ |𝑎1 − 𝑎1 | ⩽ max{|𝑎1 − 𝑎1 | , |𝑎2 − 𝑎2 |}.
Case 2b: |𝑎2 − 𝑎1 | > |𝑎1 − 𝑎1 |. This is only possible if 𝑎2 < 𝑎1, but this implies |𝑎2 − 𝑎2 | ⩾
|𝑎2 − 𝑎1 | = |𝑏 (𝑎1, 𝑎2;𝑤) − 𝑏 (𝑎1, 𝑎2;𝑤) | .
In any case, |𝑏 (𝑎1, 𝑎2;𝑤) − 𝑏 (𝑎1, 𝑎2;𝑤) | ⩽ max{|𝑎1 − 𝑎1 | , |𝑎2 − 𝑎2 |} = 𝜖 , concluding the proof.

(iii) For 𝑝 = 0 we use logarithms and start by taking the logs of the true value and estimated
value: ln𝑏 = 𝑤 ln𝑎1 + (1 − 𝑤) ln𝑎2 and ln𝑏 = 𝑤 ln𝑎1 + (1 − 𝑤) ln𝑎2. Add and subtract
𝑤 ln𝑎1 + (1 −𝑤) ln𝑎2 to obtain

ln𝑏 − ln𝑏 = (𝑤 −𝑤) (ln𝑎1 − ln𝑎2) +𝑤 (ln𝑎1 − ln𝑎1) + (1 −𝑤) (ln𝑎2 − ln𝑎2).
And we get that

| ln𝑏 − ln𝑏 | ⩽ |𝑤 −𝑤 | · | ln𝑎1 − ln𝑎2 | + max{| ln𝑎1 − ln𝑎1 |, | ln𝑎2 − ln𝑎2 |}. (26)
Since 𝑎1, 𝑎2 ∈ [𝛼, 1], we have | ln𝑎1 − ln𝑎2 | ⩽ ln(1) − ln(𝛼) = ln

( 1
𝛼

)
. Also, ln(·) is 1/𝛼-

Lipschitz on [𝛼, 1] because (ln𝑥)′ = 1/𝑥 ⩽ 1/𝛼 for 𝑥 ∈ [𝛼, 1], so by the mean value theorem,
| ln𝑎 𝑗 − ln𝑎 𝑗 | ⩽ 1

𝛼 |𝑎 𝑗 − 𝑎 𝑗 | for 𝑗 ∈ {1, 2}.
Combining these bounds gives

| ln𝑏 − ln𝑏 | ⩽ ln
(

1
𝛼

)
|𝑤 −𝑤 | + 1

𝛼
max{|𝑎1 − 𝑎1 |, |𝑎2 − 𝑎2 |}. (27)

Finally, since 𝑎1, 𝑎2, 𝑎1, 𝑎2 ∈ (0, 1], we have 𝑏, 𝑏 ∈ (0, 1] and thus ln𝑏, ln𝑏 ⩽ 0. By the
mean value theorem applied to 𝑒𝑡 on (−∞, 0], there exists 𝜉 between ln𝑏 and ln𝑏 such that
|𝑏 − 𝑏 | = |𝑒 ln𝑏 − 𝑒 ln𝑏 | = 𝑒𝜉 | ln𝑏 − ln𝑏 | ⩽ | ln𝑏 − ln𝑏 |. Combining that with (26) gives the
desired bound.

□

We can now combine the previous results to bound the deviations |B̂ − B| with high probability.

Theorem 11 (Estimator consistency for partial votes setting (Complete)). Fix instance
R, 𝑥 ∈ 𝐶 , and some 𝜖, 𝛿 ∈ (0, 1).

(i) Under condition C1, let 𝛾 := min{𝑞min,𝑤min}.
Then, taking a particular

𝑛 ∈ 𝑂
( ln(𝑚𝛿 )
𝜖2𝛾3

)
(28)
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suffices to ensure the following:

P[|B̂PD (𝑥 ;R) − BPD (𝑥 ;R)| ⩾ 𝜖] ⩽ 𝛿. (29)

(ii) Fix some 𝑝 ∈ (−∞, 0) ∪ (0, 1]. Under conditions C1 and C2, let 𝜂 := min{𝑎min/2, 𝑞min,𝑤min}.
Then, taking a particular

𝑛 ∈ 𝑂
(

ln(𝑚𝛿 )𝜂2𝑝−7 (𝑝2 + 1)
𝜖2𝑝2

)
(30)

suffices to ensure the following:

P[|B̂𝑝−mean (𝑥 ;R) − B𝑝−mean (𝑥 ;R)| ⩾ 𝜖] ⩽ 𝛿. (31)

(iii) Assume 𝑝 = −∞. Under condition C1, let 𝛾 := min{𝑞min,𝑤min}.
Then, taking a particular

𝑛 ∈ 𝑂
( ln(𝑚𝛿 )
𝜖2𝛾3

)
(32)

suffices to ensure the following:

P[|B̂𝑝−mean (𝑥 ;R) − B𝑝−mean (𝑥 ;R)| ⩾ 𝜖] ⩽ 𝛿. (33)

(iv) Assume 𝑝 = 0. Under conditions C1 and C2, define 𝛼 := 𝑎min
2 and let 𝜂 := min{𝛼, 𝑞min,𝑤min}.

Then, taking a particular

𝑛 ∈ 𝑂
©­­«

ln(𝑚𝛿 )
(
ln2 ( 1

𝜂 ) + 1
)

𝜖2 𝜂5
ª®®¬ (34)

suffices to ensure the following:

P
[���B̂𝑝−mean (𝑥 ;R) − B𝑝−mean(𝑥 ;R)

��� ⩾ 𝜖

]
⩽ 𝛿. (35)

Proof. We repeat a similar technique to show the final sample complexity bounds for each case:

(i) Take 𝑛 =
9000 ln(𝑚

𝛿
)

𝜖2𝛾3 .
We can take 𝜖𝑤 = 𝜖𝑎 = 𝜖

15 . For the selected value of 𝑛, (14),(15), and (16) hold for (𝜖, 𝛿)
pairs (𝜖𝑤, 𝛿3𝑚 ), (𝜖𝑎, 𝛿3𝑚 ), and (𝜖𝑎, 𝛿3𝑚 ), respectively. By union bound, all three bounds hold
simultaneously with probability at least 𝛿

𝑚 .
Thus, with probability at least 1 − 𝛿

𝑚 , (17) applies, giving

|𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) | ⩽ 𝜖. (36)
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By union bound, the above holds ∀𝑦 ∈ 𝐶 with probability at least 1 − 𝛿 . Conditional on the
bound (36) holding for all 𝑦 ∈ 𝐶 , we can write���B̂PD (𝑥 ;R) − B𝑝−PD(𝑥 ;R)

��� = ������ 1
𝑚

∑︁
𝑦∈𝐶

𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 1
𝑚

∑︁
𝑦∈𝐶

𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦)
������

=

������ 1
𝑚

∑︁
𝑦∈𝐶

[
𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦)

] ������
⩽

1
𝑚

∑︁
𝑦∈𝐶

��𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 𝑏PD (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦)
��

⩽
1
𝑚

∑︁
𝑦∈𝐶

𝜖 = 𝜖,

giving the result.
(ii) Take 𝑛 =

288 ln(𝑚
𝛿
)𝜂2𝑝−7 (𝑝2+1)
𝜖2𝑝2 .

We can take 𝜖𝑤 = 𝜖 |𝑝 |
2𝛼𝑝−1 , 𝜖𝑎 = 𝜖

2𝛼𝑝−2 . For the selected value of 𝑛, (14), (15), and (16) hold for
(𝜖, 𝛿) pairs (𝜖𝑤, 𝛿3𝑚 ), (𝜖𝑎, 𝛿3𝑚 ), and (𝜖𝑎, 𝛿3𝑚 ), respectively. By union bound, all three bounds
hold simultaneously with probability at least 𝛿

𝑚 .
Note that we have 𝜖𝑎 = 𝜖

2𝛼𝑝−2 ⩽ 𝛼 , ensuring that 𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ∈ [𝛼, 1] conditional on the atomic
bounds holding. Thus, with probability at least 1 − 𝛿

𝑚 , (18) applies, giving

|𝑏𝑝−mean (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 𝑏𝑝−mean (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) | ⩽ 𝜖. (37)
By union bound, the above holds ∀𝑦 ∈ 𝐶 with probability at least 1 − 𝛿 . A similar argument
as in the PD case gives the result.

(iii) Take 𝑛 =
32 ln(𝑚

𝛿
)

𝜖2𝛾3 .
We can take 𝜖𝑎 = 𝜖 . For the selected value of 𝑛, (15) and (16) hold for (𝜖, 𝛿) pairs (𝜖𝑎, 𝛿2𝑚 ) and
(𝜖𝑎, 𝛿2𝑚 ), respectively. By union bound, both bounds hold simultaneously with probability at
least 𝛿

𝑚 .
Thus, with probability at least 1 − 𝛿

𝑚 , (19) applies, giving

|𝑏𝑝−mean (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 𝑏𝑝−mean (𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) | ⩽ 𝜖. (38)
By union bound, the above holds∀𝑦 ∈ 𝐶 with probability at least 1−𝛿 . The standard argument
gives the result.

(iv) Take 𝑛 =
1152 ln(𝑚

𝛿
)
(
ln2 ( 1

𝜂
)+1

)
𝜖2𝜂5 , where 𝛼 := 𝑎min

2 and 𝜂 := min{𝛼, 𝑞min,𝑤min}.
We can take 𝜖𝑤 = 𝜖

2 ln(1/𝛼 ) and 𝜖𝑎 = 𝛼𝜖
2 . Note that 𝜖𝑎 ⩽ 𝛼 since 𝜖 ∈ (0, 1), ensuring that

𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ∈ [𝛼, 1] conditional on the atomic bounds holding.
For the selected value of 𝑛, (14), (15), and (16) hold for (𝜖, 𝛿) pairs (𝜖𝑤, 𝛿3𝑚 ), (𝜖𝑎, 𝛿3𝑚 ), and
(𝜖𝑎, 𝛿3𝑚 ), respectively. By union bound, all three bounds hold simultaneously with probability
at least 1 − 𝛿

𝑚 .
Thus, with probability at least 1 − 𝛿

𝑚 , (20) (the 𝑝 = 0 case) applies, giving��𝑏𝑝−mean(𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦) − 𝑏𝑝−mean(𝑎𝑥 |𝑦, 𝑎𝑥 |𝑦 ;𝑤𝑦)
�� ⩽ ln

(
1
𝛼

)
𝜖𝑤 + 1

𝛼
𝜖𝑎 = 𝜖. (39)
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We apply the union bound the same way as all the parts above, which gives the result.
□

C Additional Experiments
C.1 Polis GAC Replication
To ensure a fair comparison between bridging metrics, we validate our implementation of Polis’s
Group-Aware Consensus (GAC) against the official Polis scores.

We use the BG2050 Volunteers dataset, which contains both raw votes and GAC scores exported
from Polis. When we compute GAC using Polis’s original cluster assignments, our scores agree
with the exported scores up to numerical tolerance: Spearman 𝜌 = 1.000, Kendall 𝜏 = 1.000, and
maximum absolute difference < 10−10. This confirms that our implementation matches Polis’s
scoring given identical group assignments.

When we instead compute GAC using our own 𝑘-means clustering, which was implemented
with the aim of being as close to the Polis method as possible, agreement with the exported Polis
scores decreases (Spearman 𝜌 = 0.926, Kendall 𝜏 = 0.773), and the maximum absolute difference
increases to 0.565. This divergence arises from differences in clustering methodology. Polis uses
temporal seeding from incremental vote arrivals, whereas we apply single-shot clustering. While it
was not the intention of the experiment, this again highlights the sensitiveity induced by relying
on a single partition of voters into groups. Table 1 summarizes these results.

Table 1. Validation of GAC implementation against Polis (BG2050 dataset, 𝑛 = 371 comments)

Metric Polis groups Our 𝑘-means
Spearman 𝜌 1.000 0.926
Kendall 𝜏 1.000 0.773
Max. absolute difference < 10−10 0.565

C.2 Additional Robustness Results
In Section 8.4 we analyzed how correlated the estimated ranking and the true ranking were at
different observation rates. However, one may care more about the accuracy of the top of the
ranking compared to the bottom of the ranking. For this reason, we also look at stability from the
perspective of how well each function recovers the highest ranked candidate. We measure this
through top-1 accuracy which is the fraction of trials where the estimated top candidate matches
the true top candidate. We aggregate over 20 trials under both the MCAR missingness and the Polis
routing induced missingness.

Results. The results are plotted in Figure 7. Overall, PD appears to recover the highest ranked
candidate most often. In the 2002 French election dataset 𝑝-mean and GAC perform comparably.
However, in the 2007 French election, PD and 𝑝-mean perform comparably and significantly
outperform GAC.
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Fig. 7. Top-1 accuracy of the estimated ranking with respect to the ground-truth rankings as a function of
observation rate. Top row: MCAR. Bottom row: simulated Polis routing. Left: 2002 French election. Right: 2007.
Lines show means over 20 trials. Shaded bands show ±1 standard deviation.

C.3 Other Values of 𝑝 in 𝑝-Mean
In our experiments in Section 8, we used 𝑝 = −∞ for 𝑝-mean. In this experiment, we look at 𝑝-mean
with other values of 𝑝 . We test 𝑝 = {1, 0,−1,−2,−10} and compare them to 𝑝 = −∞ qualitatively
using the approval-heterogeniety plots and in terms of their robustness under MCAR missingness.

Results. The robustness results are in Figure 8 and Figure 11 shows the approval-heterogeneity
plots. In regard to robustness, all values of 𝑝 are comparable in terms of the Kendall’s 𝜏 correlation
between the estimated ranking and true ranking across observation rates. In the 2002 French
election data, however, the top-1 accuracy tends to be higher for more positive values of 𝑝 .
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Fig. 8. Kendall’s 𝜏 (top) and Top-1 accuracy (bottom) of the estimated ranking with respect to the ground-truth
rankings as a function of observation rate under MCAR missingness. Left: 2002 French election. Right: 2007.
Lines show means over 20 trials. Shaded bands show ±1 standard deviation.
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Fig. 9. Candidates plotted in approval-diversity space for the 2002 (left) and 2007 (right) French presidential
elections. Diversity is measured as the mean Hamming distance among a candidate’s approvers. The candidate
with the highest score is highlighted for each value of 𝑝 .

C.4 Additional Results on Complete Approval Matrices
We conducted further experiments on three additional complete approval datasets obtained from
PrefLib [Mattei and Walsh, 2013]. These datasets, the San Sebastian Poster Competition (groups 1
and 2) and the Czech Technical University (CTU) Tutorial Selection, contain full approval ballots
from smaller electorates compared to those in our main experiments. Our goal in this section is to
complement the main results presented in Section 8.

C.4.1 Qualitative Comparisons. Figure 10 shows the top 5 candidates by 𝑝-mean bridging score
along with ridgeline plots of approvers projected onto the first principal component (PC1). In all
datasets, the overall rankings produced by PD, Polis GAC, and 𝑝-mean are in close agreement.
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Fig. 10. Top 5 candidates by 𝑝-mean bridging score in the San Sebastian Poster Competition (left and middle)
and the Czech Technical University tutorial selection dataset (right). Ridgeline plots show the distribution of
approving voters along the first principal component (PC1). Columns report overall approval rate and each
candidate’s rank under PD, Polis’s GAC (Pol), and 𝑝-mean (pm).

In the combined approval–diversity space shown in Figure 11, we observe that 𝑝-mean and PD
select identical candidates across all datasets. In both the San Sebastian Group 2 and the CTU
Tutorial dataset, all three metrics agree on the top candidate. In the San Sebastian Group 1 data,
however, the Polis GAC selects a candidate with lower approver heterogeneity and a lower approval
rate compared to the top candidates selected by PD and 𝑝-mean; this candidate is Pareto dominated
in approval–diversity space.
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Fig. 11. Candidates plotted in approval–diversity space for the San Sebastian Poster Competition (left and
middle) and the Czech Technical University tutorial selection dataset (right). Diversity is measured as the
mean Hamming distance among a candidate’s approvers. The candidate with the highest score is highlighted
for each function.

C.4.2 Robustness Under Missingness. We further evaluated how the ranking functions perform
under simulated missing data. Figures 12 and 13 report Kendall’s 𝜏 correlation with ground-truth
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rankings and Top-1 accuracy as functions of the observation rate under two missingness regimes:
(i) Missing Completely at Random (MCAR) and (ii) missingness induced by Polis-style routing.

On these smaller datasets, the Polis GAC is more comparable to PD and 𝑝-mean in terms of
robustness than observed in the larger datasets studied in Section 8.4. Nonetheless, PD and 𝑝-mean
continue to outperform Polis GAC overall. In particular, in the San Sebastian Group 1 data, Polis
GAC exhibits poor Top-1 accuracy under both missingness regimes.
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Fig. 12. Kendall’s 𝜏 (top) and Top-1 accuracy (bottom) of the estimated ranking with respect to the ground-
truth rankings as a function of observation rate under MCAR missingness. Left and middle: San Sebastian
Poster Competition. Right: Czech Technical University tutorial selection dataset. Lines show means over 20
trials. Shaded bands show ±1 standard deviation.
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Fig. 13. Kendall’s 𝜏 (top) and Top-1 accuracy (bottom) of the estimated ranking with respect to the ground-
truth rankings as a function of observation rate under missingness induced by simulated Polis routing. Left
and middle: San Sebastian Poster Competition. Right: Czech Technical University tutorial selection dataset.
Lines show means over 20 trials. Shaded bands show ±1 standard deviation.
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