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Abstract
Recent leaderboard-based evaluations of large lan-
guage models aggregate user feedback by fitting
a Bradley–Terry model to pairwise comparisons,
producing a single global ranking based on a la-
tent quality score. While appealing for its sim-
plicity, this approach is incompatible with het-
erogeneous preferences: when LLMs are used
across diverse tasks and use cases, users who fa-
vor fundamentally different model behaviors can
be systematically misrepresented when collapsed
into a single quality score. To address this is-
sue, we study pluralistic leaderboards that aim
to remain stable with respect to heterogeneous
user populations. Drawing on ideas from social
choice theory, we adapt the notion of local stabil-
ity, which requires that no model outside the top-k
positions is collectively preferred to the top-k set
by more than O(1/k) fraction of users. Building
on techniques from the social choice literature, we
design an alternative leaderboard mechanism that
satisfies local stability while eliciting only Õ(k)
pairwise comparisons per user, where k is the size
of the prefix for which stability is guaranteed. Us-
ing data from LMArena, we show that standard
Bradley–Terry aggregation can violate local sta-
bility in practice, whereas our method provides
substantially stronger stability guarantees.

1. Introduction
Until recently, leading approaches to the evaluation of large
language models (LLMs) relied on benchmarks, which mea-
sure performance on multiple tasks and aggregate the corre-
sponding scores (Liang et al., 2022; Jimenez et al., 2024).
While this paradigm has provided a standardized and re-
producible basis for comparing models, it is increasingly
strained by rapid model iteration, benchmark saturation, and
sensitivity to task selection; it also struggles to capture qual-
itative dimensions of model behavior such as helpfulness.

Some of these shortcomings are addressed by an alterna-
tive evaluation approach championed by LMArena (Chiang
et al., 2024). Upon submitting a prompt, an LMArena user
is shown a pair of responses from two different LLMs and is

asked to indicate which is preferred. LMArena aggregates
these votes by fitting a Bradley–Terry (BT) model. That is,
it posits that each LLM has a single latent “quality” score,
where the probability that one model beats another on a
prompt depends only on the difference between their quali-
ties, independently of the identity of the user. By computing
the maximum likelihood estimator for the quality of each
LLM based on the input comparisons, the platform is able
to produce a ranking over the models.

The approach taken by LMArena is compelling and hugely
successful,1 but it has also attracted notable controversy
and criticism (Singh et al., 2025). In our view, its main
conceptual flaw is its reliance on the BT model, and with
it, the implicit assumption that all pairwise comparisons
originate from a generic (or “average”) person — a view
that is fundamentally at odds with heterogeneous prefer-
ences. People come to LLMs with different goals (e.g.,
safety vs. creativity, conciseness vs. thoroughness, formality
vs. warmth) that represent inherently different latent utility
models. These differences can be large enough that there
may be no single ground-truth scalar “quality” that explains
society’s preferences. Statistically speaking, a single BT
model is a misspecified model of the exhibited comparisons,
and as such, the maximum-likelihood BT scores need not
represent what people want in any meaningful way (Ge
et al., 2024; Gölz et al., 2025; Shirali et al., 2025).

When fundamental disagreements arising from hetero-
geneous preferences are unavoidable, social choice the-
ory (Brandt et al., 2016) provides a principled framework for
aggregation. To see how these issues manifest in LMArena,
and how social choice provides solutions, consider a set-
ting with six competing LLMs {a, b, c, d, e, f}, and two
preference profiles shown below.
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1As of January 2026, LMArena is valued at $1.7B just months
after it launched as a company.
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The two profiles induce the same pairwise comparisons and
are therefore indistinguishable from the perspective of the
BT model, which outputs the ranking a ≻ b ≻ c ≻ d ≻ e ≻
f in both cases. Now suppose (for simplicity) that a user
tests the leaderboard’s top three models to find one that is
to their liking. For Profile 2, the set {a, b, c} works well, as
the favorite model of each and every individual is included.
By contrast, the same outcome is far less satisfactory for
Profile 1. Here, 40% of the population is only exposed to
models that they dislike; an outcome that elevates f into the
top tier would ensure that this sizable faction is not shut out.

Social choice theory provides a formal understanding of the
principle that a large and cohesive faction should be fairly
represented in the outcome. There is a significant literature
on representation in committee elections — building on the
work of Aziz et al. (2017a) — which has led to deployed
participatory budgeting methods (Peters et al., 2021) and AI-
driven applications (Fish et al., 2024). As we discuss below,
however, it is nontrivial to adapt these techniques to LLM
leaderboards, where the input consists of (typically sparse)
pairwise comparisons. Our research problem, therefore, is
this:

Design pluralistic leaderboards that take pairwise
comparisons as input and produce an outcome that
fairly represents heterogeneous preferences.

Our approach and results. To construct pluralistic leader-
boards, we need a formal notion for fair representation; that
is, any large cohesive subgroups of users should have suffi-
cient impact on the leaderboard to ensure that the models
they collectively favor are ranked near the top. To this end,
we adopt the notion of local stability (Aziz et al., 2017b)
from the social choice literature on committee elections.
Intuitively, local stability requires that no sufficiently large
subgroup of users can “profitably deviate” to an alterna-
tive candidate that is excluded from the selected committee.
More formally, a committee Wk of size k is locally stable
if for any candidate a /∈ Wk, the fraction of users who
prefer a to all candidates in Wk is at most 1/k, and is γ-
approximately local stable if the fraction is at most γ/k.

Since our ultimate goal is to produce rankings rather than
committees, we extend local stability to rankings by requir-
ing the property to hold for every prefix of the ranking.
Specifically, we treat the top-k prefix of a ranking as a size
k committee, and impose local stability at every cutoff k.
Our goal is therefore to design a ranking mechanism that
converts pairwise comparisons into such an (approximately)
locally stable ranking.

We begin with studying the committee selection setting,
where we build on algorithms by Jiang et al. (2020). The
challenge is that these algorithms assume access to the com-
plete rankings of all the users. We adapt these techniques

to the leaderboard setting where users are drawn from an
underlying distribution, and they each contribute only a
small amount of feedback, rather than providing full rank-
ings. By carefully controlling the errors arising from finite-
sample estimation, we develop an algorithm that produces
approximately locally stable committees, with a constant
approximation factor. Our algorithm uses Õ(poly(m)) sam-
pled users and Õ(k) pairwise comparison queries per user,
where k denotes the committee size. We then develop a re-
duction that uses this algorithm as a subroutine to construct
approximately stable rankings, incurring only a constant
multiplicative factor in the approximation ratio.

Finally, we empirically validate our approach on synthetic
and semi-synthetic experiments derived from LMArena
data. Our experiments demonstrate that the currently-used
Bradley–Terry ranking can violate stability, whereas our
methods achieve stability to a degree that is even stronger
than our theoretical bounds in practice.

Related Works. While a global leaderboard aggregates
all battles into a single score, recent work has attempted to
incorporate heterogeneity by constructing task-specific or
more fine-grained leaderboards. For example, Frick et al.
(2025) propose Prompt-to-Leaderboard, which conditions
Bradley–Terry scores on the prompt to produce prompt-
dependent rankings from LMArena data. We take a different
approach: rather than producing multiple task- or prompt-
specific rankings, we aim to construct a single global rank-
ing that automatically represents all sufficiently large user
subgroups, whether defined explicitly or implicitly.

Our approach builds on the social choice literature on local
stability in committee selection. In particular, Jiang et al.
(2020) propose algorithms for computing approximately lo-
cally stable committees, and subsequent work improves the
approximation factors (Charikar et al., 2025; Nguyen et al.,
2025). These results assume access to richer preference in-
formation (users’ full rankings) than is typically available in
leaderboard settings. We extend this line of work by adapt-
ing local stability algorithms to sparse pairwise comparisons
and by lifting committee-level guarantees to full rankings.

Finally, our work is related to research on ranking and com-
mittee selection under incomplete or partially elicited pref-
erences (Halpern et al., 2023; 2024; Springham et al., 2025).
In particular, Halpern et al. (2023) and Springham et al.
(2025) study representation under approval-based prefer-
ences, whereas our framework assumes ranked preferences
revealed through pairwise comparisons.

2. Model and Preliminaries
We use C = {1, 2, . . . ,m} to denote the set of m models
competing on the leaderboard. We assume that users are het-
erogeneous and are drawn from a distributionD. Each user i
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is associated with a strict preference order over the models in
C, represented by a permutation σi = (σi(1), . . . , σi(m)) ∈
Sym(C), where σi(1) ≻i σi(2) ≻i . . . ≻i σi(m). Here,
Sym(C) denotes the set of all permutations of C and D can
be equivalently viewed as a distribution over rankings.

Leaderboard Mechanism. The goal of the leaderboard
is to produce a ranking of models π = (π(1), . . . , π(m)) ∈
Sym(C) based on the preferences of the users. Users interact
with the leaderboard by contributing “battles”, which are
pairwise comparisons between two models. Specifically, for
each battle, a user i submits a prompt to the leaderboard
platform, and the platform selects a pair of models {x, y} ⊆
C and presents their outputs to the user without revealing
the identity of the models. The user then indicates which
output they prefer.

If user i participates in d battles, we denote the outcomes
by a sequence of ordered pairs (xt

i ≻i yti)
d
t=1. We make

the key simplifying assumption that users are consistent:
for any user i and any pair of models x, y ∈ C, i prefers x
over y in a battle if and only if x appears before y in the
associated ranking σi.2

A leaderboard’s ranking mechanismM specifies both which
models are selected for comparison and how the observed
battles are aggregated into a ranking. Specifically,M has
sampling access to the population D, and can query each
sampled user for their preferences via a sequence of pairwise
comparison queries. The choice of which model pairs to
compare may be adaptive and depend on the outcomes of
previous queries. We measure the complexity of M by
(i) the maximum number of pairwise comparisons elicited
per user, denoted with d, and (ii) the total number of users
sampled from D, denoted with n.

Bradley–Terry Ranking by LM Arena (Chiang et al.,
2024). We describe the Bradley–Terry-based leaderboard
mechanism proposed by Chiang et al. (2024) for LMArena,
which we denote byMBT. This mechanism first uses an ac-
tive sampling approach for selecting model pairs, then ranks
models according to scores obtained by fitting a Bradley–
Terry (BT) model to the observed battle outcomes.

In this approach, the selection of sampled pairs is indepen-
dent of the user’s identity: for the t-th battle in the data
collection process, the leaderboard samples an ordered pair
of models {xt, yt} ∼ Pt where Pt ∈ ∆(C2) is a distribution
over model pairs. The distribution Pt is chosen adaptively
to prioritize pairs that are expected to reduce the uncertainty
in the estimated BT scores, and is shown by Chiang et al.

2In practice, a user’s preferences may also depend on contextual
factors such as the task or use case. Our model can capture this
by treating the user’s type as a latent type that aggregates all such
factors, so that preferences are fixed conditioned on the user’s type.

(2024) to converge almost surely to a limiting distribution
as t→∞.

Given a total of T battle outcomes (xt ≻ yt)Tt=1, Chiang
et al. (2024) estimate BT scores by solving the following
reweighted maximum likelihood estimation problem:

θ = argmax
θ∈Rm

T∑
t=1

1

P ({xt, yt})
log

1

1 + eθxt−θyt
,

where θx is the BT score of model x. The final leaderboard
ranking orders models according to their BT scores θx.3

Local Stability. In this paper, we consider the local sta-
bility of the leaderboard. Local stability, proposed by Aziz
et al. (2017b), is a property of a committee that ensures that
no outside model is collectively preferred by a sufficiently
large subgroup of users. Formally, a committee Wk ⊆ C of
size k is said to be γ-approximately locally stable if

max
a/∈Wk

Pr
i∼D

[a ≻i Wk] ≤
γ

k
,

where a ≻i Wk means that user i prefers a to all models in
Wk. When γ = 1, the committee is said to be locally stable.
We refer to the smallest γ that satisfies the above condition
as the stability ratio of Wk.

Since our ultimate goal is to produce a full ranking of
models, we extend this notion to rankings by considering
the local stability of all prefix committees. For a ranking
π ∈ Sym(C), let Wπ

k = {π(1), . . . , π(k)} denote the prefix
committee consisting of the top k models in the ranking
π. We say that π is γ-approximately locally stable rank-
ing for user distribution D if, for every k ≤ m, the prefix
committee Wπ

k is γ-approximately locally stable.

3. Committee Selection
We consider the committee selection problem as a first step
towards constructing stable rankings. Our goal is to select a
single committee of a given size that satisfies approximate
stability. We will later show in Section 4 how this proce-
dure can be adapted or used as a subroutine to construct
approximately stable rankings.

Our committee selection algorithm (Algorithm 1) is closely
inspired by the Iterated Rounding Algorithm proposed by
Jiang et al. (2020). But in contrast to their setting, which as-
sumes full access to the users’ complete rankings, we adapt
the approach to the sampling-based model in which the user
population is represented by an underlying distribution that

3The current mechanism by LMArena extends this by calculat-
ing the confidence intervals for each model’s estimated BT score,
and displaying ties in the ranking when intervals overlap (LMArena
Team, 2025b).
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Algorithm 1 Committee Selection via Iterated Rounding

Input: Committee size k; sampling oracle D, rank esti-
mation oracle R̂ank (Algorithm 5)
Output: A committee Ŝ of size k.
Parameters: α ← 1

2 + 4ε, β ← 1
4 + 2ε. Number of

Rounds T ← ⌈10 log(kε )⌉, sub-committee sizes (kt)t∈[T ]

defined by kt ← ⌊(1− α)αt−1k⌋, so that
∑

t kt ≤ k.
Initialize Ŝ ← ∅
for t = 1 to T do
D̂β−ε

t ← sampling oracle for unsatisfied users at
round t, implemented in Algorithm 4 with history
(Sτ ,∆τ )τ≤t−1 and threshold β − ε;
∆t ← (1 + ε)-approximately stable lottery for D̂β−ε

t

of size kt (see Cheng et al. (2020));
St ← committee in supp(∆t) that min-
imizes estimated unsatisfied probability
1
N

∑N
i=1 1

[
R̂ank(i;S,∆) ≤ β − ε

]
, for N i.i.d.

users drawn from D̂β−ε
t ;

Ŝ ← Ŝ ∪ St

end for
Return Ŝ;

can be accessed only through sampling, and each user’s
preferences can be accessed through only a limited number
of pairwise comparisons.

At a high level, the Iterated Rounding approach proceeds
in T = Õ(log k) rounds. In each round t, it identifies a
sub-committee St of geometrically decreasing size. This
sub-committee is chosen to provide a good representation
for a large fraction of the users that have not been well
represented by sub-committees selected in previous rounds.
Repeating this process guarantees that the algorithm makes
progress by geometrically shrinking the fraction of poorly
represented users, and as a result, the union of all such sub-
committees forms a committee of size k with the desired
stability guarantees.

Specifically, we formalize what we mean by representation
in the above discussion, which depends on how each sub-
committee is selected in Iterated Rounding. In each round
t, the algorithm first computes a γ-approximately stable
lottery ∆t — a distribution over size-kt committees — for
the currently unsatisfied user distribution. It then selects a
committee St from the support of ∆t.

To quantify representation, we define the rank of a commit-
tee S for user i under lottery ∆ as

Rank(i;S,∆) := Pr
S′∼∆

[S ⪰i S
′],

where S ⪰i S
′ if user i’s favorite candidate in S is the same

or more preferred than their favorite candidate in S′. Intu-
itively, a larger rank indicates that S is more representative

of ∆ for user i. Given a threshold x ∈ (0, 1), we say that
user i is satisfied at the t-th round if Rank(i;St,∆t) ≥ x.
Following this, the users that remain unsatisfied at round t
are

Ux
t = {i | Rank(i;Sτ ,∆τ ) < x, ∀τ < t} .

Accordingly, we use Dx
t to denote the conditional distribu-

tion of unsatisfied users, which is Dx
t := D | Ux

t .

Algorithm 1 is obtained by adapting the above iterated
rounding framework to a sampling-based and incomplete-
preference setting. In particular, the estimation of user ranks,
selection of sub-committees in each round, and the identifi-
cation of unsatisfied users must all be carried out using only
finite samples and pairwise comparison queries, rather than
exact access to users’ complete rankings.

In the remainder of this section, we formally establish the
guarantees achieved by Algorithm 1, showing how the al-
gorithm maintains approximate local stability despite the
errors introduced by finite-sample estimation.
Theorem 3.1 (Guarantee of Algorithm 1). For any user
distribution D and committee size k, Algorithm 1 returns a
committee Ŝ of size at most k, such that with probability at
least 1 − δ, Ŝ is (16 + O(ε))-approximately stable for D.
The algorithm has the following complexity:

(i) The total number of users sampled is n =
O(poly(m, 1/ε, log 1/δ));

(ii) The maximum number of pairwise comparisons per
user is d = O( k

ε2 log(
m
εδ )).

In particular, when ε is set to a constant, Algorithm 1
achieves a constant-factor approximation using Õ(k) pair-
wise comparisons per user.

Below we provide a proof sketch for a simpler case where
D has poly(m, 1/ε, log(k), log(1/δ)). The full proof for
the general case is relegated to Appendix B.

Proof sketch of Theorem 3.1. To show that the final com-
mittee Ŝ is approximately stable, we can decompose the
user population into T rounds based on when a user be-
comes satisfied. Recall that we have used Ux

t to denote
the users that remain unsatisfied at round t, measured using
their true rank. However, since each user only answers a lim-
ited number of queries, the quantity Rank(i;S,∆) cannot
be computed directly. Instead, we estimate it by querying
user i to compare S against a finite number of committees
S′
1, . . . , S

′
L

i.i.d.∼ ∆, and define

R̂ank(i;S,∆) :=
1

L

L∑
ℓ=1

1 [S ⪰i S
′
ℓ] .

Here, each query 1 [S ⪰i S
′
ℓ] can be implemented by quer-

ing user i with |S|+ |S′| pairwise comparisons. By standard
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concentration arguments, this estimator achieves at most ε
additive error with Õ(1/ε2) draws from ∆ (see Fact B.5).

With the estimated rank, we use

Ûx
t :=

{
i | R̂ank(i;Sτ ,∆τ ) ≤ x, ∀τ < t

}
to denote the subset of users that remain unsatisfied at round
t, measured using their estimated rank.

Now we decompose the user population into T + 1 sub-
groups, where the t-th subgroup is the users that become
satisfied at round t, i.e., Ux

t \ Ux
t+1 for t ≤ T , and the re-

maining users are Ûx
T+1 for t = T + 1. By combining the

argument in Jiang et al. (2020) with estimation errors, we
can show that the newly satisfied users are well-represented
by the committee St, as shown by the following lemma:

Lemma 3.2 (Guarantee for satisfied users). Let St be the
sub-committee selected at round t, and x be the threshold
used to measure satisfaction with the estimated rank. We
have that for any alternative a /∈ St,

Pr
i∼D̂x

t

[
a ≻i St and i ∈ Ûx

t \ Ûx
t+1

]
≤ 1 + ε

kt · (x− ε)
.

In other words, users who are satisfied in the t-th round (i.e.,
users in Ûx

t \ Ûx
t+1) have bounded probability of deviation.

More importantly, we must ensure that the algorithm con-
tinues to make steady progress by shrinking the fraction of
unsatisfied users, even when we are using estimated ranks
with some additive errors. This crucially depends on our
choice of the threshold x. We employ a more conserva-
tive threshold of x = β − ε when updating the distribution
of unsatisfied users, as a proxy for the intended threshold
β. This choice is designed to account for estimation er-
ror and to ensure that users who are already satisfied are
successfully removed from the estimated unsatisfied set,
i.e., Ûβ−ε

t ⊆ Uβ
t . We show in the following lemma that,

with this conservative threshold, the probability mass of
estimated unsatisfied users decreases geometrically across
rounds.

Lemma 3.3 (Geometrically shrinking unsatisfied users).
For all t ≥ 1, when the threshold is set to be x = β − ε,
the probability mass of estimated unsatisfied users shrink
geometrically: with probability at least 1− Tδ,

µ̂t := Pr
i∼D

[i ∈ Ûβ−ε
t ] ≤ (β + 2ε)t−1 for all t ∈ [T ].

Putting the two lemmas together, we have the following
guarantee:

Pr
i∼D

[a ≻i Ŝ]

(a)

≤
T∑

t=1

Pr
i∼D

[
a ≻i Ŝ, i ∈ Ûβ−ε

t \ Ûβ−ε
t+1

]
+ Pr

i∼D

[
Ûβ−ε
T+1

]
(b)

≤
T∑

t=1

Pr
i∼D

[
a ≻i St, i ∈ Ûβ−ε

t \ Ûβ−ε
t+1

]
+ Pr

i∼D

[
Ûβ−ε
T+1

]
=

T∑
t=1

µ̂t · Pr
i∼D̂β−ε

t

[
a ≻i St, i ∈ Uβ−ε

t \ Uβ−ε
t+1

]
+ µ̂T+1

(c)

≤
T∑

t=1

(β + 2ε)t−1 · (1 + ε)

αt−1(1− α)k · (β − 2ε)
+ (β − 2ε)T+1 .

In the above argument, (a) follows from dividing the user
population by the first time they are removed from the es-
timated unsatisfied set; (b) leverages the fact that a ≻i Ŝ
implies a ≻i St; (c) follows from combining Lemma 3.2
(with x = β − ε) and Lemma 3.3.

Finally, we optimize the parameters α, β, ε to minimize
the approximation factor. By setting α = 1

2 + 4ε, β =
1
4 + 2ε, and T = 2 log(k/ε), the final bound is at most
16+O(ε). For example, setting ε = 0.01 and 0.05 gives us
approximation factors of 18.97 and 39.2, respectively.

4. From Committees to Rankings
Building from the committee selection algorithm, we next
construct algorithms that output full rankings over models.
Recall that we extend the local stability notion from commit-
tee selection to rankings by requiring that, for every k ≤ m,
the top-k prefix of the ranking forms an (approximately)
locally stable committee. This prefix-based formulation
captures the fair representation property we seek at every
cutoff of the leaderboard ranking.

The connection between committee selection and rank-
ings is conceptually natural and has been explored in prior
work (Elkind et al., 2017; Skowron et al., 2017; Aziz et al.,
2025), especially through committee monotonicity, which
requires that the committee selected for size k be a subset of
the committee selected for size k + 1 for all k.4 Under this
condition, the sequence of nested committees can be natu-
rally combined into a ranking, with candidates ordered so
that each prefix coincides with a committee in the sequence
and inherits its representation guarantees.

Our approach follows similar ideas, but we do not require
committee monotonicity as a primitive. Instead, we begin
from the ranking-level requirement and design algorithms
that use committee selection as a subroutine to achieve this

4Aziz et al. (2025) focuses on achieving committee monotonic-
ity and the PSC (Proportionality for Solid Coalition) notion under
the classic model where the algorithm has access to each user’s
complete ranking. In Appendix A, we show that PSC does not ex-
tend well to the leaderboard setting in which each user’s preference
is accessed through limited number of pairwise comparisons.
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Algorithm 2 Ranking via Geometric Checkpoints

Input: Sampling oracle D; committee selection subrou-
tine COMMITTEE (Algorithm 1)
Output: A ranking π ∈ Sym(C)
Parameter: Growth factor λ > 1, R← ⌈logλ m⌉
π ← [ ]
for r = 1, . . . , R do
kr ← ⌊λr−1⌋ (size of the next checkpoint committee)
Ar ← COMMITTEE(kr,D)
Append Ar \A≤r−1 to π, of arbitrary order or as ties
(where A≤r−1 :=

⋃
s≤r−1 As)

if A≤r = C then return π
end for

goal. This allows for more flexibility in how committee
selection is employed.

We present two methods for constructing rankings. The first
uses the committee selection algorithm as a subroutine to
produce a ranking that satisfies approximate local stability
with a provable constant-factor guarantee. The second is
a heuristic algorithm that modifies the iterated rounding
procedure in Algorithm 1 to encourage a monotone growth
of selected candidates across rounds, effectively inducing a
ranking by the order in which candidates are added. While
this second approach does not admit strong theoretical guar-
antees, it has the advantage of requiring fewer user samples,
and we find that it performs well empirically.

Approach based on checkpoints. Our first approach is
based on the observation that, to ensure a ranking is ap-
proximately locally stable at every prefix, it is sufficient to
guarantee that each prefix committee Wπ

k contains a smaller
sub-committee A ⊆Wπ

k that is approximately stable. Con-
cretely, if the sub-committee is γ-approximately local stable
and satisfies |A| ≥ k

c for a constant c, then if a user prefers
a to the entire prefix Wπ

k , they also prefer a to subset A,
and therefore the stability of A transfers to stability of Wπ

k

with an additional multiplicative factor:

Pr
i∼D

[a ≻i W
π
k ] ≤ Pr

i∼D
[a ≻i A] ≤ γ

|A|
≤ c · γ

k
.

To realize this idea, we use checkpoint committees to im-
pose a blockwise structure on the ranking. We compute a
sequence of approximately stable committees A1, . . . , AR

using Algorithm 1, with geometrically increasing sizes. The
ranking π is constructed by concatenating these committees:
we first set the top-ranked model as π(1) = A1 (which is
a singleton committee), and for each r ≥ 2, append the
models in Ar that have not been added previously as the
next block (in arbitrary order, or equivalently as ties). By
construction, every prefix Wπ

k contains a checkpoint Ar(k)

whose size is within a constant factor of k, and the above

Algorithm 3 Ranking via Committee Monotonicity

Input: Sampling oracle D; committee selection subrou-
tine COMMITTEE (Algorithm 1)
Output: A ranking π ∈ Sym(C)
Initialize COMMITTEE with committee size m and
single-addition decomposition (kt = 1)t≤m.
π ← [ ]
for t = 1, . . . ,m do

at ← candidate added to the committee at round t
Append at to π if it has not been added before

end for
Append remaining candidates to π in arbitrary order
return π

inequality transfers its stability guarantee to Wπ
k .

We formalize this construction in Algorithm 2 and state its
theoretical guarantee in Theorem 4.1. The proof of Theo-
rem 4.1 is deferred to Appendix C. Note that setting λ = 2
gives the best theoretical guarantee, but we might vary λ in
practice to control the number of ties.

Theorem 4.1 (Guarantee of Algorithm 2). Let π be the
output ranking of Algorithm 2 with parameter λ > 1. If the
committee selection subroutine satisfies γ-approximate local
stability, then the ranking π satisfies λ2

λ−1 · γ-approximate
local stability if λ is an integer, and O( 1

1−λ ) · γ if λ↘ 1.

Approach based on committee monotonicity. Our sec-
ond approach is more heuristic and based on a direct adap-
tation of the committee selection algorithm to encourage
committee monotonicity. Recall that Algorithm 1 selects
a size-k committee through a multi-round process: it first
specifies a decomposition k = k1+k2+ . . .+kT , and then,
in each round t ∈ [T ], it selects a sub-committee of size
kt for the distribution of currently unsatisfied users. The
decomposition that gives rise to the theoretical guarantee in
Theorem 3.1 uses a geometric schedule where kt ∝ αt · k.
While it effectively produces stable committee at a fixed
size, the decomposition can change substantially when mov-
ing from size-k to size-(k + 1) committee. As a result, the
output committees tend to violate monotonicity in general:
Ŝk ̸⊆ Ŝk+1.

To address this issue, we consider an alternative decompo-
sition that adds candidates one at a time. Specifically, for
selecting size-k committee, we set T = k rounds and kt = 1
for all t ∈ [T ]. Under this decomposition, the committee
selection process grows the committee incrementally by a
single candidate in each round. This modification directly
ensures committee monotonicity: constructing a size-(k+1)
committee is equivalent to extending the size-k committee
construction by one additional round, which naturally yields
nested committees when randomness is shared.

6
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Using this alternative decomposition schedule, it suffices to
run a single instance of Algorithm 1 with target committee
size m, and obtain the final ranking π by ordering candidates
according to the rounds in which they are added to the
committee. We summarize this approach in Algorithm 3.

5. Experiments
We empirically demonstrate the performance of our commit-
tee selection algorithm and both ranking algorithms across
both synthetic and semi-synthetic user distributions. We
begin with fully synthetic simulations, where the goal is
to empirically measure the stability of committees selected
using Algorithm 1, which we find to be significantly bet-
ter than the bounds given in Theorem 3.1. We then turn
to a semi-synthetic experiment based on real data from
LMArena (Chiang et al., 2024). We show that the currently
adopted Bradley-Terry ranking indeed violates stability for
some top-k prefix committees, whereas our ranking is able
to preserve stability for all top-k prefix committees.

5.1. Committee Stability with Mixtures of Mallows

We construct synthetic user distributions D using a mix-
ture of Mallows models (Mallows, 1957), a well-established
model for user heterogeneity applied across social choice
and recommender systems. We employ the standard
Mallows-ϕ parameterization, where each mixture compo-
nent consists of a central ranking π and a dispersion parame-
ter ϕ, and the probability of drawing a ranking r is given by
Pr(r) ∝ ϕd(r,π), where d(r, π) is the Kendall tau distance.

As a basic demonstration of the ability of Algorithm 1 to se-
lect a stable committee from a heterogeneous population, we
create a mixture of k Mallows models with central rankings
{π1, ..., πk} drawn uniformly at random from all permu-
tations over m = 20 candidates, and identical dispersion
parameters ϕ and mixture weights 1

k . We then measure the
approximate stability of a committee of size k produced
by Algorithm 1. We compare this to two baselines: (i)
an “ideal” baseline consisting of the top-ranked candidate
from each central ranking, Wk = {π1(1), ..., πk(1)}, and
(ii) a “status quo” baseline consisting of the top-k prefix of
a Bradley-Terry ranking.

To measure stability for a given committee Wk, we estimate
a stability approximation factor γ̂ from n rankings sampled
from the mixture: γ̂ = k

(
maxa/∈Wk

1
n

∑n
i=1 1 [a ≻i Wk]

)
.

This roughly captures the proportion of users that are unsat-
isfied with the committee Wk. A value of γ̂ = 1 means that
no more than the required 1

k fraction of users is unsatisfied.

Results. Figure 1 shows the approximation factors γ̂ for
committees produced using Algorithm 1, as well as the two
previously described baselines. Across varying k, we find

that Algorithm 1 manages to produce committees that are
stable, and with γ̂ being significantly better than the bound
in Theorem 3.1. In contrast, the top-k prefix committee
of the Bradley-Terry ranking actually violates stability for
many k when ϕ = 0.1 and ϕ = 0.5. Finally, the committee
consisting of the top-ranked model in each Mallows central
ranking (labeled “Mallows centers”) performs well when ϕ
is small, but as ϕ increases, the probability that a user’s top
candidate is not ranked first by one of the Mallows centers
also increases. Thus, the coverage of the Mallows centers
worsens as ϕ increases, and violates stability when ϕ = 0.9.

5.2. Ranking Stability with LMArena Simulation

We next compare the stability of rankings produced by our
proposed algorithms to that of a Bradley-Terry ranking,
which is currently applied by the LMArena platform. We
construct semi-synthetic user distributions based on the re-
cent “arena-human-preference-140k” dataset released by
LMArena (LMArena Team, 2025a; LMArena, 2025) (as
our algorithms are online algorithms, we cannot run these
on the static LMArena dataset directly). Candidates corre-
spond to LLMs (of which we filter to just the top m = 20
by overall Bradley-Terry ranking), and users correspond to
users that make pairwise comparisons between LLMs for
various prompts. We construct a mixture of Mallows dis-
tribution that seeks to roughly capture the heterogeneity in
rankings by prompt category. Specifically, we create a mix-
ture of Mallows with one center for each of the 20 largest
prompt categories (by category tag), with each central
ranking set to the Bradley-Terry ranking per category. The
mixture weights are given by the relative number of pair-
wise comparisons per category. Appendix D.4 reports exact
rankings and weights found for each category. As before,
we conduct experiments for varying dispersions ϕ, using
the same dispersion for all categories. In essence, we model
a population of users whose preferences are generally clus-
tered around prompt categories, and higher dispersions ϕ
correspond with higher user diversity within these clusters.

Results. Figure 2 shows the stability approximation fac-
tors γ̂ of each of the top-k committees for the Bradley-Terry
ranking and the rankings produced by Algorithms 2 and
3. The Bradley-Terry ranking actually violates stability for
top-k prefix committees with k = 4, 5 when ϕ = 0.1, and
k = 5 when ϕ = 0.5. In contrast, both Algorithms 2 and 3
maintain stability for all k and all ϕ. Intuitively, stability is
“easiest” to satisfy when ϕ = 0.9, since this corresponds to
high enough user diversity that there are no large clusters of
users to activate the stability constraint. While Algorithm 2
has stronger theoretical guarantees, we find that Algorithm
3 performs slightly better empirically.
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Figure 1. Comparison on mixtures of Mallows of the stability of committees produced by Algorithm 1 and the two described baseline
methods. For each k, a mixture of Mallows model is created with k central rankings sampled uniformly at random, and a committee of
size k is produced by each method. Values of γ̂ ≤ 1 indicate that the committee produced was stable. The plotted points and error regions
show the mean and standard error, respectively, after 10 repeats.
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Figure 2. Comparison on LMArena-based simulation of the stability of Bradley-Terry rankings vs. the rankings produced by Algorithms 2
and 3. Values of γ̂ ≤ 1 indicate that the top-k prefix committee was stable for each k. The plotted points and error regions show the mean
and standard error, respectively, after 5 repeats. A sample of exact rankings for each method is given in Appendix D.4.

6. Discussion
We conclude by discussing several promising directions for
future research. First, our framework assumes that a user’s
type deterministically yields their preference ranking over
models. In practice, user preferences may depend on the
specific prompt as well as stochasticity in model responses.
Even within a single multi-round interaction on LMArena,
model pairs are often resampled for each prompt and treated
as new battles, which can lead to variability in the user’s
preferences. Extending our framework to prompt-dependent
preferences is an important direction for future work.

Second, while our proposed algorithms guarantees approx-
imate local stability, they rely on the ability to adaptively
choose which model pairs are presented to users in each
battle, based on both previous interactions with the same
user and the history of battles contributed by other users.
In many real-world settings, however, one must work with
pre-collected preference datasets in which users already
contribute varying numbers of comparisons. It would be
interesting to study how to achieve fair representation in this
offline setting.

Finally, it is natural to consider stronger notions of represen-
tation beyond local stability, such as proportional represen-
tation. While local stability guarantees that cohesive user
coalitions of weight O(1/k) are represented, proportional
representation notions aim to guarantee that representation
scales proportionally with the size of cohesive groups. For
instance, Aziz et al. (2017b) also study the notion of full
local stability which ensures any user subgroup of O(ℓ/k)
fraction of users have no collective deviation of size ℓ. Pro-
portionality for Solid Coalitions (PSC) (Dummett, 1984;
Aziz et al., 2025) is another prominent proportional repre-
sentation notion; however, as we show in Appendix A, even
access to all k-wise comparisons is insufficient to verify
PSC for committee size of k. Future work could seek to
understand the query complexity required to achieve such
stronger guarantees under pairwise comparison access and
design efficient algorithms to do so.
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Impact Statement
This paper advances the evaluation of large language mod-
els by studying leaderboard design under pluralistic user
preferences. By incorporating notions of fair representation
from social choice theory, our work aims to make model
rankings more representative for diverse user preferences
and use cases. We do not anticipate significant societal
impacts beyond those already associated with the use of
crowdsourced human feedback for model evaluation.

References
Aziz, H., Brill, M., Conitzer, V., Elkind, E., Freeman, R.,

and Walsh, T. Justified representation in approval-based
committee voting. Social Choice and Welfare, 42(2):
461–485, 2017a.

Aziz, H., Elkind, E., Faliszewski, P., Lackner, M., and
Skowron, P. The Condorcet principle for multiwinner
elections: From shortlisting to proportionality. arXiv
preprint arXiv:1701.08023, 2017b.

Aziz, H., Lederer, P., Peters, D., Peters, J., and Ritossa, A.
Committee monotonicity and proportional representation
for ranked preferences. 2025.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Procaccia,
A. D. (eds.). Handbook of Computational Social Choice.
Cambridge University Press, 2016.

Charikar, M., Lassota, A., Ramakrishnan, P., Vetta, A., and
Wang, K. Six candidates suffice to win a voter majority.
In Proceedings of the 57th Annual ACM Symposium on
Theory of Computing, pp. 1590–1601, 2025.

Cheng, Y., Jiang, Z., Munagala, K., and Wang, K. Group
fairness in committee selection. ACM Transactions on
Economics and Computation (TEAC), 8(4):1–18, 2020.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhu, B., Zhang, H., Jordan, M., Gonzalez,
J. E., and Stoica, I. Chatbot Arena: An open platform for
evaluating LLMs by human preference. In Proceedings of
the 41st International Conference on Machine Learning
(ICML), 2024.

Dummett, M. Voting procedures. 1984.

Elkind, E., Faliszewski, P., Skowron, P., and Slinko, A.
Properties of multiwinner voting rules. Social Choice
and Welfare, 48(3):599–632, 2017.

Fish, S., Gölz, P., Parkes, D. C., Procaccia, A. D., Rusak, G.,
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A. Notion for Proportional Representation
In this section, we discuss an alternative notion called Proportionality for Solid Coalitions (PSC) (Dummett, 1984; Aziz
et al., 2025), which is a proportional representation notion that gives stronger guarantees for larger cohesive subgroups.
Definition A.1 (Proportionality for Solid Coalitions (PSC)). A committee Wk of size k satisfies Proportionality for Solid
Coalitions (PSC) for user distribution D if, for any candidate set C ⊆ C, if Pri∼D[∀a ∈ C, ∀b /∈ C, a ≻i b] >

ℓ
k+1 for

some ℓ ∈ N, then it holds that |C ⊆Wk| ≥ min{ℓ, |C|}.

We will show that it is challenging to verify PSC with incomplete rankings. Following Halpern et al. (2023; 2024), we
consider incomplete rankings of the form of k-wise comparisons, where we assume that the algorithm can pick a size-k
subset A ⊆ C and ask a random user sampled from D to provide their ranking of A in the form of a k-wise comparison.
Note that k-wise comparison can be implemented using O(k log k) adaptive pairwise comparisons or O(k2) non-adaptive
ones.
Proposition A.2 (Impossibility of verifying PSC with k-wise comparisons). For any committee size k ≤ m− 1, there does
not exist a deterministic algorithm that can verify whether any given size-k committee satisfies PSC, using only k-wise
comparison queries. In addition, no randomized algorithm can be correct with probability greater than k

k+1 .

Proof of Proposition A.2. It suffices to prove the claim in the infinite-sample limit, in which the algorithm has access to the
exact marginal distribution of the user preference profile restricted to every subset A ⊆ C with |A| ≤ k. Any impossibility
in this setting immediately implies the same impossibility for finite samples.

We leverage the notion of k-indistinguishability introduced by Halpern et al. (2024). Two user distributions D1,D2 ∈
∆(Sym(C)) are said to be k-indistinguishable if

D1|A = D2|A for all A ⊆ C with |A| ≤ k.

Our construction. Let m′ := k + 1 and consider candidate subset A = {1, 2, . . . ,m′} ⊆ C. By the construction of
Halpern et al. (2024), there exists a family of m′ distributions {Dc}c∈[m′] ⊆ ∆(Sym(A)) such that:

1. The distributions {Dc}c∈[m′] are k-indistinguishable, and

2. In each distribution Dc, candidate c is the unique candidate in A whose plurality score exceeds 1
m′ :

pluDc(c) := Pr
i∼D

[c ≻i A \ {c}] >
1

m′ ; whereas pluDc(a) <
1

m′ , ∀a ∈ A \ {c}.

We extend each Dc to a distribution D̃c ∈ ∆(Sym(C)) by appending the remaining candidates {m′ + 1, . . . ,m} to the
bottom of every ranking in a fixed order. Formally, if σi ∼ Dc is the ranking of user i over A, then we define

σ̃i := σi followed by (m′ + 1) ≻i (m
′ + 2) ≻i · · · ≻i m,

and let D̃c denote the induced distribution over rankings σ̃i.

Next, we will show that PSC forces the inclusion of c. Since the additional candidates are appended below those in A, the
plurality scores of candidates in A are unchanged. In particular,

pluD̃c(c) = pluDc(c) >
1

k + 1
.

Thus, the set of users who rank c first forms a solid coalition for {c} of size exceeding the PSC threshold. Consequently, any
size-k committee Wk that satisfies PSC under D̃c must contain c.

On the other hand, it is not hard to see that k-indistinguishability is preserved after appending these extra candidates. As a
result, any algorithm that only accesses k-wise comparison information receives identical input (or identically distributed
input in the finite-sample regime) for all distributions D̃c and therefore must output the same YES/NO for each of them.

Now Consider a committee W ⊆ A of size k. The above argument shows that W satisfies PSC under D̃c for every c ∈W ,
but fails to satisfy PSC under D̃c⋆ for c⋆ ∈ A \W . However, the algorithm must return the same answer for all D̃c, and thus
cannot be correct on all instances. This completes the proof for deterministic algorithms. The randomized bound follows
from the same construction.
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B. Proof of Theorem 3.1
Theorem 3.1 (Guarantee of Algorithm 1). For any user distribution D and committee size k, Algorithm 1 returns a
committee Ŝ of size at most k, such that with probability at least 1− δ, Ŝ is (16 +O(ε))-approximately stable for D. The
algorithm has the following complexity:

(i) The total number of users sampled is n = O(poly(m, 1/ε, log 1/δ));
(ii) The maximum number of pairwise comparisons per user is d = O( k

ε2 log(
m
εδ )).

In particular, when ε is set to a constant, Algorithm 1 achieves a constant-factor approximation using Õ(k) pairwise
comparisons per user.

We begin by proving Theorem 3.1 for the simplified setting in which the distribution D has finite support of size κ =
poly(m, k, 1/ε, 1/δ). We address the extension to general distributions in Appendix B.3.

Following the proof sketch in Section 3, we can apply Lemmas 3.2 and 3.3 iteratively at each round, conditioning on the
success event of previous rounds and |Rank(i;S,∆t) − R̂ank(i;S,∆)| ≤ ε for all i ∈ supp(D)5 and all S ∈ supp(∆t).
By Fact B.5, a union bound over all rounds, and the guarantee from Jiang et al. (2020) that lotteries ∆t has support
size poly(m, 1/ε), it suffices to implement the rank estimator using Algorithm 5 with L = O

(
log(Tκ·|supp(∆)|/δ)

ε2

)
=

O

(
log(

m
εδ )

ε2

)
sampled committees. This guarantees the total failure probability of the rank estimator is at most δ.

Now we analyze the sample complexity of the algorithm.

• Pairwise comparisons per user. Algorithm 1 accesses users through the rejection sampling oracle implemented
in Algorithm 4. For each user i, this oracle calls the rank estimator ≤ T times, with the sequence of Sτ and ∆τ in
previous rounds. The total number of pairwise comparisons that i being called at round t needs to make is

O

(
t∑

τ=1

|Sτ | ·
log(mεδ )

ε2

)
= O

(
k log(mεδ )

ε2

)
.

When ε is set to be a constant, each user contributes O(k log(m/δ)) pairwise comparisons.

• Total number of sampled users. In each round t, computing the (1 + ε)-approximately stable lottery ∆t using the
algorithm of Cheng et al. (2020) requires poly(m, 1/ε) calls to the sampling oracle D̂β−ε

t . For the sampling oracle
Algorithm 4, to make sure that the total failure probability is at bounded by O(δ), it suffices to set the number of trials
to be M = O

(
k log(mεδ )

)
. The next step of selecting St from the support of ∆t requires N · |supp(∆t)| sampled

users, where N = O
(
log(mεδ )/ε

2
)

according to Lemma 3.3. Put together, the number of user sampled in each round is
O(poly(m, 1

ε , log(
1
δ )). Since there are T = O(log(kε )) rounds, the total number of users sampled remains to be

O
(
poly(m, 1

ε , log(
1
δ )
)
.

B.1. Proof of Lemma 3.2

Lemma (Restatement of Lemma 3.2). Let St be the sub-committee selected at round t, and x be the threshold used to
measure satisfaction with the estimated rank. We have that for any alternative a /∈ St,

Pr
i∼D̂x

t

[
a ≻i St and i ∈ Ûx

t \ Ûx
t+1

]
≤ 1 + ε

kt · (x− ε)
.

In other words, users who are satisfied in the t-th round (i.e., users in Ûx
t \ Ûx

t+1) have bounded probability of deviation.

Proof of Lemma 3.2. We condition throughout on the success event of Fact B.5 for lottery ∆t, under which the estimated
rank R̂ank(i;S,∆t) is an ε-additive approximation of the true rank Rank(i;S,∆t) for all relevant users i and all committees
S ∈ supp(∆).

5As a result, |Rank(i;S,∆t) − R̂ank(i;S,∆t)| ≤ ε also holds for all i ∈ supp(D̂β−ε
t ) since D̂β−ε

t is obtained by performing
rejection sampling on D.
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We first recall a result about stable lottery from (Jiang et al., 2020, Claim 1 and Lemma 1). Suppose ∆ is a γ-approximately
stable lottery for D with committee size k, and S is any committee in the support of ∆. Then, for any threshold x ∈ (0, 1)
and any alternative a ∈ C, we have

Pr
i∼D

[a ≻i S and Rank(i;S,∆) ≥ x] ≤ γ

kx
.

We now apply this fact to round t of the execution of Algorithm 1. Since ∆t is an (1 + ε)-approximately stable lottery for
D̂x

t , we have

Pr
i∼D̂x

t

[
a ≻i S and i ∈ Ûx

t \ Ûx
t+1

]
≤ Pr

i∼D̂x
t

[
a ≻i S and R̂ank(i;St,∆t) > x

]
≤ Pr

i∼D̂x
t

[a ≻i S and Rank(i;St,∆t) > x− ε]

≤ 1 + ε

kt · (x− ε)
,

where the second inequality uses the ε-additive accuracy of R̂ank guaranteed by Fact B.5, and the final inequality follows
from the approximate stability bound above.

B.2. Proof of Lemma 3.3

Lemma (Restatement of Lemma 3.3). For all t ≥ 1, when the threshold is set to be x = β − ε, the probability mass of
estimated unsatisfied users shrink geometrically: If N ≥ O

(
log(mk/(εδ))

ε2

)
, then with probability at least 1− δ,

µ̂t := Pr
i∼D

[i ∈ Ûβ−ε
t ] ≤ (β + 2ε)t−1 for all t ∈ [T ].

Proof of Lemma 3.3. We start with proving an auxiliary lemma about selecting committees from stable lottery support
based on estimated ranks, and then apply it to each round of Algorithm 1 to prove Lemma 3.3.

Lemma B.1 (Empirical selection from a stable lottery). For any user distribution D and any lottery ∆, let UnsD =

Pri∼D[R̂ank(i;S,∆) ≤ β−ε] denote the unsatisfied probability underD. Let ÛnsD be an unbiased estimator of UnsD from

user samples. Specifically, given N i.i.d. users i1, . . . , iN ∼ D, define ÛnsD(S) =
1
N

∑N
j=1 1

[
R̂ank(ij ;S,∆) ≤ β − ε

]
.

Let Ŝ ∈ argminS∈supp(∆) ÛnsD(S) denote the committee that minimizes the empirical unsatisfied probability.

If N ≥ O
(

log(|supp(∆)|/δ)
ε2

)
and |Rank− R̂ank| ≤ ε always hold, then with probability at least 1− δ,

UnsD(Ŝ) ≤ β + 2ε .

Proof of Lemma B.1. By standard concentration argument and the union bound, when N ≥ O
(

log(|supp(∆)/δ)
ε2

)
, we have

that with probability at least 1− δ,∣∣ÛnsD(S)− UnsD(S)
∣∣ ≤ ε uniformly for all S ∈ supp(∆).

According to (Jiang et al., 2020, Lemma 1), we have the fact that for any D,∆ and threshold β, there always exists a
committee S ∈ supp(∆) such that Pri∼D[Rank(i;S,∆) ≤ β] ≤ β. We denote such a committee with S⋆.

Now we combine the above facts to bound UnsD(Ŝ). We have

UnsD(Ŝ) ≤ ÛnsD(Ŝ) + ε ≤ ÛnsD(S
⋆) + ε ≤ UnsD(S

⋆) + 2ε = Pr
i∼D

[
R̂ank(i;S,∆) ≤ β − ε

]
+ 2ε

≤ Pr
i∼D

[Rank(i;S,∆) ≤ β] + 2ε ≤ β + 2ε ,

where the second last inequality holds since R̂ank(i;S,∆) ≤ β − ε implies Rank(i;S,∆) ≤ β due to the assumption
|Rank− R̂ank| ≤ ε.
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Now we apply Lemma B.1 to prove Lemma 3.3. We do this by induction on t ∈ [T ]. Consider a given round t and assume
that we already have µ̂t−1 ≤ (β + 2ε)t−2. Similar to Lemma 3.2, we condition on the success event of Fact B.5 for the
computed ∆t, which holds because of our choice of N ≥ O

(
log(mk/(εδ))

ε2

)
and that |supp(∆t)| ≤ poly(m, 1/ε) by Jiang

et al. (2020).

By applying Lemma B.1 with user distribution D̂β−ε
t and the approximately lottery-committee pair (∆t, St) computed via

empirical rank estimates, we have that with probability at least 1− δ/T ,

Pr
i∼D̂β−ε

t

[
i ∈ Ûβ−ε

t+1

]
= Pr

i∼D̂β−ε
t

[
R̂ank(i;St,∆t) ≤ β − ε

]
≤ β + 2ε .

Then we have

µ̂t+1 = Pr
i∼D

[
i ∈ Ûβ−ε

t+1

]
= Pr

i∼D|Ûβ−ε
t

[
i ∈ Ûβ−ε

t+1

]
· Pr
i∼D

[
i ∈ Ûβ−ε

t

]
≤ (β + 2ε) · µ̂t ≤ (β + 2ε)t−1 .

The proof is complete by taking a union bound over the failure probabilities in each round t ∈ [T ].

B.3. Extension to the general case

Now consider D that can have arbitrarily large support. We can sample κ points from D and let D̃ denote the empirical
distribution over the κ points. Then we run our proposed algorithm to select the stable committee for D̃.

Lemma B.2. When κ ≥ k3 log(m/δ)
ε2 , with probability at least 1− δ, any γ-approximately stable committee for D̃ is also

γ + ε-approximately stable committee for D.

Proof. With probability at least 1− δ, for any pair of (a, S) where a ∈ C and S ⊆ C with |S| = k,∣∣∣∣ Pri∼D
[a ≻i S]− Pr

i∼D̂
[a ≻i S]

∣∣∣∣ ≤ ε

k
.

Thus, for any γ-approximately stable committee Wk for D̂, we have

max
a/∈Wk

Pr
i∼D

[a ≻i Wk] ≤ max
a/∈Wk

Pr
i∼D̂

[a ≻i Wk] +
ε

k
≤ γ + ε

k
.

Lemma B.3 (No repetition of sampled users). Given κ ≥ n2/δ points, when sampling n uniformly at random from these κ
points, with probability at least 1− δ, there is no repetition in n samples.

Proof. We denote the n draws as X1, . . . , Xn, where each sample is drawn from the set of κ points uniformly at random,
and taken independently with replacement. For 1 ≤ i < j ≤ n define the event

Eij = {Xi = Xj}.

For any fixed pair (i, j) we have Pr(Eij) = 1/κ. By the union bound, the probability that there exists at least one collision
satisfies

Pr

( ⋃
1≤i<j≤n

Eij

)
≤

∑
1≤i<j≤n

Pr(Eij) =

(
n

2

)
1

κ
=

n(n− 1)

2κ
≤ n2

2κ
.

Since κ ≥ n2/δ, we obtain

Pr[X1, . . . , Xn has repetitions] ≤ n2

2κ
≤ n2

2 · (n2/δ)
≤ δ.

The proof is thus complete.
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Algorithm 4 Rejection Sampling Oracle for Unsatisfied Users

Input: Sampling oracle D; history of previous rounds (Sτ ,∆τ )τ≤t; failure probability p; rank estimation oracle R̂ank

Output: A random user i ∼ D̂x
t , or failure

Number of trials M ← ⌈k log(1/p)⌉
for ℓ = 1 to M do

Sample a user i ∼ D
if R̂ank(i;Sτ ,∆τ ) ≤ β − ε for all τ ≤ t then

Return i
end if

end for
Return failure

B.4. Additional oracles used in Algorithm 1

Lemma B.4 (Guarantee of Algorithm 4). Suppose D is a user distribution, and R̂ank is a rank estimation oracle with error
ε. Then, Algorithm 4 has failure probability at most p, and when it does not fail, the output user i is from the conditional
distribution D|Ûx

t where D̂β−ε
t = Ûβ−ε

t is the estimated unsatisfied event at round t. The number of sampled voters is
O(k log(1/p)).

Proof of Lemma B.4. The fact that output users follow D̂x
t is from standard fact of rejection sampling. Here, we bound the

failure probability here.

At each trial, the probability of sampling a user that satisfies

R̂ank(i;Sτ ,∆τ ) ≤ x, ∀τ ≤ t ⇐⇒ i ∈ Ûx
t

is exactly µ̂t = Pri∼D[i ∈ Ûx
t ]. Therefore, the failure probability after M trials is at most (1− µ̂t)

M ≤ e−µ̂tM . it suffices
to show that µ̂t ≥ Ω(1/k). Note that Lemma B.1 provides an upper bound that µ̂t ≤ (β + 2ε)t−1, but the actual decrease
rate might be faster. To deal with this, it suffices to add a stopping condition at Algorithm 1 for early stopping as long as
µ̂t ≤ O(1/k).

Algorithm 5 Rank Estimation Oracle

Input: Committee S, lottery ∆, user i, failure probability δ, error ε.
Output: An estimate of Rank(i;S,∆) = PrS′∼∆[S ⪰i S

′].
Number of trials L← ⌈ 1

ε2 log(1/δ)⌉
Sample committees S1, . . . , SL

i.i.d.∼ ∆

Return R̂ank(i;S,∆) ≜ 1
L

∑L
ℓ=1 1 [S ⪰i Sℓ]

Fact B.5 (Guarantee of Algorithm 5). Suppose the user distribution D has support size at most κ, then for a fixed lottery ∆,
Algorithm 5 with failure probability δ

κ·|supp(∆)| guarantees that with probability at least 1− δ, for any user i ∈ supp(D),
and committee S ∈ supp(∆), ∣∣∣R̂ank(i;S,∆)− Rank(i;S,∆)

∣∣∣ ≤ ε .

The number of pairwise comparisons each user makes is O
(
|S| · log(κ·|supp(∆)|/δ)

ε2

)
.

C. Proof of Theorem 4.1
Theorem 4.1 (Guarantee of Algorithm 2). Let π be the output ranking of Algorithm 2 with parameter λ > 1. If the
committee selection subroutine satisfies γ-approximate local stability, then the ranking π satisfies λ2

λ−1 · γ-approximate local
stability if λ is an integer, and O( 1

1−λ ) · γ if λ↘ 1.
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Proof. Based on the choice of the sizes of checkpoint committees, the size of A≤r =
⋃r

s=1 As satisfies

|A≤r| =

∣∣∣∣∣
r⋃

s=1

As

∣∣∣∣∣ ≤
r∑

s=1

|As| ≤
r∑

s=1

λr−1 =
λr − 1

λ− 1

Therefore, for any prefix Wπ
k of the output ranking π, as long as

k ≥ λr − 1

λ− 1
, (Sufficient Condition)

then we must have
Wπ

k ⊇ A≤r ⊇ Ar.

It now remains to find the largest r = r(k) for (Sufficient Condition) to hold. For such an r(k), (Sufficient Condition)
would fail for r = r(k) + 1, i.e.,

k <
λr(k)+1 − 1

λ− 1
.

If λ is an integer, then we have ∣∣Ar(k)

∣∣ = λr(k)−1 ≥ k(λ− 1)

λ2
≥ k(λ− 1)

λ2
,

which implies that Wπ
k , which is a superset of the γ-approximately local stable committee Ar(k), also satisfies local stability

with approximation factor λ2

λ−1 · γ.

When λ↘ 1, we have

|Ar(k)| =
⌊
λr(k)−1

⌋
≥
⌊
k(λ− 1)

λ2

⌋
≥ k

O( 1
λ−1 )

,

which proves the second part of the theorem that Wπ
k is O( 1

λ−1 ) · γ-approximately local stable.

D. Additional Experiment Details
We give additional details about the implementation of our algorithms for experiments, as well as detailed sampling
procedures. All experiment code is included with the submission.

D.1. Algorithm implementation details and default parameters

For our experimental implementation of Algorithm 1, we describe several subroutines in detail along with their default
parameters used throughout the experiments. These same parameters carry forward to Algorithms 2 and 3.

Computing an approximately stable lottery. We describe our implementation of the following line from Algorithm 1:

∆t ← (1 + ε)-approximately stable lottery for D̂β−ε
t of size kt (see Cheng et al. (2020))

To implement this, we run the algorithm described by Cheng et al. (2020) in Section 2.5 using their proposed multiplicative
weight update (MWU) procedure. This includes two parameters: the number of iterations TMWU to run the multiplicative
weight update procedure, and the number of iterations TORACLE to run their ORACLE(∆a, ϵ) subroutine. By default in
experiments, we run TMWU = 20 iterations of the multiple weight update procedure, and TORACLE = 30 iterations to compute
ORACLE(∆a, ϵ). For each iteration of the multiplicative weight update procedure, we sample nMWU = 50 users.

Choosing a committee. We describe our implementation of the following line from Algorithm 1:

St ← committee in supp(∆t) that minimizes estimated unsatisfied probability

In experiments, we sample neval = 100 users, and estimate the unsatisfied probability for each committee S in supp(∆t).
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Histogram of pairwise comparisons for Algorithm 1
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Figure 3. Histogram of pairwise comparisons per user for a single run of Algorithm 1 for committee size k = 5 and ϕ = 0.5. The total
number of users sampled was 18,540. The maximum number of pairwise comparisons for a single user was 98, and the median was 38.

D.2. Additional details for experiments on committee stability with mixtures of Mallows (Section 5.1)

To produce the plots in Figure 1, we run the following full procedure 10 times for each k:

1. Sample k permutations uniformly at random and set these as centers π1, ..., πk. Set mixture weights to 1
k , and set all

dispersions to the same given ϕ.

2. Run Algorithm 1 with default parameters to produce a committee of size k. Figure 3 gives a breakdown of the samples
drawn for an example run, which sampled 18, 540 users at a maximum of 98 pairwise comparisons per user, and a
median of 38 pairwise comparisons per user.

3. Compute the Bradley-Terry ranking over a sample of 10, 000 users and all pairwise comparisons for each user, and
produce a committee of size k consisting of the top-k ranked candidates.

4. Produce a committee consisting of {π1(1), ..., πk(1)} (labeled “Mallows centers” in Figure 1).

5. Draw a sample of n = 10, 000 users, and compute γ̂ for all committees.

D.3. Additional details for experiments on ranking stability with LMArena simulation (Section 5.2)

To produce the plots in Figure 2, we run the following procedure 5 times:

1. Run Algorithm 2 with default parameters over the data distribution to produce a ranking. Figure 4 gives a breakdown
of the samples drawn for an example run, which sampled 39, 080 users at a maximum of 95 pairwise comparisons per
user, and a median of 24 pairwise comparisons per user

2. Run Algorithm 3 with default parameters over the data distribution to produce a ranking. Figure 5 gives a breakdown
of the samples drawn for an example run, which sampled 74, 150 users at a maximum of 45 pairwise comparisons per
user, and a median of 5 pairwise comparisons per user.

3. Compute the Bradley-Terry ranking over a sample of 100, 000 users and all pairwise comparisons for each user. This is
equivalent to ranking by Borda count over all sampled users, and is also equivalent to ranking by Elo-score over all
possible pairwise comparisons from all sampled users. With the sample size of 100, 000 users, there was no variation
in the Bradley-Terry ranking between repeats.

4. Compute the stability approximation factors γ̂ for all top-k prefix committees of all rankings using a draw of n =
100, 000 users.
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Histogram of pairwise comparisons for Algorithm 2
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Figure 4. Histogram of pairwise comparisons per user for a single run of Algorithm 3 on LMArena simulation with ϕ = 0.5. The total
number of users sampled was 39,080. The maximum number of pairwise comparisons for a single user was 95, and the median was 24.

Histogram of pairwise comparisons for Algorithm 3
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Figure 5. Histogram of pairwise comparisons per user for a single run of Algorithm 3 on LMArena simulation with ϕ = 0.5. The total
number of users sampled was 74,150. The maximum number of pairwise comparisons for a single user was 45, and the median was 5.
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D.4. Specific model rankings on LMArena simulation

Here we give more details the specific Bradley-Terry rankings per category from the LMArena data that form the Mallows
central rankings. Table 1 shows the top two ranked LLMs per category, as well as the estimated mixture weight per category.
To give a sense of the exact rankings computed in Figure 2, Table 2 shows the rankings produced by a single run of each
ranking method. All full rankings can be found in the attached experiment code.

Category index Mixture weight Top-ranked LLM, π(1) Second ranked LLM, π(2)

0 0.17 gemini-2.5-pro-preview-03-25 gemini-2.5-pro
1 0.13 gemini-2.5-pro-preview-03-25 chatgpt-4o-latest-20250326
2 0.13 chatgpt-4o-latest-20250326 kimi-k2-0711-preview
3 0.07 gemini-2.5-pro gemini-2.5-pro-preview-03-25
4 0.04 gemini-2.5-pro grok-3-preview-02-24
5 0.04 chatgpt-4o-latest-20250326 o3-2025-04-16
6 0.04 deepseek-r1-0528 llama-4-maverick-03-26-experimental
7 0.04 gemini-2.5-pro deepseek-r1-0528
8 0.03 gemini-2.5-pro gemini-2.5-flash
9 0.03 gemini-2.5-pro gemini-2.5-pro-preview-03-25

10 0.03 llama-4-maverick-03-26-experimental grok-4-0709
11 0.03 gemini-2.5-pro gemini-2.5-pro-preview-05-06
12 0.03 chatgpt-4o-latest-20250326 llama-4-maverick-03-26-experimental
13 0.03 gemini-2.5-pro gemini-2.5-pro-preview-05-06
14 0.03 gemini-2.5-pro o4-mini-2025-04-16
15 0.03 o3-2025-04-16 llama-4-maverick-03-26-experimental
16 0.02 gemini-2.5-pro llama-4-maverick-03-26-experimental
17 0.02 gemini-2.5-pro grok-3-preview-02-24
18 0.02 o3-2025-04-16 gemini-2.5-pro
19 0.02 gemini-2.5-flash gemini-2.5-pro

Table 1. Mixture weights and top-ranked LLMs for each central ranking corresponding to a prompt category in the LMArena simulation.
Each central ranking is determined by the Bradley-Terry ranking over the pairwise comparisons within a given category tag from the
LMArena dataset.
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ϕ = 0.1

Bradley-Terry ranking gemini-2.5-pro, chatgpt-4o-latest-20250326, grok-3-preview-02-24, o3-2025-04-
16, deepseek-r1-0528, gemini-2.5-pro-preview-03-25, llama-4-maverick-03-26-
experimental, gemini-2.5-flash, ...

Algorithm 2 ranking gemini-2.5-pro, chatgpt-4o-latest-20250326, gemini-2.5-pro-preview-03-25, o3-2025-
04-16, llama-4-maverick-03-26-experimental, o4-mini-2025-04-16, kimi-k2-0711-
preview, gpt-4.1-2025-04-14, ...

Algorithm 3 ranking gemini-2.5-pro, gemini-2.5-pro-preview-03-25, chatgpt-4o-latest-20250326, deepseek-
r1-0528, grok-4-0709, gemini-2.5-pro-preview-05-06, o3-2025-04-16, grok-3-preview-
02-24, ...

ϕ = 0.5

Bradley-Terry ranking gemini-2.5-pro, chatgpt-4o-latest-20250326, grok-3-preview-02-24, o3-2025-04-
16, deepseek-r1-0528, gemini-2.5-pro-preview-03-25, llama-4-maverick-03-26-
experimental, gemini-2.5-flash, ...

Algorithm 2 ranking gemini-2.5-pro, chatgpt-4o-latest-20250326, gemini-2.5-flash, llama-4-maverick-03-
26-experimental, gemini-2.5-pro-preview-03-25, qwen3-235b-a22b, o4-mini-2025-04-
16, deepseek-r1-0528, ...

Algorithm 3 ranking gemini-2.5-pro, chatgpt-4o-latest-20250326, deepseek-r1-0528, grok-3-preview-02-24,
gemini-2.5-pro-preview-03-25, grok-4-0709, gemini-2.5-pro-preview-05-06, o3-2025-
04-16, ...

ϕ = 0.9

Bradley-Terry ranking gemini-2.5-pro, chatgpt-4o-latest-20250326, grok-3-preview-02-24, o3-2025-04-
16, deepseek-r1-0528, gemini-2.5-pro-preview-03-25, llama-4-maverick-03-26-
experimental, gemini-2.5-flash, ...

Algorithm 2 ranking gemini-2.5-pro, grok-3-preview-02-24, gemini-2.5-flash, llama-4-maverick-03-26-
experimental, gemini-2.5-pro-preview-03-25, o4-mini-2025-04-16, chatgpt-4o-latest-
20250326, qwen3-235b-a22b-no-thinking, ...

Algorithm 3 ranking gemini-2.5-pro, chatgpt-4o-latest-20250326, gemini-2.5-pro-preview-03-25, o3-
2025-04-16, deepseek-r1-0528, grok-3-preview-02-24, llama-4-maverick-03-26-
experimental, grok-4-0709, ...

Table 2. Example rankings from a single run of each ranking in Figure 2. For ease of visualization, we show the top 8 ranked candidates
per ranking here. This does not account for variation across repeats, but gives a single ranking sample as an illustration of the tendencies
of each ranking method.
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