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Abstract

A panel satisfies descriptive representation when its composition reflects the pop-
ulation. We examine the role of descriptive representation in collective decision
making through an optimization lens, asking whether representative panels make
decisions that maximize social welfare for the underlying population. Our main
results suggest that, in general, representation with respect to intersections of two
or more features guarantees higher social welfare than that achieved by the status
quo of proportionally representing individual features. Moreover, an analysis of
real data suggests that representation with respect to pairs of features is feasible
in practice. These results have significant implications for the design of citizens’
assemblies, which are gaining prominence in AI governance.

1 Introduction

A citizens’ assembly is a group of everyday people who come together to discuss a policy issue, with
the goal of informing decision makers [26, 28, 10, 20]. This paradigm has been on the rise around
the world, with some of the most prominent assemblies convened by European governments to tackle
constitutional questions and climate change. The success of citizens’ assemblies is driven, at least in
part, by several characteristics.

• Deliberation: Assembly members engage in a deliberative process over a period of weeks
or months.

• Random selection: The assembly is selected through a lottery.

• Descriptive representation: The lottery is designed to ensure that the assembly proportionally
reflects the population according to multiple features, such as age, gender, ethnicity, level of
education, geography, and even viewpoint.

In this paper, we are interested in better understanding the role of descriptive representation. Political
theorists have long argued that descriptive representation contributes to the legitimacy of citizens’
assemblies and promotes public trust in their recommendations. This thesis is largely supported by
experimental evidence [17], but it is disputed by some studies [18].

We steer clear of this (partly normative) debate as we examine descriptive representation through a
novel, quantitative lens. Our key research question is this:

If a panel satisfies descriptive representation, does it make decisions that optimize
social welfare for the underlying population?



If the answer were a clear “yes,” it would provide a new, objective way to justify the importance of
descriptive representation. And if the answer were more nuanced (spoiler alert: it is), it would inform
the design of future citizens’ assemblies that make better decisions or recommendations.

Our approach and results. There are several things to unpack in our informal research question;
we start with social welfare. We assume that each individual is identified by their feature values
(e.g., state = Massachusetts), and that each alternative is associated with benefits for each feature
value (e.g., a resident of Massachusetts would derive benefit 0.2). The utility of an individual for an
alternative is simply these benefits summed over the individual’s feature values. A social welfare
function maps these individual utilities to an aggregate measure of welfare; for example, utilitarian
social welfare returns the sum of individual utilities. We focus on the well-established class of power
mean functions [7, 22], which is parameterized by p ∈ [−∞, 1]. The class includes utilitarian social
welfare (p = 1), as well as other prominent social welfare functions such as egalitarian and Nash.

The more subtle definition is that of descriptive representation. Ideally, one would want every inter-
section of features to be proportionally represented on the panel. In practice, citizens’ assemblies ask
for what we call 1-representation: The proportion of each feature value on the panel (approximately)
matches the population. One of our main insights is to extend this requirement to m-representation,
which requires that each intersection of up to m features be proportionally represented on the panel.

With this terminology in hand, we can refine our research question:

How well does the p-mean welfare of a m-representative panel estimate the p-mean
welfare of the underlying population, for different values of p and m?

The reader may have noticed an ostensible gap between the earlier goal of making good decisions
and the current goal of accurately estimating welfare; as we show, the latter goal implies the former
in our model. But if our goal is simply to estimate welfare, why do we even need a deliberative
process — can we not just poll the population? The answer is that we view the utilities of individuals
in the population as the utilities they would have under the same conditions as a citizens’ assembly,
after being informed about the topic and engaging in a deliberative process. These utilities are
unknowable, of course, and indeed our guarantees do not require access to them.

In Section 3, we investigate the relation between the status quo of 1-representation and social
welfare. Our first technical observation is that for utilitarian social welfare (p = 1), if a panel is
1-representative, its (mean) social welfare for any alternative is equal to the (mean of the) population’s
social welfare for the same alternative. Therefore, a 1-representative panel that seeks to maximize
utilitarian social welfare will select an alternative that is optimal for the population (by the same
measure). However, for p < 1, we prove that this is not the case: there are populations and sets of
alternatives such that no 1-representative panel chooses the alternative that maximizes the p-mean
welfare of the population. In Theorem 8 we determine the worst-case accuracy — that is, the worst-
case difference between the p-mean welfare of the panel estimate and the p-mean welfare of the
underlying population — of 1-representative panels.

In Section 4 we proceed to study 2-representative panels. In Theorem 9, we prove that 2-representation
allows for significantly better worst-case guarantees for accuracy, compared to 1-representation. Our
proof crucially relies on the fact that finding the minimum/maximum welfare a m-representative
panel can have for an alternative (the difference between this maximum and minimum is the object
we want to bound) boils down to solving a moment problem [25]. To get explicit bounds, we leverage
the fact that extreme points of our moment problem are probability measures (corresponding to
populations) supported on a discrete set of size at most 3 [19], for the case of 2-representative panels.

Finally, in Section 5 we experimentally show that it is possible to select 2-representative panels in
real-world instances. We analyze data from four different citizens’ assemblies: one from a Western
European country and three from Australian states. Our experiments show that (approximate) 2-
representative panels exist with the current panel sizes for two of the datasets, and would exist by
picking a slightly smaller panel for a third dataset. In the final dataset, (approximate) 2-representation
is infeasible; we attribute this fact to the very small and skewed pool of volunteers.

Combined, our theoretical and experimental results provide a clear, prescriptive message: It is
practical to select panels that are 2-representative and, by doing so, the quality of the decision the
panel makes (as measured by its p-mean welfare for the entire population) significantly increases.
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Relevance and related work. There is a fast-growing body of work on algorithms for selecting
and facilitating citizens’ assemblies [12, 3, 4, 8, 2, 14, 16], which includes several papers presented
at NeurIPS [11, 13, 9]. More broadly, the NeurIPS community has been increasingly interested in all
aspects of computational social choice [5]; for example, foundational results on the method of equal
shares — which has recently been deployed for participatory budgeting elections in several European
cities — were first published at NeurIPS [23].

In addition, some of the most prominent technology companies have been experimenting with
citizens’ assemblies as a tool for AI governance. In particular, Meta has organized a large-scale
deliberation on AI policy [6]. Google DeepMind has explored related ideas and their researchers
have published prominent work on the use of large language models for mediating deliberation in
citizens’ assemblies [27].

2 Preliminaries

We consider the problem of a population of individuals selecting a representative panel to make a
decision on its behalf. Every individual is represented using a set F of features (e.g., gender, age,
geographical region, and so on), where each feature f ∈ F can take df different values; we denote by
Vf , |Vf | = df , the set of values that feature f ∈ F can take. Every individual is represented by a type
y, an assignment of values to the features in F . For any f ∈ F , let y(f, v) be the indicator function
for y having value v for feature f . That is, y(f, v) = 1 if and only if the type y has value v for feature
f , else y(f, v) = 0. We say that two types are distinct if there exists at least one feature f for which
they have a different value. We write y = (y(f, v))v∈Vf ,f∈F ∈ {0, 1}d, where d =

∑
f∈F df , to

represent the vector containing y(f, v) for all v ∈ Vf and f ∈ F .

A population P = {(y1, q1), ..., (yT , qT )} is a set of T distinct types of individuals I = {y1, ..., yT },
where individuals of type yi make up a fraction qi ∈ (0, 1] of the population. We call qi the population
share of type yi. It holds that

∑T
i=1 qi = 1. We denote by n the total number of individuals in the

population. Thus, qi · n ∈ N for all i ∈ [T ].
Example 1. Consider a situation where F = {age, gender}, with Vage = {15-29, 30+} and
Vgender = {Male,Female,Non-binary}. Therefore, dage = 2 and dgender = 3. Consider an indi-
vidual who is 30+ and Male. Their type, y1, is such that, for example, y1(age, 30+) = 1 and
y1(gender,Non-binary) = 0. The corresponding vector is y1 = (0, 1; 1, 0, 0): they have the second
value for the first feature and the first value for the second feature. Finally, consider a population
P = {(y1, 0.4), (y2, 0.4), (y3, 0.2)}, meaning that 40% of the population has type y1, 40% has type
y2, and 20% has type y3.

Panels and representation. A panel C = {(y1, r1), ..., (yT , rT )} in a population P specifies, for
each type yi ∈ I, its fraction ri ∈ [0, 1] in the panel. It holds that

∑T
i=1 ri = 1. We denote by k the

total number of individuals in a panel (thus, ri · k ∈ N for all i). We assume that the panel is a subset
of the population P , and therefore ri · k ≤ qi · n for all i ∈ [T ].

We are interested in panels that are representative of the population. A panel C in a population P is
1-representative if for every feature f ∈ F , and every value v ∈ Vf , the fraction of individuals in C
with value v is equal to the fraction in P . That is, for all f ∈ F and v ∈ Vf∑

yi∈I
qi yi(f, v) =

∑
yi∈I

ri yi(f, v) ,

or, more concisely,
∑

yi∈I qiyi =
∑

yi∈I riyi. This is essentially equivalent to the notion of
representation considered in prior work on panel selection.

More generally, we define an m-representative panel as follows:
Definition 2. For any m ∈ {1, ..., |F|}, we say that a panel C in a population P is m-representative
if for every set of ℓ ≤ m features F ⊆ F , |F | = ℓ and every possible ℓ-tuple of values (vf )f∈F ∈
×f∈F

Vf , the fraction of individuals in C with values vf is equal to the fraction in P . That is, for all
such F and (vf )f∈F , ∑

yi∈I

qi
∏
f∈F

yi(f, vf ) =
∑
yi∈I

ri
∏
f∈F

yi(f, vf ).
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Note that
∏

f∈F yi(f, vf ) = 1 if and only if type yi has value vf for all f ∈ F .

Alternatives and utility. Panels are asked to decide on an alternative, from a given set of alternatives
A. For an alternative a ∈ A and a feature f ∈ F , let a(f, v) ∈ R≥0 be the benefit that an individual
with value v for feature f gets from a. We define a = (a(f, v))v∈Vf ,f∈F analogously to y.

We assume that the utility of an individual for an alternative a is the sum of all these feature benefits,
i.e., the utility of an individual of type yi ∈ I for alternative a is

ui(a) = y · a =
∑
f∈F

∑
v∈Vf

yi(f, v)a(f, v).

Without loss of generality, we assume throughout the paper that utilities are non-negative and that
the utility of every individual for every alternative is at most 1. For a given set of alternatives A and
population P , we define umin = minyi∈I mina∈A ui(a) to be the minimum utility of any individual
in the population for any alternative in A. We have that umin ∈ [0, 1].
Example 3 (Example 1 continued). Consider a set of alternatives A = {a1, a2}, where
a1(age, 15-29) = 0, a1(age, 30+) = 0.5, a1(gender,Male) = 0.3, a1(gender,Female) = 0.5,
a1(gender,Non-binary) = 0, a2(age, 15-29) = 0.7, a2(age, 30+) = 0.3, a2(gender,Male) = 0,
a2(gender,Female) = 0, and a2(gender,Non-binary) = 0.3. In short, a1 = (0, 0.5; 0.3, 0.5, 0) and
a2 = (0.7, 0.3; 0, 0, 0.3).

Then, since y1 has values 30+ and Male, we have that

u1(a1) = y1 · a1 = a1(age, 30+) + a1(gender,Male) = 0.5 + 0.3 = 0.8,

while u1(a2) = 0.3 + 0 = 0.3. Assume that y2, y3 are such that also u2(a1), u2(a2), u3(a1),
u3(a2) ≥ 0.3; therefore, umin = 0.3.

Panel and population welfare. We assume that the welfare of a population P for an alternative a is
the p-mean of individuals’ utilities, for some p ∈ R, p ≤ 1. That is, uP,p(a) = (

∑
yi∈I qiui(a)

p
)1/p.

For p = 1 this is the standard arithmetic mean (uP,1(a) =
∑

yi∈I qiui(a)), corresponding to
utilitarian social welfare, for p = 0 it becomes the geometric mean (uP,0(a) =

∏
yi∈I ui(a)

qi ), cor-
responding to Nash social welfare, and as p approaches −∞ it becomes the minimum (uP,−∞(a) =
minyi∈I ui(a)), corresponding to egalitarian social welfare. Analogously, we define the utility of a
panel C for an alternative a, uC,p, to be the p-mean of the utilities of the individuals in the panel.

Objectives. There are several natural ways to measure whether a panel makes good decisions, in
the sense of representing the opinion of the population well. A natural choice, for example, would
be to ask that the social welfare of the panel is an accurate estimate of the social welfare of the
population, for every alternative; then, naturally, optimizing for the panel approximately optimizes
for the population. Another choice would be to ask that the panel orders alternatives in a similar way
as the population would, i.e., if the panel prefers an alternative a over an alternative a′, the population
cannot have a high welfare for a′ and a low welfare for a.

Formally, given ϵ > 0, we can define the two notions as follows.

• Welfare based: We say that a panel C is ε-accurate with respect to p for welfare estimation
if |uC,p(a)− uP,p(a)| ≤ ε for all a ∈ A.

• Pairwise comparisons: We say C is ε-accurate with respect to p for pairwise comparisons if
uC,p(a) > uC,p(a

′) implies that uP,p(a) ≥ uP,p(a
′)− ε for all a, a′ ∈ A.

These two metrics are closely related: the former implies the latter.
Theorem 4. Let A be a set of alternatives, and let C be a panel in a population P . Then, for all ε ≥ 0
and p ≤ 1, we have that if C is ε-accurate with respect to p for welfare estimation, it is 2ε-accurate
with respect to p for pairwise comparisons.

The other direction approximately holds as well. If a committee is not ε-representative for welfare
estimation for a set of alternatives A, then it is not ε-representative for pairwise comparisons on
A ∪ {a} for an additional alternative a.

4



Theorem 5. Let A be a set of alternatives, and let C be a panel in a population P . Then, for all
ε ≥ 0 and p ≤ 1, we have that if C is not ε-accurate with respect to p and A for welfare estimation,
there exists an alternative a′ such that C is not ε-accurate with respect to p and A∪{a′} for pairwise
comparisons. Furthermore, adding a′ to A doesn’t change umin.

In light of the tight connection between the two notions implied by Theorems 4 and 5 (whose proofs
are deferred to Appendix A.1), in the remainder of the paper, we focus on accuracy with respect to
welfare estimation. We therefore refer to a panel that is ε-accurate for welfare estimation simply as
ε-accurate.

3 Representation to Single Features

In this section, we prove tight upper and lower bounds on the worst-case accuracy of 1-representative
panels, for different values of p.

We start by proving that, for p = 1, a 1-representative panel always has the same utility as the
population for every alternative (i.e., it is ε-accurate for ε = 0).
Theorem 6. Let A be a set of alternatives, P be population and C be a 1-representative panel in P .
Then, for all a ∈ A, uC,1(a) = uP,1(a). That is, C is 0-accurate with respect to p = 1.

Proof. For p = 1, the welfare of the panel and population is a weighted sum of the utilities of the
corresponding individuals. And, an individual’s utility is the sum of the alternative’s benefit a(f, v)
for their feature values v ∈ Vf , f ∈ F . By switching the order of summation, we have

uC,1(a) =
∑
yi∈I

riui(a) =
∑
yi∈I

ri(a · yi) = a ·
∑
yi∈I

riyi = a ·
∑
yi∈I

qiyi,

where the last equality follows from the fact that the panel is 1-representative. Continuing our
derivation,

uC,1(a) = a ·
∑
yi∈I

qiyi =
∑
yi∈I

qiui(a) = uP,1(a),

and the theorem follows.

Unfortunately, Theorem 6 does not hold for p < 1. When p < 1, the population and panel welfare
functions become non-linear in a, and therefore we cannot factor out a like we did in the proof
of Theorem 6. In fact, as we show next, for any p < 1, it is possible that, in the worst case, all
1-representative panels (other than the entire population) perform poorly at welfare estimation for
some alternative, and choose alternatives that are suboptimal for the population.
Example 7. In this example we will show that for all umin ∈ [0, 1), there exists a population P and
a set of alternatives A, such that minyi∈I mina∈A ui(a) = umin, and such that for all p < 1, no
1-representative panel chooses the alternative that maximizes the p-mean welfare of P .

Assume that there are two features, fv and fw, that can take values v1, v2 and w1, w2 respec-
tively. Thus, there are four possible types of individuals, represented in the left part of Ta-
ble 1. Let P be the population where each type is present in exactly one individual. There-
fore, the only two 1-representative panels are C1 = {((1, 0; 1, 0), 1/2), ((0, 1; 0, 1), 1/2)} and
C2 = {((0, 1; 1, 0), 1/2), ((1, 0; 0, 1), 1/2)}.

Consider the following set of 3 alternatives: A = {a1, a2, a3}, where a1 = (umin/2, 1/2, 1/2, umin/2),
a2 = (umin/2, 1/2, umin/2, 1/2), and a3 = ((1+3umin)/8, (5−umin)/8, (1+3umin)/8, (1+3umin)/8). The util-
ity of each type for each alternative are shown in Table 1.

For any p < 1, we can see that the first panel, C1, gets the highest utility from a1, while the second
panel, C2, gets the highest utility from a2, since the p-mean of x and (1 + umin) − x for p < 1 is
uniquely maximized when x = (1 + umin) − x = (1+umin)/2. However, overall, the population
gets the highest utility from alternative a3. This fact is algebraically tedious to verify; we defer the
calculations to Appendix A.2.

The main point of Example 7 is that any 1-representative panel in P , C1 or C2, overestimates the
welfare of some alternative, a1 or a2, respectively, quite badly. For example, for umin = 0 and any
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Table 1: The population and alternatives in Example 7
types alternatives & utilities

panels values y a1 a2 a3

C1
v1, w1 (1,0;1,0) (1+umin)/2 umin

(1+3umin)/4
v2, w2 (0,1;0,1) (1+umin)/2 1 (3+umin)/4

C2
v1, w2 (1,0;0,1) umin

(1+umin)/2 (1+3umin)/4
v2, w1 (0,1;1,0) 1 (1+umin)/2 (3+umin)/4

p ≤ 0, both a1 and a2 have a welfare of 0 with respect to P , but a welfare of 1/2 for the panel that
chooses them. However, alternative a3 gives the highest welfare to the population (for umin = 0 and
p ≤ 0, the population’s utility is a number between 1/4 and

√
3/4 ≈ 0.43).

We now state the main theorem of this section, giving a tight bound on the worst-case ε-accuracy of a
1-representative panel.
Theorem 8. Let A be a set of alternatives, P be any population and C be any 1-representative panel
in P , so that umin ∈ [0, 1). Then, for all p < 1, C is ε-accurate with respect to p, where

ε =


1−p
p

(
p · 1−umin

1−umin
p

) 1
1−p

+ umin−umin
p

1−umin
p for p > 0 ∨ (p < 0 ∧ umin > 0)

1 + 1−umin

ln (1/umin)

(
ln
(

1−umin

ln (1/umin)

)
− 1
)

for p = 0 ∧ umin > 0

1 for p ≤ 0 ∧ umin = 0

.

Furthermore, for all p < 1 and umin ∈ [0, 1), for any ε′ < ε, there exists a 1-representative panel C
such that C is not ε′-accurate with respect to p.

The proof of Theorem 8 is deferred to Appendices A.3.3 and A.4. The first part of the theorem
(the upper bounds on ε) follows as a special case of the analysis of the m-representative case in
Appendix A.3 that also gives the main results of the following section for 2-representative panels.

4 Representation to Tuples of Features

In this section, we prove bounds on the accuracy of m-representative panels. We start by showing
that 2-representation enables significantly better worst-case ε-accuracy compared to 1-representation.
Theorem 9. Let A be a set of alternatives, P be a population and C be any 2-representative panel
in P . Then, for all p ≤ 1 and all umin ∈ (0, 1), or p ∈ (0, 1] and umin = 0, C is ε-accurate with
respect to p, where1

ε = max
κ1,κ2

(
κ2 − κ2

1

κ2 − 2κ1 + 1
+

(1− κ1)
2

κ2 − 2κ1 + 1

(
κ1 − κ2

1− κ1

)p) 1
p

−
(

(κ1 − umin)
2

κ2 − 2uminκ1 + umin
2

(
κ2 − uminκ1

κ1 − umin

)p

+
κ2 − κ2

1

κ2 − 2uminκ1 + umin
2
umin

p

) 1
p

s.t. umin
2 < κ2

1 < κ2 and
κ2 + umin

1 + umin
< κ1 < 1

The optimization program in Theorem 9 has two variables, κ1 and κ2. We call those the moments:
Definition 10. For i = 0, ..., |F|, the i-th moment of a population P for an alternative a is κi =∑

yj∈I qj · (uj(a))
i. The i-th moment of a panel C or alternative a is κi =

∑
yj∈I rj · (uj(a))

i.

Our proof has the following high-level steps. First, we prove that the first m moments of an m-
representative panel C in P are the same as the moments of P for any alternative. That is, for all
a ∈ A and any integer 1 ≤ ℓ ≤ m,

∑
yi∈I qi · (ui(a))

ℓ =
∑

yi∈I ri · (ui(a))
ℓ.

1We state the objective for p = 0, which is the limit of the above objective as p → 0, in Appendix A.3.
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(a) Worst-case ε-accuracy for m ∈ {1, 2} (b) Ratio of ε-accuracy bounds for m ∈ {1, 2}

Figure 1: Numerical comparisons for ε-accuracy bounds for m ∈ {1, 2}.

Second, given this fact, we can write a mathematical program for the minimum and maximum utility
a panel or population with fixed first m moments κ1, . . . , κm (note that always κ0 = 1) can have.
Concretely, by having a variable xj for the utility of a type yj ∈ I , given m moments, we can ensure
feasibility by asking that

∑
yj∈I qj · (xj)

i = κi, for all i ∈ {0, 1, ...,m} (and xj ∈ [umin, 1], qj ≥ 0).
Then, by maximizing and minimizing (

∑
yj∈I qj · (xj)

p)1/p, we get bounds on the welfare of a panel
or population with moments κ0, . . . , κm.

Third, the relaxation of this program is a moment problem [25, 24], hence our choice of terminology
in Definition 10; it is known that the extreme points are probability measures (distributions) supported
on a discrete set of size at most m+1 [19]. This additional structure allows for explicit bounds on the
maximum and minimum utility of a panel/population as a function of κ1, . . . , κm, which we obtain
for m = 2. The difference of these quantities is our bound on the ε-accuracy of a 2-representative
panel. The feasible region, as we prove, is derived from the set of all κ1 and κ2 that can be the first
two moments of a population P for an alternative a ∈ A. We defer details to Appendix A.3.

For greater m, solving the relaxed optimization program analytically to obtain explicit bounds on
the maximum and minimum utility of a panel/population as a function of κ1, . . . , κm becomes
increasingly difficult. And, even if such bounds were obtained for m > 2, the overall bound on ε in
the style of Theorem 9 would be an even less tractable optimization program in m variables; it is
unclear if its value could even be numerically calculated.

In fact, we believe that already the solution to the optimization program in Theorem 9 does not admit
a closed-form solution in terms of p and umin. However, for a fixed p and umin, we can numerically
solve this optimization program. We plot these results in Figure 1. In particular, Figure 1a shows
the tight worst-case ε-accuracy of 1-representative panels as dashed lines and the upper bound on
worst-case ε-accuracy of 2-representative panels as solid lines, for 4 different values of umin, with p
varying along the horizontal axis. We find that 2-representative panels are ε-accurate in the worst case
for significantly smaller ε. For example, for umin = 1/5 and Nash welfare (p = 0), 2-representation
gives 0.039 accuracy, while 1-representation only gives 0.155 accuracy. Figure 1b shows the ratio of
these bounds: the worst-case ε for 1-representative panels divided by the bound on the worst-case
ε for 2-representative panels, for different values of p, with umin varying along the horizontal axis.
We can see that the relative accuracy increases quite drastically, especially when p is not far into the
negatives and umin is far enough away from 0. If utilities are generally high, this ratio is the largest:
for umin = 4/5 (corresponding, after scaling, to utilities in [8, 10]) and Nash welfare, accuracy
increases by 2700% for 2-representative panels over 1-representative panels.

Given the positive result in Theorem 9, we turn our attention to lower bounds on ε-accuracy for
m-representative panels. Observe that, when p ≤ 0, it is necessary that we bound the minimum utility
of an individual, umin, away from zero. Otherwise, one could imagine a very popular alternative with
utility close to 1 for everyone but a single person y∗, who has utility 0. The population’s utility (for
p ≤ 0) for this alternative is 0, but any panel that doesn’t include y∗ has utility close to 1 for this
alternative (and therefore chooses it). We formalize this idea in Theorem 11.

Theorem 11. There exists a population P and a set of alternatives A, such that
minyi∈I mina∈A ui(a) = umin = 0, and a m-representative panel C in P , such that C is not
ε-accurate with respect to any p ≤ 0 for any ε < |F|−m

|F| .
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As |F| becomes large, this lower bound goes to 1, for any fixed m. Since uC,p(a), uP,p(a) ∈ [0, 1]
for all a ∈ A, 1 is also a trivial upper bound. We prove Theorem 11 in Appendix A.5.

5 Empirical Analysis

We have shown that 2-representative panels give significantly better worst-case guarantees than
1-representative panels. However, this result only has practical impact if it is possible to select
2-representative panels in real-world instances. Our next goal is to show that this is indeed the case.

Selecting a panel. Selecting a citizens’ assembly in practice commonly has three stages. First, a
large number of individuals receive an invitation to participate in the panel. Second, some fraction of
these individuals indicate their willingness to participate. We call this group the pool of volunteers.
Finally, a panel of the desired size is chosen from the pool of volunteers.

It is a common occurrence in practice that individuals with certain features are more likely to accept
the invitation to participate than others. Therefore, the composition of the pool of volunteers often
is fairly different from the underlying population. If the size of the pool is too small, it may not be
possible to select a panel of a desired size that is 2-representative (or even 1-representative).

Data. We analyze data from four citizens’ assemblies: a nationwide panel from a Western European
country (which we denote EUR1) and three state-wide panels from Australian states (which we denote
AUS1, AUS2, and AUS3). Detailed information about the datasets can be found in Appendix A.6. All
actual panels were chosen to be approximately 1-representative of the underlying population.

For all four panels, we obtained data on the intersections between feature values of the underlying
population. For EUR1, we used the European Social Survey [21], which collected data on a wide
variety of features and their intersections, including those used in EUR1. Responses are re-weighted
in the data to account for sampling bias. For AUS1, AUS2, and AUS3, we used data from the 2021
Australian Census [1]. Through their online data tools, we obtained data on the intersections of
individuals’ features. We excluded a feature capturing the level of climate concern from EUR1
since the number of volunteers with no concern at all was too low to even form a 1-representative
committee of the desired size. In AUS1 and AUS2, we had to exclude a feature capturing an
individual’s ownership of their residence since these statistics are stored in a separate dataset on
dwellings, so we weren’t able to obtain this feature’s intersection with other features. For more details
on the datasets and data cleaning, we again refer to Appendix A.6

Experiments. For each m between 1 and the number of features considered in the panel, |F|, we
found the largest size of an m-representative panel using individuals from the pool of volunteers. For
a given m and desired panel size k, we checked for the existence of an m-representative panel of size
k using an integer linear program. Each person in the pool of volunteers corresponds to one binary
variable, encoding whether this person is in the panel or not. The constraints on the variables are
the size of the panel, k, and having to be m-representative to the underlying population data. We
used Gurobi, run on a 14-inch MacBook Pro (2023) with Apple M3 Pro chip, to check whether the
program is feasible, i.e., whether an m-representative panel exists.

It is worth noting that exact 1-representation or m-representation for any m is (essentially) never
attainable for a fixed desired panel size k, as the desired number of individuals in the panel may not
be an integer. We thus consider a panel to be m-representative in practice if for any ℓ-tuple of feature
values, ℓ ∈ [m], the number of people with these feature values on the panel is equal to the desired
fractional number, up to rounding it up or down. Since the quotas from the underlying populations
are only ever estimates with some error, this small “wiggle room” around the quotas is justified. It
is intuitive that the larger the panel is, the more difficult it is to satisfy m-representation. At the
extremes, a panel of size 1 is always m-representative (up to rounding) because the quotas are smaller
than 1. And a panel that includes the entire pool of volunteers is rarely even 1-representative, because
the pool of volunteers is skewed due to self-selection bias.

Results. Our results are shown in Figures 2a to 2d. The main takeaway is that 2-representation is
generally feasible in practice.
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In the EUR1 and AUS1 datasets, the solid lines — showing the maximum size of an m-representative
panel — lie above the “desired panel size” used in practice. For AUS2, the largest 2-representative
panel is of size 278 — slightly below the desired panel size of 328. Since the number 328 does not
have special significance,2 our results suggest that slightly contracting the panel in order to boost its
degree of representation would be a good tradeoff. By contrast, in AUS3, the largest 2-representative
panel is of size 31, which is 69% of the desired panel size of 45. The pool of volunteers for AUS3
only contains 509 individuals — significantly fewer than the other assemblies, which all have more
than 1000 volunteers. We conclude that an investment in the recruitment of volunteers may make a
greater degree of representation possible.
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(c) AUS2 dataset.
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Figure 2: The maximum size of m-representative panel possible for m ∈ [|F|], shown in teal. The
dashed lines show the size of the pool of volunteers and the panel size used in practice.

6 Discussion

We conclude by discussing two points that may contribute to a fuller understanding of our approach
and its limitations.

Throwing fairness into the mix. As mentioned in Section 1, citizens’ assemblies are randomly
selected. In practice, this is done by computing a lottery such that each panel in its support is
1-representative. A commonly used algorithm optimizes the lottery to maximize a fairness objective:
the minimum probability of selecting any volunteer [12]. The same algorithm can be directly applied
when the underlying notion of representation is m-representation for m > 1 instead of m = 1.
However, this may come at a cost to the fairness objective, because the feasible set shrinks as the
constraints become stronger. While we focused on the relation between representation and welfare,
future work could explore the tradeoffs between representation, welfare and fairness.

Empirically estimating welfare gains? The reader may have noticed that, despite access to real
data from citizens’ assemblies, our empirical analysis does not evaluate our main theoretical claim: a
greater degree of representation contributes to social welfare. The reason is that we do not have access

2It likely started out as a “round” number and decreased when selected panelists dropped out.
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to real utilities, and synthetic methods for generating them may seem contrived. Let us reiterate,
however, that the lack of access to utilities is not a barrier to applying our results, as we argue for
a greater degree of representation with respect to known features, which leads to improved social
welfare with respect to unknown utilities.
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A Technical Appendices and Supplementary Material

A.1 Proofs missing from Section 2

Proof of Theorem 4. Let a, a′ ∈ A be any two alternatives such that uC,p(a) > uC,p(a
′). Since the

panel is ε-accurate for welfare estimation, we have that

uP,p(a) ≥ uC,p(a)− ε > uC,p(a
′)− ε ≥ uP,p(a

′)− 2ε,

which implies that C is 2ε-accurate for pairwise comparisons.

Proof of Theorem 5. Since C is not ε-accurate, with respect to p and A, for welfare estimation, there
exists an alternative a ∈ A such that |uC,p(a)− uP,p(a)| > ε. Let δ > 0 be any real number such
that δ < |uC,p(a)− uP,p(a)| − ε.

If uC,p(a) > uP,p(a), consider an alternative a′ such that a′(f, v) = (uP,p(a) + ε + δ)/|F|
for all f ∈ F , v ∈ Vf . Then, uy(a

′) = uP,p(a) + ε + δ for all y ∈ I, and therefore also
uP,p(a

′) = uC,p(a
′) = uP,p(a) + ε + δ (where we used the fact that, if all individuals have the

same utility x for an alternative, the p-mean of their utilities is also x). We have that uC,p(a) >
uP,p(a) + ε + δ = uC,p(a

′) but uP,p(a) < uP,p(a) + δ = uP,p(a
′) − ε, which contradicts

the fact that C is ε-accurate for pairwise comparisons. Similarly, if uC,p(a) < uP,p(a), consider
an alternative a′ such that a′(f, v) = (uP,p(a) − ε − δ)/|F| for all f ∈ F , v ∈ Vf . Then,
uy(a

′) = uP,p(a)− ε− δ for all y ∈ I, and therefore uP,p(a
′) = uC,p(a

′) = uP,p(a)− ε− δ. We
have that uC,p(a) < uP,p(a)− ε− δ = uC,p(a

′) but uP,p(a)− ε > uP,p(a)− ε− δ = uP,p(a
′), a

contradiction to C being ε-accurate for pairwise comparisons.

Lastly, we note that the alternatives a′ defined above don’t make any individual’s utility be more than
1 or less then umin. We know that uC,p(a), uP,p(a) ∈ [umin, 1], so since min(uC,p(a), uP,p(a)) ≤
uy(a

′) ≤ max(uC,p(a), uP,p(a)), we also have uy(a
′) ∈ [umin, 1] for all y ∈ I.

A.2 Calculations for Example 7

We first prove a short technical lemma to simplify the calculations.
Lemma 12. Let p < 1 and c1, c2, x ∈ R so that c2 > c1 ≥ x ≥ 0 if p ∈ (0, 1) and c2 > c1 > x ≥ 0
if p ≤ 0. Then for p ̸= 0,

d

dx

(
1

4
((c1 − x)p + (c1 + x)p + (c2 − x)p + (c2 + x)p)

)1/p

≤ 0,
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and equality holds only if x = 0. Furthermore,

d

dx

(
((c1 − x)(c1 + x)(c2 − x)(c2 + x))

1/4
)
≤ 0,

and again equality holds only if x = 0.

Proof. We’ll first denote f(x) = 1
4 ((c1 − x)p + (c1 + x)p + (c2 − x)p + (c2 + x)p) and consider

the case p ̸= 0. We can see that

d

dx
(f(x))

1/p
=

1

p
(f(x))

1/p−1 · 1
4
p
(
(c1 + x)p−1 − (c1 − x)p−1 + (c2 + x)p−1 − (c2 − x)p−1

)
The two p’s cancel. Since all of the summand in f(x) are non-negative (positive if p ≤ 0) and (c2+x)

is positive,we have that f(x) > 0, so (f(x))
1/p−1

> 0. It follows that the sign of d
dx (f(x))

1/p is
the same as the sign of (c1 + x)p−1 − (c1 − x)p−1 + (c2 + x)p−1 − (c2 − x)p−1. Since p < 1, we
know that the function g(x) = xp−1 is strictly decreasing in x, so (c1 + x)p−1 ≤ (c1 − x)p−1 and
(c2 + x)p−1 ≤ (c2 − x)p−1, with equality only if x = 0. The first part of the lemma follows.

For the second part of the lemma, we denote

f(x) = (c1 − x)(c1 + x)(c2 − x)(c2 + x) = (c21 − x2)(c22 − x2)

and get that

d

dx
(f(x))

1/4
=

1

4
(f(x))

1/4−1(
4x3 − 2x(c21 + c22)

)
.

All the terms in the fourth root are positive, so we have that f(x) > 0 and thus (f(x))1/4−1
> 0. It

follows that the sign of d
dx (f(x))

1/4 is the same as the sign of
(
4x3 − 2x(c21 + c22)

)
. If x = 0, we

are done. Else, since c2 ≥ c1 > x > 0, we have that 4x3 − 2x(c21 + c22) < 4x3 − 2x(x2 + x2) = 0.
The second part of the lemma follows.

To show that the population indeed gets the strictly highest utility from a3 for any umin ∈ [0, 1) as
claimed in Example 7, we let

h(x) =

{(
1
4 ((c1 − x)p + (c1 + x)p + (c2 − x)p + (c2 + x)p)

)1/p
if p ̸= 0

((c1 − x)(c1 + x)(c2 − x)(c2 + x))
1/4 if p = 0

,

where c1 = 1+3umin

4 and c2 = 3+umin

4 . Note that we can express the welfare of the population for
the alternatives in A using h:

uP,p(a1) = uP,p(a2) = h

(
1− umin

4

)
, uP,p(a3) = h(0).

By Lemma 12, we know that h is strictly decreasing on [0, c1) for p ≤ 0 and on [0, c1] for p ∈ (0, 1).
For p ∈ (0, 1) and any umin ∈ [0, 1) we have that c1 ≥ 1−umin

4 , and for p ≤ 0 and umin ∈ (0, 1) we
have that c1 > 1−umin

4 , so we get that h(0) > h
(
1−umin

4

)
. Thus, uP,p(a3) > uP,p(a1), uP,p(a2).

There remains the case umin = 0 and p ≤ 0 that we already treat in Example 7 but repeat here for the
sake of completeness. In that case, both a1 and a2 have a welfare of 0 for P since one individual in
P has utility 0. Alternative a3 has a welfare of at least 1

4 > 0 for P (using that the p-mean of a list of
numbers is at least as big as the smallest number).

A.3 Proof of Theorem 9

Let’s restate Theorem 9, including the bound in the case p = 0. Note that the case p = 0 is the same
as the general case, replacing the weighted p-means by weighted geometric means.
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Theorem 9 (restated). Let A be a set of alternatives, P be a population and C be any 2-representative
panel in P . Then, for all p ≤ 1 and all umin ∈ (0, 1), or p ∈ (0, 1] and umin = 0, C is ε-accurate
with respect to p, where for p ̸= 0,

ε = max
κ1,κ2

(
κ2 − κ2

1

κ2 − 2κ1 + 1
+

(1− κ1)
2

κ2 − 2κ1 + 1

(
κ1 − κ2

1− κ1

)p) 1
p

−
(

(κ1 − umin)
2

κ2 − 2uminκ1 + umin
2

(
κ2 − uminκ1

κ1 − umin

)p

+
κ2 − κ2

1

κ2 − 2uminκ1 + umin
2
umin

p

) 1
p

s.t. umin
2 < κ2

1 < κ2 and
κ2 + umin

1 + umin
< κ1 < 1,

and for p = 0,

ε = max
κ1,κ2

(
κ1 − κ2

1− κ1

)(
(1−κ1)2

κ2−2κ1+1

)

−
(
κ2 − uminκ1

κ1 − umin

)(
(κ1−umin)2

κ2−2uminκ1+umin
2

)
· (umin)

(
κ2−κ2

1
κ2−2uminκ1+umin

2

)

s.t. umin
2 < κ2

1 < κ2 and
κ2 + umin

1 + umin
< κ1 < 1.

In order to prove Theorem 9, we first establish our general framework for bounding the ε-accuracy
of m-representative panels in Appendix A.3.1. We then turn to the cases m = 1 and m = 2
(Appendices A.3.3 and A.3.4), where we analytically solve some of the optimization problems from
the general framework for m-representative panel. We use these to prove Theorem 9 and the upper
bound in Theorem 8.

A.3.1 Properties of m-representative panels

We start by proving Lemma 13, a property of m-representative panels that is crucial for the proof of
Theorem 9.

Lemma 13. Let A be a set of alternatives, P be a population, and C be an m-representative panel in
P . Then, for any a ∈ A, the first m moments of C and P for a are the same. That is, for any integer
1 ≤ ℓ ≤ m, ∑

yi∈I
qi(ui(a))

ℓ =
∑
yi∈I

ri(ui(a))
ℓ.

Proof of Lemma 13. First, note that by definition a panel that is m-representative is also ℓ-
representative, for ℓ ≤ m. Thus, it suffices to show that the equation in Lemma 13 holds for
ℓ = m.

The key insight is that
∑

yj∈I qj(uj(a))
m is a polynomial in {yi(f, v)}f∈F,v∈Vf

of degree m. This
allows us to use the definition of being m-representative to “switch” the qj in any term of the
polynomial to rj . Formally, we get that

∑
yj∈I

qj(uj(a))
m =

∑
yj∈I

qj

∑
f∈F

∑
v∈Vf

a(f, v)yj(f, v)

m

=
∑
yj∈I

qj
∑

(f1,...,fm)
∈Fm

∑
(v1,...,vm)

∈Vf1
×...×Vfm

m∏
i=1

a(fi, vi)yj(fi, vi)

=
∑

(f1,...,fm)
∈Fm

∑
(v1,...,vm)

∈Vf1
×...×Vfm

(
m∏
i=1

a(fi, vi)

)∑
yj∈I

qj

m∏
i=1

yj(fi, vi)

.
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and analogously for the panel

∑
yj∈I

rj(uj(a))
m =

∑
(f1,...,fm)

∈Fm

∑
(v1,...,vm)

∈Vf1
×...×Vfm

(
m∏
i=1

a(fi, vi)

)∑
yj∈I

rj

m∏
i=1

yj(fi, vi)

. (1)

We conclude the proof by arguing that for any (f1, ..., fm) ∈ Fm and v1, ..., vm ∈ Vf1 × ...× Vfm ,
it holds that ∑

yj∈I
qj

m∏
i=1

yj(fi, vi) =
∑
yj∈I

rj

m∏
i=1

yj(fi, vi).

Let’s first assume there exist two indices i ̸= i′ such that fi = fi′ , but vi ̸= vi′ . In this case, we
know both sides of Equation (1) are zero since no type yj ∈ I can have yj(f, vi) = yj(f, vi′) = 1
for vi ̸= vi′ (i.e., each feature takes exactly one value per type), where f = fi = fi′ .

The case where whenever fi = fi′ , also vi = vi′ remains. We know that yj(fi, vi) = yj(fi′ , vi′) ∈
{0, 1} for all yj ∈ I, and thus yj(fi, vi) = yj(fi, vi)yj(fi′ , vi′). Let Z = {f ∈ (f1, ..., fm)} be the
set of the unique features in (f1, ..., fm), |Z| ≤ m. We get that for any (vf )f∈Z ∈×f∈Z

Vf , it
holds that∑

yj∈I
qj

m∏
i=1

yj(fi, vi) =
∑
yj∈I

qj
∏
f∈Z

yj(f, vf ) =
∑
yj∈I

rj
∏
f∈Z

yj(f, vf ) =
∑
yj∈I

rj

m∏
i=1

yj(fi, vi),

where the second equality follows from the definition of m-representation (see Definition 2), and the
fact that |Z| ≤ m.

From Lemma 13, we have that the first m moments of an m-representative panel C in P are the same
as the moments of P . Also note that the 0-th moment is always identical, κ0 =

∑
yj∈I qj = 1. We’ll

now use moments to bound the utility an m-representative panel can have.

Lemma 14. Let umin ∈ [0, 1] and p < 1. Let P be a population (resp., let C be a panel) with
moments κ0 = 1, κ1, ..., κm. Then for any alternative a such that ui(a) ∈ [umin, 1] for all yi ∈ I, it
holds that

UMIN(κ1, ..., κm; p, umin) ≤ uP,p(a), uC,p(a) ≤ UMAX(κ1, ..., κm; p, umin),

where3 UMIN(κ1, ..., κm; p, umin) and UMAX(κ1, ..., κm; p, umin) are, respectively,

min

(
m∑
i=0

qix
p
i

) 1
p

s.t.
m∑
i=0

qix
j
i = κj for all j ∈ {0, ...,m}

qi ≥ 0 for all i ∈ {0, ...,m}
xi ∈ [umin, 1] for all i ∈ {0, ...,m}.

max

(
m∑
i=0

qix
p
i

) 1
p

s.t.
m∑
i=0

qix
j
i = κj for all j ∈ {0, ...,m}

qi ≥ 0 for all i ∈ {0, ...,m}
xi ∈ [umin, 1] for all i ∈ {0, ...,m}.

Proof. We’ll prove the theorem for any population P . The proof for a panel C is identical.

We know that for any population P with moments κ0, κ1, ..., κm it holds that the utility uP,p(a) is
upper and lower bounded by maximizing and minimizing, respectively, the following optimization

3To keep the notation concise, we’ll write the following proofs for a general p-mean and don’t explicitly
state the special case p = 0 whenever the corresponding definitions or statements follow immediately when the
p-mean is replaced by a geometric mean.
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problem

max /min

∑
yj∈I

qj · (uj)
p

 1
p

s.t.
∑
yj∈I

qj · (uj)
i = κi for all i ∈ {0, 1, ...,m}

uj ∈ [umin, 1] for all yj ∈ I

since the feasible region is exactly the region of all populations with moments as given, and the
utilities are allowed to take any value within [umin, 1].

Since
∑

yj∈I qj = 1 (this is enforced above by the moment constraint for i = 0), we can interpret
the qj and uj in the above program as a probability measure over [umin, 1], placing probability mass
qj on uj . We can use this observation to relax the constraints of the above program by replacing
the qi and ui with any probability measure on [umin, 1]. Note that this is essentially equivalent to
allowing n, the individuals in the population, go to infinity. Thus, we get that uP,p(a) is upper and
lower bounded by maximizing and minimizing, respectively, the following optimization problem

max /min

(∫ 1

umin

xpdµ(x)

) 1
p

s.t.
∫ 1

umin

xidµ(x) = κi for all i ∈ {0, 1, ...,m}

µ(x) ≥ 0 for all x ∈ [umin, 1].

Let M be the feasible region of the optimization program(s) above (noting that continuous, discrete,
and mixed probability measures are all in M ). If we take the µ corresponding to some population,
we see that the moments of the population are identical to the moments of the probability distribution
µ ∈ M .

Problems of the above type, where a space of probability measures over a bounded interval is defined
by their moments, are called moment problems [25]. It is known that the space of such probability
measures is convex, with the extreme points being distributions supported on a discrete set of size at
most m+ 1, where m is the number of moments [19, Theorem 2.1 for a general umin, Proposition
3.2 for umin = 0].

It remains to show that the objective function of the above program takes its extreme values at the
extreme points of the constraint set. To see this, let µ1, µ2 ∈ M be any two distributions, and for
some t ∈ [0, 1], let µ = tµ1+(1− t)µ2 ∈ M be a convex combination of µ1, µ2. Then, the objective
function (i.e. p-mean) of µ is(∫ 1

umin

xpdµ

) 1
p

=

(
t

∫ 1

umin

xpdµ1 + (1− t)

∫ 1

umin

xpµ2

) 1
p

=

(
t

(∫ 1

umin

xpdµ1

) 1
pp

+

(
(1− t)

∫ 1

umin

xpµ2

) 1
pp
) 1

p

.

In particular, the objective function for µ is the p-mean of the objective functions for µ1 and µ2,
weighted with t and 1− t, respectively, and as such, always between the two.

Thus, we conclude that the above optimization program takes its maximum and minimum values at
extreme points of the constraint set, which is discrete distributions with support size at most m+ 1.
Applying this yields the optimization programs in the theorem statement.

Lemma 14 gives us an upper and lower bound on the utility of a population or panel with given first
m-moments. We can use Lemma 14 to prove the following lemma.

Lemma 15. Let umin ∈ [0, 1] and p < 1. Let P be a population and let C be a m-representative
panel in P . Let a be any alternative such that uj(a) ∈ [umin, 1] for all yj ∈ I. Then C is ε-accurate
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with

ε = max UMAX(κ1, ..., κm; p, umin)− UMIN(κ1, ..., κm; p, umin)

s.t. [κi+j ]
m/2
i,j=0, [(1 + umin)κi+j+1 − κi+j+2 − uminκi+j ]

m/2−1
i,j=0 ⪰ 0 if m ≡ 0 mod 2

[κi+j+1 − uminκi+j ]
(m−1)/2
i,j=0 , [κi+j − κi+j+1]

(m−1)/2
i,j=0 ⪰ 0 if m ≡ 1 mod 2

where [Mi,j ]
d−1
i,j=0 is a d× d matrix with entry Mi,j at position (i, j) and M ⪰ 0 means that M is

positive-semidefinite.

Proof. Lemma 14 implies that for a given sequence of moments κ1, ..., κm it holds that

|uC,p(a)− uP,p(a)| ≤ UMAX(κ1, ..., κm; p, umin)− UMIN(κ1, ..., κm; p, umin).

Thus, C is guaranteed to be ε-accurate with

ε = max UMAX(κ1, ..., κm; p, umin)− UMIN(κ1, ..., κm; p, umin)

s.t. κ1, ..., κm are the moments of a population (or panel) and alternative, given umin

We can relax the constraints on κ1, ..., κm, similarly to the proof of Lemma 14, by only requiring
κ1, ..., κm to be the moments of a probability measure µ on [umin, 1]. Determining whether such a
probability measure µ exists given moments and a bounded interval is known as the one-dimensional
truncated moment problem on a bounded interval; we refer to [24] for a concise and contemporary
proof that the constraints in the lemma statement are necessary and sufficient for κ1, ..., κm to be the
moments of a probability measure µ on [umin, 1].

A.3.2 Solving for UMIN and UMAX

The optimization program in Lemma 15 is by itself not overly insightful since there are two fur-
ther optimization programs nested in it, from the definitions of UMAX(κ1, ..., κm; p, umin) and
UMIN(κ1, ..., κm; p, umin). In this section, we describe a general framework for getting closed form
solutions for UMAX and UMIN, which we apply in subsequent sections for m = 1 and m = 2.

We start by noting that the feasible regions of UMAX(κ1, ..., κm; p, umin) and
UMIN(κ1, ..., κm; p, umin) are identical. There are m+ 1 moment conditions, in the form of m+ 1
equality constraints, all linear in the m+ 1 qi’s. W.l.o.g. we assume that x0 > x1 > ... > xm (we
don’t need to consider equality since it is equivalent to setting a qi to 0), so we get that the m + 1

moment equality constraints for fixed xi are linearly independent since the coefficients are xj
i for

j = 0, ...,m and the xi are distinct. We can thus solve uniquely for the qi to get

qi =
1∏

j ̸=i(xi − xj)

m∑
j=0

(−1)jκm−jej(x−i), (2)

where ej is the j-th elementary symmetric polynomial and x−i are all x0, . . . , xm except xi:

ej(x−i) = ej(x0, ..., xi−1, xi+1, ..., xm) =
∑

0≤i1<...<ij≤m
i1,...,ij ̸=i

xi1 ...xij .

Defining the qi as a function of x = (x0, ..., xm), we can rewrite the optimization problems with
only m+ 1 instead of 2m+ 2 variables so that

UMIN(κ1, ..., κm; p, umin) = UMAX(κ1, ..., κm; p, umin) =

min

(
m∑
i=0

qi(x)x
p
i

) 1
p

s.t. qi(x) ≥ 0 for all i ∈ {0, ...,m}
1 ≥ x0 > x1 > · · · > xm ≥ umin,

max

(
m∑
i=0

qi(x)x
p
i

) 1
p

s.t. qi(x) ≥ 0 for all i ∈ {0, ...,m}
1 ≥ x0 > x1 > · · · > xm ≥ umin.

To get an analytical solution for this optimization problem, we note that for m = 1 and m = 2, the
derivative of the objective with respect to each variable is either non-negative or non-positive on the
entire feasible region.
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Lemma 16. Let p ≤ 1 and umin ∈ (0, 1), or p ∈ (0, 1] and umin = 0. Let m ∈ {1, 2} and
1 ≥ x0 > x1 > · · · > xm ≥ umin. Then for all x = (x0, . . . , xm) so that qj(x) ≥ 0 for all
j ∈ {0, ...,m}, it holds that

∂

∂xi

(
m∑
i=0

qi(x)x
p
i

) 1
p {≥ 0 if i ≡ m (mod 2)

≤ 0 if i ̸≡ m (mod 2)
,

for all i = 0, ...,m, where the qi are a function of x0, ..., xm as defined in Equation (2).

We conjecture that Lemma 16 also holds for m > 2 and can be proven almost analogously to our
proof for m = 2. For our results, we only investigate 1-representative and 2-representative panels
and prove Lemma 16 for the respective m in the corresponding sections. We then apply it to solve
explicitly for UMIN and UMAX.

A.3.3 1-representative panels

We’ll first consider the case m = 1. We prove Lemma 16 for m = 1 and then use it to solve for
UMIN and UMAX. By Lemma 15, the proof of the first, “upper bound”, part of Theorem 8 will follow
(the proof of the second, “lower bound”, part can be found in Appendix A.4).

Proof of Lemma 16, m = 1. Recall that w.l.o.g. we assume x0 > x1. We can solve for qi as
in Equation (2) to get

q0 =
κ1 − x1

x0 − x1
q1 = 1− q0 =

x0 − κ1

x0 − x1
.

We’ll now first treat the case p ̸= 0 and return to p = 0 at the end.

Let’s calculate the derivatives of the objective without the outer p-th root:

∂

∂x0
(q0x

p
0 + q1x

p
1) = pxp−1

0

κ1 − x1

x0 − x1
+ xp

0

x1 − κ1

(x0 − x1)2
+ xp

1

κ1 − x1

(x0 − x1)2

=
κ1 − x1

x0 − x1

(
pxp−1

0 − xp
0 − xp

1

x0 − x1

)
= q0

(
pxp−1

0 − xp
0 − xp

1

x0 − x1

)
,

∂

∂x1
(q0x

p
0 + q1x

p
1) = q1

(
pxp−1

1 − xp
0 − xp

1

x0 − x1

)
.

To determine the sign of the two expressions in parenthesis, we let f(x) = xp and note that
df
dx (x0) = pxp−1

0 and df
dx (x1) = pxp−1

1 while xp
0−xp

1

x0−x1
is the difference quotient of f for [x1, x0].

For p ∈ (0, 1), f is concave, so we get pxp−1
0 <

xp
0−xp

1

x0−x1
< pxp−1

1 ; for p < 0, f is convex, so

pxp−1
0 >

xp
0−xp

1

x0−x1
> pxp−1

1 . Since q0, q1 ≥ 0, we get that

∂

∂xi
(q0x

p
0 + q1x

p
1)

{
≤ 0 if (i = 0 ∧ p ∈ (0, 1)) ∨ (i = 1 ∧ p < 0)

≥ 0 if (i = 1 ∧ p ∈ (0, 1)) ∨ (i = 0 ∧ p < 0)
.

To finish the proof, we note that

∂

∂x0
(q0x

p
0 + q1x

p
1)

1
p =

1

p
(q0x

p
0 + q1x

p
1)

1
p−1 · ∂

∂x0
(q0x

p
0 + q1x

p
1),

so if p < 0 the sign switches when considering the objective function instead of the objective function
without the p-th root. This implies the lemma for p ̸= 0.

Let’s now turn to the case p = 0. We note that the sign of the objective doesn’t change when taking
the logarithm, so it suffices to show that

∂

∂xi
(q0 log(x0) + q1 log(x1))

{
≤ 0 if i = 0

≥ 0 if i = 1
.
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Taking the derivatives, we get

∂

∂x0
(q0 log(x0) + q1 log(x1)) = q0

(
1

x0
− log(x0)− log(x1)

x0 − x1

)
,

∂

∂x1
(q0 log(x0) + q1 log(x1)) = q1

(
1

x1
− log(x0)− log(x1)

x0 − x1

)
.

If we let f(x) = log(x), again, the expressions in the parenthesis is the difference between the
derivative of f at x0 and x1, respectively, minus the difference quotient of f for [x1, x0]. Since f is
concave, the lemma for p = 0 follows.

We now apply Lemma 16 to solve for UMIN and UMAX.
Lemma 17. Let p ≤ 1 and umin ∈ (0, 1), or p ∈ (0, 1] and umin = 0. Let κ1 ∈ (umin, 1). Then
UMAX(κ1; p, umin) = κ1 and

UMIN(κ1; p, umin) =


(

κ1−umin

1−umin
+ 1−κ1

1−umin
· umin

p
) 1

p

if p ̸= 0

(umin)
1−κ1

1−umin if p = 0

Proof. W.l.o.g. we assume x0 > x1. Thus, the constraints qi ≥ 0 are equivalent to κ1 ≥ x1 and
x0 ≥ κ1. We solve for UMIN and UMAX by finding the minimum and maximum of their defining
optimization program from Lemma 14.

Finding the maximum: By Lemma 16, we know that the objective (non-strictly) increases as x0

decreases. The only lower bounds on x0 are x0 ≥ κ1 and x0 > x1, so we know there is a maximum
either at x0 = κ1 (where the first lower bound is tight) or for x1 ≥ κ1 (the only case in which x0

can’t be tight to the first lower bound since x0 > x1). Since κ1 is the weighted mean of x0 and
x1, we know that x1 ≤ κ1, so the second case becomes x1 = κ1. These two cases, x0 = κ1 and
x1 = κ1, imply, respectively, q1 = 0 and q0 = 0, so the other variable doesn’t affect the objective.
We thus get that a maximum is attained at

x0 = κ1, q0 = 1, x1 ∈ [umin, κ1), q1 = 0 or x0 ∈ (κ1, 1], q0 = 0, x1 = κ1, q1 = 1.

In both cases, the objective value is κ1.

Finding the minimum: By Lemma 16, we know that the objective (non-strictly) decreases as x0

increases. The only upper bound on x0 is x0 ≤ 1. Similarly, we know that the objective (non-strictly)
decreases as x1 decreases. The only lower bound on x1 is x1 ≥ umin. Thus, we know that the
objective takes its minimum value at

x0 = 1, q0 =
κ1 − umin

1− umin
, x1 = umin, q1 =

1− κ1

1− umin
.

Plugging these values into the objective gives the lemma statement.

We know have the tools to prove the first part of the main theorem, Theorem 8, the upper bound on
ε-accuracy of a 1-representative panel.

Proof of Theorem 8, upper bound. We first consider the case p ≤ 0 and umin = 0. Since
uC,p(a), uP,p(a) ∈ [0, 1] for all a ∈ A, we know that |uC,p(a)− uP,p(a)| ≤ 1 for all a ∈ A.
Thus, C is 1-accurate.

Let’s now consider the case p < 1 and umin ∈ (0, 1) or p ∈ (0, 1) and umin = 0. By Lemma 15, we
know that any 1-representative panel C is ε-accurate with

ε = max UMAX(κ1; p, umin)− UMIN(κ1, κ2; p, umin)

s.t. [κi+j+1 − uminκi+j ]
0
i,j=0, [κi+j − κi+j+1]

0
i,j=0 ⪰ 0

where [Mi,j ]
d−1
i,j=0 is a d × d matrix with entry Mi,j at position (i, j) and M ⪰ 0 means that M is

positive-semi-definite. Since both matrices are 1× 1 and κ0 = 1, the constraints are equivalent to
κ1 ≥ umin and 1 ≥ κ1.
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If both constraints are strict, we know the values of UMIN and UMAX by Lemma 17. There remains
the case when at least one of the two inequalities is not strict (recall Lemma 14 for the definitions of
UMAX and UMIN in this case). Let’s again assume w.l.o.g. that x0 > x1. Since κ1 is the weighted
mean of x0 and x1 (with weights q0 and q1, respectively), and both x0, x1 ∈ [umin, 1], we know that
κ1 = umin implies x1 = umin, q0 = 0, so UMIN(umin; p, umin) = UMAX(umin; p, umin) = umin.
Similarly, κ1 = 1 implies x0 = 1, q1 = 0, so UMIN(1; p, umin) = UMAX(1; p, umin) = 1.

In either case, if one of the two constraints is not tight, UMAX(κ1, κ2; p, umin) −
UMIN(κ1, κ2; p, umin) = 0. Since there always exists a point at which all constraints are strictly
followed, and UMAX(κ1, κ2; p, umin) − UMIN(κ1, κ2; p, umin) ≥ 0 at any such point, as follows
immediately from their definition, we can restrict the constraints to being strict, to get that any
1-representative panel is ε-accurate for p ̸= 0 with

max
κ1

κ1 −
(
κ1 − umin

1− umin
+

1− κ1

1− umin
· umin

p

) 1
p

s.t. umin < κ1 < 1,

and for p = 0 with

max
κ1

κ1 − umin

1−κ1
1−umin

s.t. umin < κ1 < 1.

We’ll now solve these two optimization programs, starting with the case p ̸= 0. We let f(κ1) =

κ1 −
(

κ1−umin

1−umin
+ 1−κ1

1−umin
· umin

p
) 1

p

be the objective of the optimization program. We take the first
derivative of f , to get

df

dκ1
= 1− 1

p

(
κ1 − umin

1− umin
+

1− κ1

1− umin
· umin

p

) 1
p−1

1− umin
p

1− umin
.

Setting this equal to zero, we get that

p
1− umin

1− umin
p
=

(
κ1 − umin

1− umin
+

1− κ1

1− umin
· umin

p

) 1
p−1

.

We know that both the left hand side as well as everything within the parenthesis on the right hand
side is positive for κ1 ∈ (umin, 1), so we can raise the above equality to the (1 − p)/p-th power
without introducing or loosing solutions for κ1 ∈ (umin, 1). We do so and solve for κ1 to get

κ1 =
1− umin

1− umin
p

(
p · 1− umin

1− umin
p

) p
1−p

+
umin − umin

p

1− umin
p

. (3)

Taking the second derivative of f , we see that for κ1 ∈ [umin, 1],

d2f

(dκ1)2
= −1

p

(
1

p
− 1

)(
κ1 − umin

1− umin
+

1− κ1

1− umin
· umin

p

) 1
p−2(

1− umin
p

1− umin

)2

≤ 0,

so f is concave on [umin, 1]. We can see that f(umin) = f(1) = 0, and we know from above that
f(x) > 0 for some x ∈ (umin, 1). Thus, we know that f has an extreme point on [umin, 1], which
we know has to be at κ1 as specified in Equation (3), and f is maximized on (umin, 1) for this κ1.

Plugging Equation (3) into f , we get that

max
umin<κ1<1

f(κ1) =
1− p

p

(
p · 1− umin

1− umin
p

) 1
1−p

+
umin − umin

p

1− umin
p

,

which gives ε from the theorem statement, for p < 0 and umin ∈ (0, 1) or p ∈ (0, 1) and umin = 0.

Let’s now solve the optimization program in the remaining case p = 0 and umin ∈ (0, 1). Again, we

let f(κ1) = κ1 − umin

1−κ1
1−umin be the objective of corresponding optimization program. We take the

first derivative of f , to get
df

dκ1
= 1 +

1

1− umin
umin

1−κ1
1−umin ln(umin).
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Setting this equal to zero and solving for κ1, we get

κ1 = 1− (1− umin)
ln
(

1
1−umin

)
+ ln ln

(
1

umin

)
ln
(

1
umin

) (4)

Taking the second derivative of f , we see that for κ1 ∈ [umin, 1],

d2f

(dκ1)2
= −

(
1

1− umin

)2

umin

1−κ1
1−umin ln2(umin) ≤ 0,

so f is concave on [umin, 1]. Similar to before, we can see that f(umin) = f(1) = 0, and we know
from above that f(x) > 0 for some x ∈ (umin, 1). Thus, we know that f has an extreme points
on [umin, 1], which we know has to be at κ1 as specified in Equation (4), and f is maximized on
(umin, 1) for this κ1.

Plugging Equation (4) into f , we get that

max
umin<κ1<1

f(κ1) = 1 +
1− umin

ln
(

1
umin

)
ln

 1− umin

ln
(

1
umin

)
− 1

,

which gives ε from the theorem statement for p = 0 and umin ∈ (0, 1).

A.3.4 2-representative panels

Let’s consider m = 2. We will first prove Lemma 16 for m = 2, which we’ll then apply to solve for
UMIN and UMAX. Together with Lemma 15 the proof of Theorem 9 will follow.

Proof of Lemma 16, m = 2. From Equation (2) we obtain that

q0 =
1

(x0 − x1)(x0 − x2)
(κ2 − κ1(x1 + x2) + x1x2)

q1 =
1

(x1 − x0)(x1 − x2)
(κ2 − κ1(x0 + x2) + x0x2)

q2 =
1

(x2 − x0)(x2 − x1)
(κ2 − κ1(x0 + x1) + x0x1).

We now calculate the derivative of the objective without the outer p-th root. We’ll treat the case p = 0
separately at the end.

∂

∂x0

(
2∑

i=0

qix
p
i

)
= q0px

p−1
0 + xp

0q0
(x1 − x0) + (x2 − x0)

(x0 − x1)(x0 − x2)

+ q1
xp
1

(x1 − x0)
+

xp
1(x2 − κ1)

(x1 − x0)(x1 − x2)

+ q2
xp
2

(x2 − x0)
+

xp
2(x1 − κ1)

(x2 − x0)(x2 − x1)

= q0

(
pxp−1

0 − xp
0

x0 − x1
− xp

0

x0 − x2

+
xp
1

(x1 − x0)(x1 − x2)

(
q1(x1 − x2) + (x2 − κ1)

q0

)
+

xp
2

(x2 − x0)(x2 − x1)

(
q2(x2 − x1) + (x1 − κ1)

q0

))
= q0

(
pxp−1

0 − xp
0

x0 − x1
− xp

0

x0 − x2

+
xp
1(x2 − x0)

(x1 − x0)(x1 − x2)

(
(κ2 − κ1(x0 + x2) + x0x2) + (x2 − κ1)(x1 − x0)

κ2 − κ1(x1 + x2) + x1x2

)
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+
xp
2(x1 − x0)

(x2 − x0)(x2 − x1)

(
(κ2 − κ1(x0 + x1) + x0x1) + (x1 − κ1)(x2 − x0)

κ2 − κ1(x1 + x2) + x1x2

))
= q0

(
pxp−1

0 −
xp
0 − xp

1
x0−x2

x1−x2

x0 − x1
−

xp
0 − xp

2
x0−x1

x2−x1

x0 − x2

)
.

To determine the sign of the last line we consider the function f : R≥0 → R≥0 where f(x) = xp. We
let P be the unique degree-2 polynomial for which P (x0) = f(x0), P (x1) = f(x1), P (x2) = f(x2)
using the Lagrange basis polynomials:

P (x) = xp
0

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ xp

1

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ xp

2

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

We can now note that

dP

dx
(x0) =

xp
0 − xp

1
x0−x2

x1−x2

x0 − x1
+

xp
0 − xp

2
x0−x1

x2−x1

x0 − x2

df

dx
(x0) = pxp−1

0 ,

so that

∂

∂x0

(
2∑

i=0

qix
p
i

)
= q0

(
df

dx
(x0)−

dP

dx
(x0)

)
.

Analogously, for x1 and x2 we obtain

∂

∂x1

(
2∑

i=0

qix
p
i

)
= q1

(
pxp−1

1 −
xp
1 − xp

0
x1−x2

x0−x2

x1 − x0
−

xp
1 − xp

2
x1−x0

x2−x0

x1 − x2

)
= q1

(
df

dx
(x1)−

dP

dx
(x1)

)
,

∂

∂x2

(
2∑

i=0

qix
p
i

)
= q2

(
pxp−1

2 −
xp
2 − xp

0
x2−x1

x0−x1

x2 − x0
−

xp
2 − xp

1
x2−x0

x1−x0

x2 − x1

)
= q2

(
df

dx
(x2)−

dP

dx
(x2)

)
.

We now prove that f can intersect in at most 3 points with a degree-2 polynomial. If we let
P (x) = a2x

2+a1x
1+a0 for some a0, a1, a2, we get that d2

dx2 (f−P ) = p(p−1)xp−2−2a2. Since
xp−2 is monotone and non-negative (and we know a2 ̸= 0 since the three points P is interpolating
through are not collinear) d2

dx2 (f − P ) has at most one (single) root if a2 and p(p− 1) are either both
positive or both negative, and no root otherwise. We conclude that f − P has at most 3 roots, and
that a2 < 0 when p ∈ (0, 1) while a2 > 0 when p < 0.

Since we know x0, x1, x2 are 3 distinct roots of f − P , we know that all 3 roots are all single, and
therefore that which one of f and P is greater ‘switches’ at each root. In particular, if p ∈ (0, 1), we
know that a2 < 0, so P (x) < f(x) for x > x0 and x ∈ (x2, x1), while P (x) > f(x) for x < x2

and x ∈ (x1, x0). Therefore

df

dx
(x0)−

dP

dx
(x0) > 0,

df

dx
(x1)−

dP

dx
(x1) < 0,

df

dx
(x2)−

dP

dx
(x2) > 0.

Similarly, for p < 0, we know that a2 > 0, so P (x) > f(x) for x > x0 and x ∈ (x2, x1), while
P (x) < f(x) for x < x2 and x ∈ (x1, x0).Therefore

df

dx
(x0)−

dP

dx
(x0) < 0,

df

dx
(x1)−

dP

dx
(x1) > 0,

df

dx
(x2)−

dP

dx
(x2) < 0.

Since q0, q1, q2 ≥ 0, we get that

∂

∂xi

2∑
i=0

qix
p
i

{
≥ 0 if i = 0, 2

≤ 0 if i = 1
if p ∈ (0, 1),

∂

∂xi

2∑
i=0

qix
p
i

{
≤ 0 if i = 0, 2

≥ 0 if i = 1
if p < 0.
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To finish the proof, we note that

∂

∂x0

(
2∑

i=0

qix
p
i

) 1
p

=
1

p

(
2∑

i=0

qix
p
i

) 1
p−1

∂

∂x0

(
2∑

i=0

qix
p
i

)
,

so if p < 0 the sign switches when considering the objective function instead of the objective function
without the p-th root. This implies the lemma for p ̸= 0.

We now turn to the case p = 0. Taking the logarithm of objective doesn’t change the sign of its
derivative, so it suffices to show that

∂

∂xi

(
2∑

i=0

qi ln(xi)

){
≥ 0 if i ≡ m (mod 2)

≤ 0 if i ̸≡ m (mod 2)
.

Taking the derivative of the objective with respect to x0, we obtain similarly to the case before that

∂

∂x0

(
2∑

i=0

qi ln(xi)

)
= q0

1

x0
+ ln(x0)q0

(x1 − x0) + (x2 − x0)

(x0 − x1)(x0 − x2)

+ q1
ln(x1)

(x1 − x0)
+

ln(x1)(x2 − κ1)

(x1 − x0)(x1 − x2)

+ q2
ln(x2)

(x2 − x0)
+

ln(x2)(x1 − κ1)

(x2 − x0)(x2 − x1)

= q0

(
1

x0
−

ln(x0)− ln(x1)
x0−x2

x1−x2

x0 − x1
−

ln(x0)− ln(x2)
x0−x1

x2−x1

x0 − x2

)
.

To determine the sign of the last line we consider the function f : R≥0 → R≥0 where f(x) = ln(x).
We let P be the unique degree-2 polynomial for which P (x0) = f(x0), P (x1) = f(x1), P (x2) =
f(x2) using the Lagrange basis polynomials:

P (x) = ln(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ ln(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ ln(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

We can now note that

dP

dx
(x0) =

ln(x0)− ln(x1)
x0−x2

x1−x2

x0 − x1
−

ln(x0)− ln(x2)
x0−x1

x2−x1

x0 − x2

df

dx
(x0) =

1

x0
,

so that

∂

∂x0

(
2∑

i=0

qix
p
i

)
= q0

(
df

dx
(x0)−

dP

dx
(x0)

)
.

Analogously, for x1 and x2, we obtain

∂

∂x1

(
2∑

i=0

qix
p
i

)
= q1

(
df

dx
(x1)−

dP

dx
(x1)

)
,

∂

∂x2

(
2∑

i=0

qix
p
i

)
= q2

(
df

dx
(x2)−

dP

dx
(x2)

)
.

We now prove that f can intersect in at most 3 points with a degree-2 polynomial. If we let
P (x) = a2x

2+a1x
1+a0 for some a0, a1, a2, we get that d2

dx2 (f −P ) = −1/x2− 2a2. Since 1/x2

is monotone and non-negative, d2

dx2 (f − P ) has at most one (single) root if a2 is non-positive and no
root otherwise. We conclude that f − P has at most 3 roots.
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We know x0, x1, x2 are 3 distinct roots of f−P , so we know that a2 < 0 (a2 cannot be zero since the
three points P is interpolating through are not collinear) and that all 3 roots are all single. Therefore,
which one of f and P is greater ‘switches’ at each root. Since a2 < 0, P (x) < f(x) for x > x0, so
it follows that also P (x) < f(x) for x ∈ (x2, x1), while P (x) > f(x) for x < x2 and x ∈ (x1, x0).
Therefore

df

dx
(x0)−

dP

dx
(x0) > 0,

df

dx
(x1)−

dP

dx
(x1) < 0,

df

dx
(x2)−

dP

dx
(x2) > 0;

the lemma for p = 0 follows.

We now apply Lemma 16 to solve for UMIN and UMAX. Note that in the lemma statement, the case
p = 0 is the same as p ̸= 0 when replacing the weighted p-mean by a weighted geometric mean.
Lemma 18. Let p < 1 and 1 > κ1 > κ2+umin

1+umin
and κ2 > κ2

1 > umin
2. Then, if p ̸= 0,

UMIN(κ1, κ2; p, umin) =(
(κ1 − umin)

2

κ2 − 2uminκ1 + umin
2

(
κ2 − uminκ1

κ1 − umin

)p

+
κ2 − κ2

1

κ2 − 2uminκ1 + umin
2
umin

p

) 1
p

,

and

UMAX(κ1, κ2; p, umin) =

(
κ2 − κ2

1

κ2 − 2κ1 + 1
+

(1− κ1)
2

κ2 − 2κ1 + 1

(
κ1 − κ2

1− κ1

)p) 1
p

.

If p = 0,

UMAX(κ1, κ2; 0, umin) =

(
κ1 − κ2

1− κ1

)(
(1−κ1)2

κ2−2κ1+1

)

and

UMIN(κ1, κ2; 0, umin) =

(
κ2 − uminκ1

κ1 − umin

)(
(κ1−umin)2

κ2−2uminκ1+umin
2

)
· (umin)

(
κ2−κ2

1
κ2−2uminκ1+umin

2

)

Proof. W.l.o.g. we assume x0 > x1 > x2. Since the weighted mean of x0, x1, x2 is κ1, we can
furthermore assume w.l.o.g. that x0 > κ1 > x2 (If x0 > κ1, then also x2 < κ1; if x0 = κ1, then
q1 = q2 = 0, which is still captured by x0 > x1 = κ1 > x2 and q0 = q2 = 0; x0 < κ1 is not
possible).

We now use this to rewrite the constraints qi ≥ 0 in terms of x0, x1, x2. For q0, we obtain

q0 ≥ 0 ⇔ 1

(x0 − x1)(x0 − x2)
(κ2 − κ1(x1 + x2) + x1x2) ≥ 0

⇔ κ2 − κ1x2 + x1(x2 − κ1) ≥ 0

⇔ x1 ≤ κ2 − x2κ1

κ1 − x2

⇔ x1 ≤ κ1 +
κ2 − κ2

1

κ1 − x2
. (5)

Similarly, for q1 and q2, we obtain

q1 ≥ 0 ⇔ x0 ≥ κ1 +
κ2 − κ2

1

κ1 − x2
(6)

⇔ x2 ≤ κ1 −
κ2 − κ2

1

x0 − κ1
, (7)

q2 ≥ 0 ⇔ x1 ≥ κ1 −
κ2 − κ2

1

x0 − κ1
. (8)

We now solve for UMIN and UMAX by finding the minimum and maximum of their defining
optimization program from Lemma 14.
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Finding the minimum: We’ll first assume p ̸= 0. By Lemma 16, we know that increasing x1 will
(non-strictly) decrease the objective. The upper bounds on x1 are Constraint (5) and x1 < x0 ≤ 1.
Thus, we know that there is a minimum either for x1 = κ1 +

κ2−κ2
1

κ1−x2
(tight to the upper bound

given by Constraint (5)) or for x0 ≤ κ1 +
κ2−κ2

1

κ1−x2
(the only case in which x1 can’t take this value

since x1 < x0). By Constraint (6), we know x0 ≥ κ1 +
κ2−κ2

1

κ1−x2
, so the second case becomes

x0 = κ1 +
κ2−κ2

1

κ1−x2
.

We first consider the case x1 = κ1 +
κ2−κ2

1

κ1−x2
= κ2−x2κ1

κ1−x2
. We get that

q0 =
κ2 − κ1(

κ2−x2κ1

κ1−x2
+ x2) +

κ2−x2κ1

κ1−x2
x2

(x0 − x1)(x0 − x2)

=
κ2 − (

κ1κ2−x2κ
2
1+x2κ

2
1−x2

2κ1−κ2x2+x2
2κ1

κ1−x2
)

(x0 − x1)(x0 − x2)

=
κ2 − (κ2(κ1−x2)

κ1−x2
)

(x0 − x1)(x0 − x2)
= 0,

so the value of x0 won’t affect the objective. Furthermore,

q1 =
κ2 − κ1(x0 + x2) + x0x2

(κ2−x2κ1

κ1−x2
− x0)(

κ2−x2κ1

κ1−x2
− x2)

=
(κ2 − κ1(x0 + x2) + x0x2)(κ1 − x2)

2

(κ2 − x2κ1 − x0κ1 + x0x2)(κ2 − x2κ1 − x2κ1 + x2
2)

=
(κ1 − x2)

2

κ2 − 2x2κ1 + x2
2

,

q2 = 1− q0 − q1 =
κ2 − κ2

1

κ2 − 2x2κ1 + x2
2

,

so the objective becomes(
(κ1 − x2)

2

κ2 − 2x2κ1 + x2
2

(
κ2 − x2κ1

κ1 − x2

)p

+
κ2 − κ2

1

κ2 − 2x2κ1 + x2
2

xp
2

)1/p

if p ̸= 0 (9)

(
κ2 − x2κ1

κ1 − x2

)(
(κ1−x2)2

κ2−2x2κ1+x2
2

)
· (x2)

(
κ2−κ2

1
κ2−2x2κ1+x2

2

)
if p = 0. (10)

In both cases, the objective is a univariate function in x2. We will show that it is monotonically
increasing on the interval [0, κ1), which implies that the minimum is achieved at x2 = umin, which
implies x1 = κ2−uminκ1

κ1−umin
. Since κ1(1 + umin) > κ2 + umin, by assumption in the lemma statement,

if follows that x1 < 1. We know that x0 doesn’t affect the objective, so we can just set x0 to be any
value in (x1, 1]. Plugging this in, we get

x0 ∈ (x1, 1] q0 = 0

x1 =
κ2 − uminκ1

κ1 − umin
q1 =

(κ1 − umin)
2

κ2 − 2uminκ1 + umin
2

x2 = umin q2 =
κ2 − κ2

1

κ2 − 2uminκ1 + umin
2
.

(11)

We’ll now show for the case p ̸= 0 that Equation (9) is monotonically increasing on [0, κ1). To do
that, we first drop the p-th root and take the derivative of the expression without the root (with respect
to x2), to calculate its sign. We get

(κ2 − κ2
1)
(
xp−1
1 ((p− 2)κ2 − 2(p− 1)κ1x2 + px2

2) + xp−1
2 (pκ2 − 2(p− 1)κ1x2 + (p− 2)x2

2)
)

(κ2 − 2κ1x2 + x2
2)

2
,
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where we write x1 for κ2−x2κ1

κ1−x2
for brevity. Since κ2 − κ2

1 > 0 and κ2 − 2κ1x2 + x2
2 = κ2 − κ2

1 +

(κ1 − x2)
2 > 0, we can drop those terms without changing the sign of the expression. We simplify

further to get

xp−1
1 ((p− 2)κ2 − 2(p− 1)κ1x2 + px2

2) + xp−1
2 (pκ2 − 2(p− 1)κ1x2 + (p− 2)x2

2)

= (xp−1
1 + xp−1

2 )p(κ2 − 2κ1x2 + x2
2)− 2xp−1

1 (κ2 − κ1x2) + 2xp−1
2 (κ1x2 − x2

2)

= (xp−1
1 + xp−1

2 )p(x1 − x2)(κ1 − x2)− 2xp
1(κ1 − x2) + 2xp

2(κ1 − x2).

Since κ1 > x2 and x1 > x2, we can divide by 2(κ1 − x2)(x1 − x2) without changing the sign, to
get:

pxp−1
1 + pxp−1

2

2
− xp

1 − xp
2

x1 − x2
.

If we let f(x) = pxp−1, it follows immediately from the Hermite–Hadamard inequality that the
above expression is non-negative for p ∈ (0, 1) and non-positive for p < 0.

By the chain rule, taking the p-th root switches the sign of the derivative if p < 0 and does not if
p ∈ (0, 1). Thus, we can conclude that the derivative of Equation (9) on [0, κ1) is non-negative for
all p < 0 and p ∈ (0, 1).

Let’s next show for the case p = 0 that Equation (10) is also monotonically increasing on [0, κ1).
The proof is very similar to the proof right above for Equation (9). First, we note that taking the
logarithm of Equation (10) doesn’t change the sign of its derivative, so we just need to show that the
derivative of the logarithm is non-negative. This derivative is:

(κ2 − κ2
1)
(
2(κ1 − x2)(ln(x2)− ln(x1)) +

(κ2−x2
2)(κ2−2x2κ1+x2

2)
x(κ2−κ1x2)

)
(κ2 − 2κ1x2 + x2

2)
2

,

where again we write x1 for κ2−x2κ1

κ1−x2
for brevity. Since κ2 − κ2

1 > 0 and κ2 − 2κ1x2 + x2
2 =

κ2 − κ2
1 + (κ1 − x2)

2 > 0, we can drop those terms without changing the sign of the expression. We
simplify further to get

2(κ1 − x2)(ln(x2)− ln(x1)) +
(κ2 − x2

2)(κ2 − 2x2κ1 + x2
2)

x(κ2 − κ1x2)

= 2(κ1 − x2)(ln(x2)− ln(x1)) +

(
1

x2
+

κ1 − x2

κ2 − x2κ1

)
(κ2 − 2x2κ1 + x2

2)

= 2(κ1 − x2)(ln(x2)− ln(x1)) +

(
1

x2
+

1

x1

)
(x1 − x2)(κ1 − x2).

Since κ1 > x2 and x1 > x2, we can divide by 2(κ1 − x2)(x1 − x2) without changing the sign to get
1
x1

+ 1
x2

2
− ln(x1)− ln(x2)

x1 − x2
.

If we let f(x) = 1/x, it follows immediately from the Hermite–Hadamard inequality that the above
expression is non-negative. Thus, we can conclude that Equation (10) on [0, κ1) is non-negative.

It remains to consider the case x0 = κ1 +
κ2−κ2

1

κ1−x2
= κ2−x2κ1

κ1−x2
. We get analogous equations for

q0, q1, q2 as in the earlier case (with q0 and q1 switched, naturally), so we get the same objective
as in Equations (9) and (10), which we know is minimized for x2 = umin. Analogously to above,
this implies x0 = κ2−uminκ1

κ1−umin
. We know that x0 > umin since κ2 − uminκ1 − umin(κ1 − umin) =

κ2 − κ2
1 + (κ1 − umin)

2 > 0, so since x1 doesn’t affect the objective, we can just set it to be any
value in (x2, x0). We get

x0 =
κ2 − uminκ1

κ1 − umin
q0 =

(κ1 − umin)
2

κ2 − 2uminκ1 + umin
2

x1 ∈ (x2, x0) q1 = 0

x2 = umin q2 =
κ2 − κ2

1

κ2 − 2uminκ1 + umin
2
.

(12)
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We know that the objective is minimized for either the variable assignments from Solution (11) or
from Solution (12). We note that in fact both assignments give the same objective value, thus, the
global minimum. This value is exactly UMIN(κ1, κ2; p, umin) in the lemma statement.

Finding the maximum: By Lemma 16, we know that decreasing x1 will (non-strictly) increase
the objective. The lower bounds on x1 that we have are Constraint (8) and x1 > x2 ≥ umin.
Thus, we know that there is a maximum either for x1 = κ1 − κ2−κ2

1

x0−κ1
(tight to the lower bound

given by Constraint (8)) or for x2 ≥ κ1 − κ2−κ2
1

x0−κ1
(the only case in which x1 can’t take this value

since x1 > x2). By Constraint (7), we know that x2 ≤ κ1 − κ2−κ2
1

x0−κ1
, so the second case becomes

x2 = κ1 − κ2−κ2
1

x0−κ1
.

We first consider the case x1 = κ1 − κ2−κ2
1

x0−κ1
= κ1x0−κ2

x0−κ1
. We get that

q2 =
κ2 − κ1(x0 +

κ1x0−κ2

x0−κ1
) + x0

κ1x0−κ2

x0−κ1

(x2 − x0)(x2 − x1)

=
κ2 − (

κ1x
2
0−κ2

1x0+κ2
1x0−κ1κ2−κ1x

2
0+κ2x0

x0−κ1
)

(x2 − x0)(x2 − x1)

=
κ2 − (κ2(x0−κ1)

x0−κ1
)

(x2 − x0)(x2 − x1)
= 0,

so the value of x2 won’t affect the objective. Furthermore,

q1 =
κ2 − κ1(x0 + x2) + x0x2

(κ1x0−κ2

x0−κ1
− x0)(

κ1x0−κ2

x0−κ1
− x2)

=
(κ2 − κ1(x0 + x2) + x0x2)(x0 − κ1)

2

(κ1x0 − κ2 − x2
0 + κ1x0)(κ1x0 − κ2 − x0x2 + κ1x2)

=
(x0 − κ1)

2

κ2 − 2κ1x0 + x2
0

,

q0 = 1− q1 − q2 =
κ2 − κ2

1

κ2 − 2κ1x0 + x2
0

,

so the objective becomes(
κ2 − κ2

1

κ2 − 2κ1x0 + x2
0

xp
0 +

(x0 − κ1)
2

κ2 − 2κ1x0 + x2
0

(
κ1x0 − κ2

x0 − κ1

)p)1/p

if p ̸= 0 (13)

(x0)

(
κ2−κ2

1
κ2−2κ1x0+x2

0

)
·
(
κ1x0 − κ2

x0 − κ1

)(
(x0−κ1)2

κ2−2κ1x0+x2
0

)
if p = 0 (14)

In both cases, this is a univariate function in x0. We know that κ1x0 =
∑2

i=0 qixix0 ≥
∑2

i=0 qix
2
i =

κ2, so we have x0 ∈ [κ2

κ1
, 1]. In fact, note that if p ≤ 0, the inequality is strict since x2 > 0 and at

least 2 of the qi are positive (else κ2
1 = κ2), so we have x0 ∈ (κ2

κ1
, 1] and Equations (13) and (14)

are well-defined for all valid x0 and p. We’ll show that Equations (13) and (14) are monotonically
increasing on the interval (κ2

κ1
, 1] ([κ2

κ1
, 1] for p ∈ (0, 1)). This implies that the maximum is achieved

at x0 = 1, which gives x1 = κ1−κ2

1−κ1
. Since κ1(1 + umin) > κ2 + umin, by assumption in the lemma

statement, it follows that x1 > umin. We know that x2 doesn’t affect the objective, so we can just set
x2 to be any value in [umin, x1). Plugging this in, we get

x0 = 1 q0 =
κ2 − κ2

1

κ2 − 2κ1 + 1

x1 =
κ1 − κ2

1− κ1
q1 =

(1− κ1)
2

κ2 − 2κ1 + 1

x2 ∈ [umin, x1] q2 = 0.

(15)
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We now show that for p ̸= 0, Equation (13) is monotonically increasing on (κ2

κ1
, 1] ([κ2

κ1
, 1] for

p ∈ (0, 1)). This proof is almost analogous to the minimization part. First, we note that Equation (13)
is identical to Equation (9) with x2 replaced by x0. We can do the same algebraic steps, now noting
that since κ1 < κ2/κ1 ≤ x0 and x1 < x0, diving by 2(κ1 − x0)(x1 − x0) doesn’t change the sign.
We thus get, analogously to the minimization part, that the sign of the derivative of Equation (13)
without the outer p-th root is the same as the sign of

pxp−1
0 + pxp−1

1

2
− xp

0 − xp
1

x0 − x1
.

Again, by the Hermite–Hadamard inequality with f(x) = pxp−1, it follows immediately that the
above expression is non-negative for p ∈ (0, 1) and non-positive for p < 0. By the chain rule, taking
the p-th root switches the sign of the derivative if p < 0 and does not if p ∈ (0, 1). Thus, we can
conclude that the derivative of Equation (13) on (κ2

κ1
, 1] ([κ2

κ1
, 1] for p ∈ (0, 1)) is non-negative for all

p < 0 and p ∈ (0, 1).

Let’s next show for the case p = 0 that Equation (14) is monotonically increasing on (κ2

κ1
, 1]. Also

this proof is almost analogous to the minimization part. We note that Equation (14) is identical
to Equation (10) with x2 replaced by x0. We can do the same algebraic steps, now noting that since
κ1 < κ2/κ1 ≤ x0 and x1 < x0, diving by 2(κ1 − x0)(x1 − x0) doesn’t change the sign. We thus
get, analogously to the minimization part, that the sign of the derivative of Equation (13) without the
outer p-th root is the same as the sign of

1
x0

+ 1
x1

2
− ln(x0)− ln(x1)

x0 − x1
.

If we let f(x) = 1/x, it follows immediately from the Hermite–Hadamard inequality that the above
expression is non-negative. Thus, we can conclude that Equation (14) on (κ2

κ1
, 1] is non-negative.

It remains to consider the case x2 = κ1 − κ2−κ2
1

x0−κ1
= κ1x0−κ2

x0−κ1
. We get analogous equations for

q0, q1, q2 as in the earlier case (with q1 and q2 switched, naturally), so we get the same objective as
in Equations (9) and (10), which we know is maximized for x0 = 1. Analogously to above, this
implies x2 = κ1−κ2

1−κ1
. We know that x2 < 1 since (1− κ1)− (κ1 − κ2) = κ2 − κ2

1 + (1− κ1)
2 > 0,

so since x1 doesn’t affect the objective, we can just set it to be any value in (x2, x0). We get

x0 = 1 q0 =
κ2 − κ2

1

κ2 − 2κ1 + 1

x1 ∈ (x2, x0) q1 = 0

x2 =
κ1 − κ2

1− κ1
q2 =

(1− κ1)
2

κ2 − 2κ1 + 1
.

(16)

We know that the objective is maximized for either the variable assignments from Solution (15) or
from Solution (16). We note that in fact both assignments give the same objective value, thus, the
global maximum. This value is exactly UMAX(κ1, κ2; p, umin) in the lemma statement.

We now have the tools to prove the main theorem.

Proof of Theorem 9. By Lemma 15, we know that any 2-representative panel C is ε-accurate with

ε = max UMAX(κ1, κ2; p, umin)− UMIN(κ1, κ2; p, umin)

s.t. [κi+j ]
1
i,j=0, [(1 + umin)κi+j+1 − κi+j+2 − uminκi+j ]

0
i,j=0 ⪰ 0

where [Mi,j ]
d−1
i,j=0 is a d × d matrix with entry Mi,j at position (i, j) and M ⪰ 0 means that M is

positive-semidefinite. The first matrix [κi+j ]
1
i,j=0 thus is 2× 2 and hence semi-definite if and only if

κ0 ≥ 0, which is always true, and det([κi+j ]
1
i,j=0) = κ2 − κ2

1 ≥ 0. The second matrix is 1× 1 and
thus positive semi-definite if and only if (1 + umin)κ1 − κ2 − umin ≥ 0. We get that the conditions
are equivalent to κ2 ≥ κ2

1 and κ1 ≥ κ2+umin

1+umin
.
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We can combine the two inequalities to get κ1 ≥ κ2
1+umin

1+umin
which implies 0 ≥ (κ1−1)(κ1−umin), or

equivalently κ1 ∈ [umin, 1]. This gives us the constraints κ2 ≥ κ2
1 ≥ umin

2 and 1 ≥ κ1 ≥ κ2+umin

1+umin

in the theorem statement.

We’ll next show that if any of the 4 inequalities is not strict, then UMAX(κ1, κ2; p, umin) −
UMIN(κ1, κ2; p, umin) = 0 (see Lemma 14 for the definition of UMAX and UMIN).

First, if κ2
1 = κ2, we get that

√∑2
i=0 qix

2
i =

∑2
i=0 qixi which by the arithmetic-quadratic inequality

only holds if x0 = x1 = x2 (unless qi = 0 for some i, in which case the corresponding xi can take
any value). Thus, UMAX(κ1, κ2; p, umin) = UMIN(κ1, κ2; p, umin) = κ1.

Next, if κ1 = κ2+umin

1+umin
, we get that

0 = κ1(1 + umin)− κ2 − umin

=

2∑
i=0

qi(xi + xiumin − x2
i )− umin

=

2∑
i=0

qi(xi + xiumin − x2
i − umin) +

2∑
i=0

qiumin − umin

=

2∑
i=0

qi(1− xi)(xi − umin).

Since qi(1 − xi)(xi − umin) ≥ 0 for xi ∈ [umin, 1], it follows that xi = umin or xi = 1 for all
i = 0, 1, 2. To obtain first moment κ1, the weights (qi) need to be 1−κ1

1−umin
for umin and κ1−umin

1−umin

for 1, which also gives second moment κ2 = κ1(1 + umin) − umin as desired. It follows that

UMAX(κ1, κ2; p, umin) = UMIN(κ1, κ2; p, umin) =
(

1−κ1

1−umin
umin

p + κ1−umin

1−umin

)1/p
.

Lastly, both κ1 = 1 and κ1 = umin imply κ2
1 = κ2, so the first case applies.

Since there always exists a point at which all constraints are strictly followed, and
UMAX(κ1, κ2; p, umin) − UMIN(κ1, κ2; p, umin) ≥ 0 at any such point, as follows immediately
from their definition, we can restrict the constraints to being strict. This allows us to plug in the
equations for UMAX and UMIN from Lemma 18 to obtain the theorem statement.

A.4 Proof of Theorem 8

The proof of Theorem 8 consists of two parts: showing that every 1-representative panel is ε-accurate
for the ε in the statement of the theorem, and then showing that this ε cannot be made smaller. The
proof of the first part follows as a special case of our general analysis of m-representative panels
in Appendix A.3, in particular, it can be found in Appendix A.3.3. Here, we show the second part,
i.e., that this bound is tight. We show that for any ε′ < ε (and p < 1, umin ∈ [0, 1)), for ε as specified
in the theorem statement, there exists a 1-representative panel that is not ε′-accurate.

We’ll first show Lemma 19, which will be useful for this. Intuitively, it says that if umin and κ1 are
integers divided by |F|, we can have two panels in which each feature value appears in the same share
of individuals, and so that the two panels have the highest and lowest welfare possible for panels with
first moment κ1 and individual utilities in [umin, 1], as specified by UMAX and UMIN in Lemma 17.

Note that this lemma assumes that either p < 1 and umin ∈ [0, 1) or p ∈ (0, 1) and umin = 0, but
excludes the case p ≤ 0 and umin = 0. This is because in this setting the best possible upper bound
is the (trivial) upper bound of 1, as stated in Theorem 8, for the same reasons why the lower bound
in Theorem 11 holds: A single person with utility 0 makes the population utility 0 regardless of the
other individuals’ utilities. We thus treat this case separately.

Lemma 19. Let p < 1 and umin ∈ [0, 1), or p ∈ (0, 1) and umin = 0. Let ℓ be an inte-
ger, and κ1, umin ∈ Q such that 1 > κ1 > umin and ℓumin, ℓκ1 ∈ Z. Then, there exist two
panels C = {(r1, y1), . . . , (rT , yT )}, C′ = {(r′1, y1), . . . , (r′T , yT )} with individuals of types in
I = {y1, . . . , yT } with |F| = ℓ features and an alternative a s.t. ui(a) ∈ [umin, 1] for all yi ∈ I, so
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that each feature value appears in the same share in C and C′, i.e.
∑

yi∈I riyi =
∑

yi∈I r′iyi and

uC,p(a) = UMIN(κ1; p, umin) =


(

κ1−umin

1−umin
+ 1−κ1

1−umin
umin

p
)1/p

if p ̸= 0

(umin)
1−κ1

1−umin if p = 0
,

and uC′,p(a) = UMAX(κ1; p, umin) = κ1.

Proof. Let F = {f1, ..., fℓ} and Vf = {0, 1} for all f ∈ F . We let y1 be the type that has value 1
for all features, i.e. y1(f, i) = i for all f ∈ F , i = 0, 1. We let

Yκ1
= {y : |{f ∈ F : y(f, 1) = 1}| = ℓκ1} Yumin

= {y : |{f ∈ F : y(f, 1) = 1}| = ℓumin}

be the set of all possible types that have value 1 for exactly ℓκ1 and ℓumin of their features, respectively.
We let I = {y1} ∪ Yκ1

∪ Yumin
.

Let’s now define the panels. We let C be the panel consisting of (ℓκ1−ℓumin)
(

ℓ
ℓumin

)
∈ Z individuals

of type y1 and of (ℓ− ℓκ1) ∈ Z individuals of each of the
(

ℓ
ℓumin

)
types in Yumin

. We let C′ be the
panel consisting of 1 individual for each type in Yκ1

.

We need to confirm that for every feature f ∈ F , each value v ∈ Vf appears in the same share of
C and C′. Since there are only two values, 0 and 1, for each feature, it suffices to show that value 1
appears in the same share of individuals in C and C′ for any feature.

Let’s fix a feature f ∈ F . First, we can see that a fraction of
(

ℓ−1
ℓκ1−1

)
/
(

ℓ
ℓκ1

)
= κ1 of the individuals

in C′ have value 1 for feature f . Also for C we get that a fraction of

(ℓκ1 − ℓumin)
(

ℓ
ℓumin

)
+ (ℓ− ℓκ1)

(
ℓ−1

ℓumin−1

)
(ℓκ1 − ℓumin)

(
ℓ

ℓumin

)
+ (ℓ− ℓκ1)

(
ℓ

ℓumin

) =
(κ1 − umin) + (1− κ1)umin

(κ1 − umin) + (1− κ1)
= κ1

of the individuals in C′ have value 1 for feature f .

We let a be an alternative such that a(f, i) = i/ℓ for all f ∈ F and i = 0, 1; i.e., an individual’s utility
is the number of features for which they have value 1, divided by the total number of features. Thus,
all individuals in C′ get utility κ1 from a, so uC′,p(a) = κ1. Furthermore, the individuals of type
y1 get utility 1 and the individuals of a type in Yumin

get utility umin. Note that thus all individuals
y ∈ I get a utility in [umin, 1] from a, as needed. The share of individuals with utility 1 in C is

(ℓκ1 − ℓumin)
(

ℓ
ℓumin

)
(ℓκ1 − ℓumin)

(
ℓ

ℓumin

)
+ (ℓ− ℓκ1)

(
ℓ

ℓumin

) =
κ1 − umin

1− umin

and the share of with utility umin in C is 1− κ1−umin

1−umin
= 1−κ1

1−umin
. Applying the definition of panel

welfare, we find that uC,p(a) is as specified in the lemma.

Proof of Theorem 8, lower bound. Given any umin ∈ [0, 1) and p < 1, we’ll show that we can
construct a population P , an alternative a so that the utility of every individual in the population for a
is in [umin, 1], and a 1-representative panel C in P , such that |uC,p(a)− uP,p(a)| gets as close to ε
as desired (in particular, greater than any fixed ε′ < ε) if the size of the population and the number of
features is sufficiently large. This implies that there are m-representative committees C that are not
ε′-accurate for any ε′ < ε. To make it clear that ε depends on p and umin, we’ll write

ε(p, umin) =


1−p
p

(
p · 1−umin

1−umin
p

) 1
1−p

+ umin−umin
p

1−umin
p for p > 0 ∨ (p < 0 ∧ umin > 0)

1 + 1−umin

ln (1/umin)

(
ln
(

1−umin

ln (1/umin)

)
− 1
)

for p = 0 ∧ umin > 0

1 for p ≤ 0 ∧ umin = 0

for ε as defined in the theorem statement.

Let’s first consider the case that p ≤ 0, umin = 0, where we want to show that for any ε′ < 1 =
ε(p, umin) there exists a 1-representative panel that is not ε′-accurate. By Theorem 11, we know that
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for any |F|, there exists a 1-representative panel that is not ε-accurate for any ε < (|F| − 1)/|F|. If
we set |F| large enough in terms of ε′, for example |F| > 1 + ⌈1/(1− ε′)⌉, we get that

|F| − 1

|F|
=

⌈1/(1− ε′)⌉
1 + ⌈1/(1− ε′)⌉

> ε′,

so there exists a 1-representative panel that is not ε′-accurate.

We now turn to the case p < 1 and umin ∈ (0, 1) or p ∈ (0, 1) and umin = 0, noting that these cases
cover all of “p > 0”, “p < 0 ∧ umin > 0,” and “p = 0 ∧ umin > 0,” as needed. We let

κ1 =


1−umin

1−umin
p

(
p · 1−umin

1−umin
p

) p
1−p

+ umin−umin
p

1−umin
p if p ̸= 0

1− (1− umin)
ln

(
1

1−umin

)
+ln ln

(
1

umin

)
ln

(
1

umin

) if p = 0
,

to be the value in (umin, 1) maximizing the difference between UMIN(κ1; p, umin) and
UMAX(κ1; p, umin), as found in Equations (3) and (4), so that

UMAX(κ1; p, umin)− UMIN(κ1; p, umin) = ε(p, umin)

as shown in the proof of the first part of this theorem.

We now consider a fixed |F| = ℓ, and let ûmin = ⌈ℓumin⌉/ℓ and κ̂1 = ⌈ℓκ1⌉/ℓ be the smallest
rational numbers with ℓ as denominator that are greater than umin and κ1, respectively. We assume ℓ is
large enough so that 1 > κ̂1 > ûmin. Then, Lemma 19 tells us that for any p < 1, umin ∈ (0, 1) or p ∈
(0, 1), umin = 0, there exist two panels C = {(r1, y1), . . . , (rT , yT )}, C′ = {(r′1, y1), . . . , (r′T , yT )}
with ℓ features, so that each feature value appears in the same frequency in C and C′, and that there
exists an alternative a that has the maximum and minimum social welfare possible for a panel with first
moment κ̂1 and minimum population utility ûmin, i.e., UMAX(κ̂1; p, ûmin) and UMIN(κ̂1; p, ûmin),
respectively.

Now, note that as ℓ → ∞, we get that κ̂1 → κ1 and ûmin → umin. Since UMAX(κ1; p, umin)
and UMIN(κ1; p, umin) are continuous for p < 1, umin ∈ (0, 1) or p ∈ (0, 1), umin = 0, and
κ1 ∈ [umin, 1], we get that as ℓ → ∞,

UMAX(κ̂1; p, ûmin) → UMAX(κ1; p, umin), UMIN(κ̂1; p, ûmin) → UMIN(κ1; p, umin),

and therefore also

|uC′,p(a)− uC,p(a)| = UMAX(κ̂1; p, ûmin)− UMIN(κ̂1; p, ûmin) → ε(p, umin).

We now construct a population P that consists of the individuals in C once and n′ times each
individual in C′. Since each feature value appears in the same share of C and C′, it also appears in the
same share of P , so C and C′ are 1-representative panels in P . If we let n′ → ∞, we see that

uP,p(a) =
∑
yi∈I

ri + n′r′i
n′ + 1

(ui(a))
p →

∑
yi∈I

r′i(ui(a))
p = uC′,p(a),

so |uP,p(a)− uC,p(a)| → |uC′,p(a)− uC,p(a)| as n′ → ∞.

Putting it all together, we get that as ℓ, n′ → ∞, |uP,p(a)− uC,p(a)| → ε(p, umin) for the 1-
representative panel C in P . In particular, this implies that for any δ > 0, for all ℓ and n′ large enough,
|ε(p, umin)− |uP,p(a)− uC,p(a)|| < δ. If we set δ = ε(p, umin)− ε′ > 0 (and notice that always
|uP,p(a)− uC,p(a)| ≤ ε(p, umin) as shown in the first, upper bound, part of the proof), it follows that
for any ε′ < ε(p, umin), for all ℓ and n′ large enough, |uP,p(a)− uC,p(a)| ∈ (ε′, ε(p, umin)], and in
particular, |uP,p(a)− uC,p(a)| > ε′. Thus, C is a 1-representative panel that is not ε′ accurate.

A.5 Proof of Theorem 11

To keep the math in the proof concise, we use the (well-known) extension of binomial coefficients
to allow for negative integers in the top part. We then apply the Chu-Vandermonde identity for
generalized binomial coefficients multiple times throughout the proof.
Definition 20 ([15, Definition 3.1.]). Let k ∈ Z≥0 and n ∈ Z. We define the generalized binomial
coefficient as

(
n
k

)
= n(n−1)...(n−k+1)

k! .
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There is a nice identity for binomial coefficients with a negative top part, which will be useful for the
proof.
Lemma 21 ([15, Proposition 3.16.]). Let k ∈ Z≥0 and n ∈ Z. Then(

n

k

)
= (−1)k

(
k − n− 1

k

)
.

A key part of our proof is the so called Chu-Vandermon identity, first stated by mathematician Chu
Shih-chieh already in 1303.
Theorem 22 ([15, Theorem 3.29.]). Let k ∈ Z≥0, n,m ∈ Z. Then(

n+m

k

)
=

k∑
i=0

(
n

i

)(
m

k − i

)
.

We refer to [15] for contemporary proofs of Lemma 21 and Theorem 22.

Proof of Theorem 11. For this proof, we’ll construct two panels, C and C′, of equal size that are
m-representative with respect to each other, i.e., for every m̄ ≤ m, every m̄-tuple of feature values
appears in the same number of individuals in C and C′. We’ll construct an alternative a that gives one
person in C utility 0, while every person in panel C′ has utility at least (|F| −m)/|F|. We then let P
be the population consisting of the individuals in C and C′, so C′ is a m-representative panel in P
with welfare at least (|F| −m)/|F| for a, while to overall population has welfare 0.

First, note that if |F| ≤ m, the bound in the theorem follows trivially. Thus, let F = {f1, . . . , fℓ}
for ℓ = |F| > m. Let Vf = {0, 1} for all f ∈ F . Let yℓ be the type that has value 0 for
all features, i.e. yℓ(f, i) = 1 − i for all f ∈ F , i = 0, 1. For j ∈ {0, . . . ,m}, we let Yj =
{y : |f ∈ F : y(f, 0) = 1| = j} be the set of all types that have value 0 for exactly j features.

We define C to be the panel consisting of one individual of type yℓ and
(
ℓ−j−1
m−j

)
individuals of each

type y ∈ Yj , for j ∈ {0, . . . ,m}, j ̸≡ m mod 2. We define C′ to be the panel consisting of
(
ℓ−j−1
m−j

)
individuals of each type y ∈ Yj , for j ∈ {0, . . . ,m}, j ≡ m mod 2. We’ll first prove that the
number of individuals in C, k, and in C′, denoted k′, is indeed the same. Let’s first calculate k and k′:

k = 1 +
∑

j∈{0,...,m}
j ̸≡m mod 2

(
ℓ− j − 1

m− j

)
|Yj | = 1−

∑
j∈{0,...,m}
j ̸≡m mod 2

(
m− ℓ

m− j

)(
ℓ

j

)
,

k′ =
∑

j∈{0,...,m}
j≡m mod 2

(
ℓ− j − 1

m− j

)
|Yj | =

∑
j∈{0,...,m}
j≡m mod 2

(
m− ℓ

m− j

)(
ℓ

j

)
,

where the two right equalities follow from Lemma 21 and the fact that |Yj | =
(
ℓ
j

)
. We now note that

by Theorem 22,
m∑
j=0

(
m− ℓ

m− j

)(
ℓ

j

)
=

(
m

m

)
= 1,

which immediately implies k = k′.

Next, we’ll argue that C and C′ are m-representative in respect to each other, i.e., any m̄-tuple for
feature values for m̄ ∈ [m] appears in C with the same frequency as C′. Since k = k′, this means it
appears in the same number of individuals in C as in C′.

Let F ⊂ F , |F | = m̄, be any set of m̄ ≤ m features in F and let V = (vf )f∈F ∈×f∈F
Vf be

any assignment of values to these features. Let kV and k′V be the number of individuals in C and C′,
respectively, with feature values V . We thus want to show that kV = k′V for all V .

For any V , let i = |vf ∈ V : vf = 0| be the number of zeros in this assignment. For j = {0, . . . ,m},
the number of types in Yj that have feature values V is

(
ℓ−m̄
j−i

)
if j ≥ i, since there are ℓ− m̄ feature

values not defined by V , out of which j− i are zeros. If j < i, we know that no type in Yj has feature
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values V , since types in Yj have value 0 for less features than required by V . Type y0 has feature
values V if and only if i = m̄ since it is all zeros..

We get that

kV = 1[i = m̄]+
∑

j∈{i,...,m}
j ̸≡m mod 2

(
ℓ− j − 1

m− j

)(
ℓ− m̄

j − i

)
= 1[i = m̄]−

∑
j∈{i,...,m}

j ̸≡m mod 2

(
m− ℓ

m− j

)(
ℓ− m̄

j − i

)
,

k′V =
∑

j∈{i,...,m}
j≡m mod 2

(
ℓ− j − 1

m− j

)(
ℓ− m̄

j − i

)
=

∑
j∈{i,...,m}

j≡m mod 2

(
m− ℓ

m− j

)(
ℓ− m̄

j − i

)
,

where again the two right equalities follow from Lemma 21. We now note that

m∑
j=i

(
m− ℓ

m− j

)(
ℓ− m̄

j − i

)
=

m−i∑
j=0

(
m− ℓ

m− i− j

)(
ℓ− m̄

j

)
=

(
m− m̄

m− i

)
,

where the last equality follows from Theorem 22. Now, note that since i ≤ m̄, the bottom part of(
m−m̄
m−i

)
is at least its top part, so by Definition 20, we get(

m− m̄

m− i

)
=

{
0 if i < m̄

1 if i = m̄

}
= 1[i = m̄].

This immediately implies kV = k′V .

We let P be the population consisting of all individuals in C and C′. Since for any m̄ ≤ m, any
m̄-tuple of feature values appears in the same share of individuals in C and in C′, we know they also
appear in the same share in P . Thus, C and C′ are m-representative panels in P .

We now define alternative a such that a(f, i) = i/ℓ for all f ∈ F , i = 0, 1. That is, an individual
gets benefit 1/ℓ for each feature value that is 1. Thus, individual yℓ has utility 0, and any individual
y ∈ Yj for j ∈ {0, . . . ,m} has utility (ℓ − j)/ℓ. In particular, note that the utility from a for any
individual in P is in [0, 1], as required.

The p-mean, for p ≤ 0, of a list of numbers including 0 is 0, so the welfare of P is uP,p(a) = 0.
However, all individuals in C′ have at least utility (ℓ−m)/ℓ. Since for any p, the p-mean of a list of
numbers is at least as big as the smallest number in the list, uC′,p(a) ≥ ℓ−m

ℓ . We conclude that for
this alternative a and m-representative panel C′ in P ,

|uC′,p(a)− uP,p(a)| ≥
ℓ−m

ℓ
.

The theorem statement follows.

A.6 Additional details on empirical experiments

A.6.1 European nation-wide panel

For this panel, 30,000 letters were mailed to invite individuals to participate. 1,727 individuals
volunteered to be in the candidate pool; the desired panel size was 110. Seven features were being
considered when selecting the panel, which we list in Table 2.

We obtained the underlying population data from the 2016 European Social Survey [21]. The dataset
contains 1,959 respondents with post-stratification weights to account for sampling and participation
bias. We dropped 44 people from the dataset: 40 because they had missing data and 4 because they
were younger than 16, the minimum age set for the assembly. Furthermore, since the European
Social Survey only has the fields ‘Male’ and ‘Female’ for gender, we removed the 12 individuals
with gender ‘Other’ from the pool of candidates, reducing the size to 1,715.

One of the seven features considered was “Concern about climate change”. Only 4 individuals in
the pool of candidates had the value “Not at all concerned”, making it impossible to even form a
1-representative committee of the desired size with this candidate pool. We thus excluded this feature
from our analysis.
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Table 2: The features considered in selecting panel EUR1

Features Values
Gender Male, Female, Other
Age 16–29, 30–44, 45–59, 60+
Place of residence within the country 12 distinct regions
Educational attainment 3 levels
Concern about climate change Very concerned, Fairly concerned, Not very

concerned, Not at all concerned, Other
Ethnicity White, Non-white
Residential density Urban, Rural

We note that due to its limited sample size of 1,959, the European Social Survey doesn’t contain a
person for all possible tuples of m feature values, for m ≥ 3. However, this is not concerning for our
positive results on the existence of m-representative panels, since these are tuples of feature values
that appear in a sufficiently small share of the population so that an m-representative panel would
satisfy the corresponding quota by containing 0 or 1 individuals with that tuple of feature values. In
our experiments, for tuples of feature values that didn’t appear in the European Social Survey, we
enforced that 0 people on the panel have this tuple of feature values, tightening the constraints on the
existence of m-representative panels.

A.6.2 Australian state-wide panels 1 & 2

These two panels were being conducted in series with overlap in the pool of candidates and individuals
on the panels. Initially, 25,000 letters were mailed to invite individuals to participate, with additional
letters being sent to groups with expected low participation rates. 1,070 individuals volunteered to be
in the first candidate pool, from which a panel of 50 candidates was selected. For the second panel,
additional individuals were recruited for the candidate pool, then including 1,145 individuals (some
of which were on the first panel). A panel of 328 individuals was selected. Four features were being
considered when selecting the panels, which we list in Table 3.

Table 3: The features considered in selecting panels AUS1 and AUS2

Features Values
Sex Male, Female
Age 18–24, 25–34, 35–44, 45–54, 55–64, 65+
Residential density Metropolitan, Regional
Residential status Owner/Occupier, Tenant

We obtained the underlying population data from the Australian Bureau of Statistics’ 2021 Census
data [1]. Up to small deviations due to differential privacy noise being applied to the dataset,
we obtained the exact population share of each feature value tuple including “Sex”, “Age”, and
“Residential Density”. However, the publicly available data from the Australian Census separates
between individuals and dwellings, so that no data on the intersection of the “Residential status”
feature with the features “Age” and “Sex” is available. We therefore dropped the residential status
feature in our analysis.

A.6.3 Australian state-wide panel 3

For this panel, individuals could self-register interest in participating. 3,500 individuals did so, and
were emailed an invitation to participate. 518 of those individuals ended up volunteering to be in the
candidate pool; the desired panel size was 45. Four features were being considered when selecting
the panel, which we list in Table 4.

We obtained the underlying population data from the Australian Bureau of Statistics’ 2021 Census
data [1]. Since the Australian Census only has the fields ‘Male’ and ‘Female’ for sex, we removed
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Table 4: The features considered in selecting panel AUS3

Features Values
Gender Male, Female, Non-binary, I would prefer

not to say
Age 18–24, 25–34, 35–44, 45–54, 55–64, 65–74,

75+
Place of residence within the state 3 distinct regions
Ability to attend all panel sessions Yes, No, Unsure, Unsure-1

the 9 individuals with gender ‘Non-binary’ or ‘I would prefer not to say’ from the pool of candidates,
reducing the size to 509. Additionally, the feature ‘Ability to attend all panel sessions’ cannot be
obtained for the underlying population, by itself or in intersection with other features. Thus, we only
consider this feature individually, ensuring that at most 1/45 of the individuals on the panel have each
of the values ‘No’, ’Unsure’, or ’Unsure-1’, as was the requirement for the actually selected panel.
For each feature value tuple including “Gender” (without “Other”), “Age”, and “Place of residence”,
we obtained the exact population share, up to small deviations due to differential privacy noise being
applied to the dataset.
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