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In many economic settings, an initial evaluation may be uncertain or imperfect, leading decision-makers to
pay for a secondary evaluation that refines judgments and mitigates risk. Classic contract design theory does
not capture this possibility, creating an opportunity for economic mechanisms that leverage this structure. In
this work, we develop a principal-agent contract model in which the principal can pay to acquire additional
information about the agent’s hidden action by inspecting its outcome. The principal’s objective is to incentivize
a rational agent to choose a reward-maximizing action, yielding a joint optimization problem over both the
inspection policy (i.e., when to request additional information), and the corresponding monetary transfers. We
show that this problem is NP-hard in general, but becomes tractable under natural structural assumptions, or
when core problem dimensions are small. We further extend our model to incorporate probabilistic inspection
and show that contract design problems with probabilistic outcome inspection do not admit a Stackelberg
equilibrium, in contrast to classical contract design problems. Finally, we examine the economic implications
of our results, and propose methods to restore equilibrium guarantees in probabilistic inspection settings.
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1 Introduction
Contract theory examines the strategic interaction between a principal and an agent, focusing on
how to incentivize individuals to exert costly effort. A principal aims to motivate an agent to take
a hidden action that incurs a cost, and leads to a probability distribution over possible outcomes.
Since the principal derives utility from these outcomes, they offer a payment scheme that links
realized outcomes to financial compensation. The goal is to design a contract that maximizes the
principal’s expected utility while ensuring that the agent is incentivized to take the desired action;
the payments can depend only on observed outcomes rather than on the hidden action.

The classical contract theory model can be seen as assuming that the principal receives a single
signal regarding the action taken by the agent, in the form of the observed stochastic outcome.
However, in many real-world situations it is possible to acquire secondary evaluations to refine
initial assessments and decrease the information gap. Everyday scenarios—from medical diagnoses
to home improvement estimates—routinely incorporate second opinions to ensure more accurate
and reliable assessments.
We are especially interested in situations where obtaining a second opinion is costly. As an

example, consider a setting where the principal is paying a generative AI service for code generation,
as discussed by Saig et al. [25]. Different levels of effort by the agent correspond to using increasingly
sophisticated (and computationally intensive) AI models, say GPT-3.5, GPT-4, and GPT-4o. The
principal cannot directly observe which model is being used. 1 A coarse (and essentially free) signal
of the quality of the code generation can be obtained by compiling it. A second opinion can then be
obtained by hiring a proficient human to inspect the code; this provides another, more informative
signal but incurs a cost.

1.1 Our Contributions
To capture such settings, we extend the standard contract design framework by introducing the
option to pay for a second opinion, adding a new layer of complexity to the design of optimal
contracts. In our model, each action initially generates a stochastic signal, which can then be further
inspected by paying a third party for access to additional stochastic outcome. To maximize utility,
the principal commits to both an inspection policy (i.e., specifying which signals to inspect) and a
payment scheme (i.e., specifying how much to pay), balancing the benefits of reduced information
gaps against the expense of acquiring extra information. Notably, our model exhibits unique
economic properties absent in prior contract theory; for instance, there exist scenarios where the
first-best is strictly positive, yet the principal’s optimal utility is exactly zero. This contrasts with
previous work, where even linear contracts are known to approximate the first-best.
Our first set of results characterize the computational complexity of finding optimal contracts

with second opinion. In particular, we demonstrate that the contract optimization problem admits a
polynomial-time solution in two key practical settings: (i) when the number of actions available to
the agent is constant (see Theorem 3.5), and (ii) when both the Independent SecondOpinion Property
(ISOP) and the Inspection Monotone Likelihood Ratio Property (Inspection-MLRP) regularity
assumptions hold (see Theorem 3.7). For example, in the context of AI-generated code, the number
of models (or actions) available to the agent is typically small. This scenario aligns with the first
setting, allowing for the design of an optimal contract that engages a human expert to review the
code in a tractable manner. The second setting captures cases where the second opinion is obtained
independently of the initial signal and where higher inspection costs lead to better outcomes.
Interestingly, we also show that this combination of assumptions is tight: the contract design

1While one can trust OpenAI to use a specific model, this may not be the case in the future, as generative AI services
proliferate. For example, consider the skepticism with which the release of DeepSeek-R1 was met [7].
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problem becomes NP-hard when each assumption holds individually (see Theorems 3.8 and 3.9).
Our positive results are achieved by combining sparsity arguments with a nested reduction to the
classical contract design problem, leveraging existing results on the structure of optimal contracts
as a critical sub-component of our analysis (see Section 3.1).

We extend our model to include second-opinion contracts with random inspection. In the code
generation example, this corresponds to randomly selecting a subset of code modules for in-depth
review, balancing inspection costs against the risk of undetected vulnerabilities. Intriguingly, we
prove that this natural probabilistic extension induces a game that does not admit a Stackelberg
equilibrium, in contrast to classical contract design settings (Theorem 4.1). The key insight is
that under probabilistic inspection, the principal can continually reduce expected inspection costs
by promising increasingly high payments with vanishing probabilities, thereby undermining the
existence of an equilibrium. Motivated by this negative property, we propose methods to restore
equilibrium guarantees by imposing additional constraints on the principal. In particular, we
consider two practically-motivated variants: (1) disallowing commitment to inspection probabil-
ities, and (2) requiring that the payment for inspected outcomes never exceeds the payment for
corresponding uninspected signals. We prove that each of these restrictions—individually and in
combination—restores equilibrium guarantees (Theorem 4.4).

We conclude by discussing open questions and directions for further inquiry.

1.2 Related Work
Our work contributes to the growing frontier in algorithmic game theory focused on optimizing
the efforts of others [1–5, 8, 10, 12–14, 16–18, 23]. See [15] for a recent survey.

Contracts and inspections. Our results complement a recent line of work on action (rather than
outcome) inspection. Fallah and Jordan [20] study the problem of a single principal interacting with
multiple agents, aiming to maximize utility by promoting safety-compliant actions. The principal
uses a combination of payments and a limited budget for action inspections to incentivize com-
pliance. Ezra et al. [19] relax the hidden-action assumption and introduce a combinatorial model
in which the principal is allowed to inspect sets of actions at a cost. The principal proposes an
inspection scheme described by a suggested action, a payment, and an inspection distribution over
subsets of actions, and permitted to withhold payment if the agent is caught not performing the
agreed-upon action. The principal’s goal is to find the IC inspection scheme (where the suggested
action is the best response for the agent), such that the principal’s utility is maximized. Our model
is inspired by theirs, but is largely complementary. One special case common to both models occurs
when we consider an instance with binary signals (representing their binary outcomes), and costly
inspections that fully disclose the agent’s action. But in general, we introduce a complementary
setting to action inspection by allowing the principal to seek a second opinion regarding the out-
come of the agent’s action. This perspective opens new avenues for optimizing contract structures,
balancing the cost of additional information with the benefits of enhanced decision-making accu-
racy. Additional works that consider the effect of information on contract design include papers
by Babichenko et al. [6], Castiglioni and Chen [9] and Garrett et al. [21].

Contracts, generative AI agents, and trust. Immorlica et al. [24] discuss generative AI as economic
agents. Saig et al. [26] study contracts for incentivizing AI agents to “exert effort” (carry out their
task using a strong model; see also [27]). While strategic misreporting of the model in LLMs has
not yet been officially acknowledged, it has been shown that LLMs are volatile, with fluctuating
performance on the same tasks at different points of time [11]. In related industries, there are
certainly examples of trust violations from companies who provide black box services— an extreme
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Principal Agent

Commit to second opinion contract (𝑝, 𝑠, 𝑡).

Observe signal 𝑘 ∼ 𝑞0
𝑖∗ ;

If 𝑝𝑘 = 1 : Observe outcome 𝑗 ∼ 𝑞𝑘
𝑖∗ ; incur cost 𝑑𝑘 .

Select utility-maximizing action 𝑖∗ ∈ [𝑛];
Incur cost 𝑐𝑖∗ .

If 𝑝𝑘 = 0: Receive 𝑠𝑘 monetary units.
If 𝑝𝑘 = 1: Receive 𝑡𝑘,𝑗 monetary units.

Receive reward 𝑟𝑘,𝑗 .

Fig. 1. Schematic diagram of the interaction model described in Section 2.

example is Theranos, and another example is throttling by internet service providers. In contracts,
allowing outcome inspections could significantly improve this trust.

2 Model
Setting. The model involves a principal interacting with an agent. The agent has a set of actions

[𝑛], and the action costs for the agent are 0 ≤ 𝑐1 ≤ · · · ≤ 𝑐𝑛 . The agent’s action stochastically
generates a signal 𝑘 ∈ [ℓ] according to a probability matrix q0 = {𝑞0

𝑖,𝑘
}𝑖∈[𝑛],𝑘∈[ℓ ], where 𝑞0𝑖,𝑘 denotes

the probability of observing signal 𝑘 given action 𝑖 . Upon receiving a signal 𝑘 ∈ [ℓ], the principal
decides whether to inspect it. Inspection incurs a cost 𝑑𝑘 ≥ 0 for the principal, and reveals an
outcome 𝑗 ∈ [𝑚𝑘 ] (possible outcomes associated with signal 𝑘), which is drawn according to a
probability matrix q𝑘 = {𝑞𝑘𝑖,𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚𝑘 ] . Here, 𝑞𝑘𝑖,𝑗 represents the probability of obtaining outcome
𝑗 ∈ [𝑚𝑘 ] given action 𝑖 and signal 𝑘 . We note that an outcome is always drawn regardless of
whether the principal inspects the signal. The inspection decision solely determines whether the
principal observes the outcome. Hence, payments to the agent may depend on the observed signal
and, if inspected, the observed outcome. Thus, an instance of this model can be described by the
tuple (q, 𝑐, 𝑑), where q = (q0, {q𝑘 }𝑘∈[ℓ ]) represents the signal and outcome probability matrices,
𝑐 = (𝑐1, . . . , 𝑐𝑛) denotes the agent’s action costs, and 𝑑 = (𝑑1, . . . , 𝑑ℓ ) specifies the inspection costs
for each signal.

Contracts with a Second Opinion. A contract with a second opinion specifies the principal’s
commitment to an inspection policy and a payment scheme. The inspection policy is defined by a
vector 𝑝 , where 𝑝𝑘 represents the probability that the principal inspects signal 𝑘 upon observing it.
We begin by focusing on deterministic inspections, where 𝑝𝑘 ∈ {0, 1}. Later, we expand the model
to incorporate probabilistic inspections, where 𝑝𝑘 ∈ [0, 1]. Payment commitments are described by
monetary transfer vectors (𝑠, 𝑡). The principal pays 𝑠𝑘 ≥ 0 when signal 𝑘 ∈ [ℓ] is observed but not
inspected, and 𝑡𝑘,𝑗 ≥ 0 when signal 𝑘 is inspected and outcome 𝑗 ∈ [𝑚𝑘 ] is observed. Thus, the
contract is fully characterized by the tuple (𝑝, 𝑠, 𝑡).

Agent’s Best Response. For a contract (𝑝, 𝑠, 𝑡), we denote the expected monetary transfer from the
principal to the agent when taking action 𝑖 by𝑇𝑖 = E𝑘∼𝑞0

𝑖

[
(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘 E𝑗∼𝑞𝑘

𝑖
[𝑡𝑘,𝑗 ]

]
. The agent’s

expected utility for taking action 𝑖 is given by𝑈𝐴 (𝑖 | 𝑝, 𝑠, 𝑡) = 𝑇𝑖 −𝑐𝑖 .We assume the agent is rational
and selects an action that maximizes their expected utility: 𝑖∗ (𝑝, 𝑠, 𝑡) ∈ argmax𝑖∈[𝑛] 𝑈𝐴 (𝑖 | 𝑝, 𝑠, 𝑡).
When it is clear from context, we omit the contract and write 𝑖∗ instead of 𝑖∗ (𝑝, 𝑠, 𝑡). Following
standard conventions in the literature, we assume that ties are broken in favor of the principal.
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Principal’s goal. Each signal-outcome pair (𝑘, 𝑗) is associated with a reward 𝑟𝑘,𝑗 ≥ 0 for the prin-
cipal. Accordingly, the expected reward for action 𝑖 is given by 𝑅𝑖 = E𝑘∼𝑞0

𝑖
E𝑗∼𝑞𝑘

𝑖
[𝑟𝑘,𝑗 ] .We denote the

expected inspection cost given inspection policy 𝑝 and action 𝑖 by 𝐷𝑖 = E𝑘∼𝑞0
𝑖
[𝑝𝑘𝑑𝑘 ] . Consequently,

for a given contract (𝑝, 𝑠, 𝑡), the principal’s utility is𝑈𝑃 (𝑝, 𝑠, 𝑡) = 𝑅𝑖∗ (𝑝,𝑠,𝑡 ) −𝑇𝑖∗ (𝑝,𝑠,𝑡 ) −𝐷𝑖∗ (𝑝,𝑠,𝑡 ) . The
principal aims to design a contract that maximizes their utility: (𝑝∗, 𝑠∗, 𝑡∗) ∈ argmax𝑝,𝑠,𝑡 𝑈𝑃 (𝑝, 𝑠, 𝑡).

The interaction model described in this section is illustrated in Figure 1.

2.1 Regularity Assumptions
While our general model does not impose specific assumptions on the costs or on the signal and
outcome distributions, real-world contract design problems often exhibit inherent structure. In
this section, we introduce structural assumptions motivated by practical applications. Our first
assumption is based on the notion of independence. A contract design satisfies the Independent
Second Opinion Property (ISOP) if inspecting any signal yields an independent random draw from
the same distribution:

Definition 2.1 (Independent Second Opinion Property (ISOP)). A contract design setting (𝑞, 𝑐, 𝑑) has
the Independent Second Opinion Property (ISOP) if𝑚𝑘 = ℓ for all 𝑘 ∈ [ℓ], and it holds that 𝑞𝑘 ′

𝑖,𝑘
= 𝑞0

𝑖,𝑘

for all 𝑖 ∈ [𝑛], 𝑘, 𝑘 ′ ∈ [ℓ].
Although the second opinion is drawn independently from the same distribution, ISOP still

permits this second opinion to carry varying weight, as the reward for each signal-outcome pair
can be arbitrary. However, in certain settings, the sequence in which these opinions are received
should not affect the principal’s utility. We formalize this restriction as follows:

Definition 2.2 (Symmetric-ISOP). A contract design setting (𝑞, 𝑐, 𝑑) satisfies Symmetric-ISOP if it
satisfies ISOP and, additionally, the rewards are symmetric, i.e., 𝑟𝑘,𝑗 = 𝑟 𝑗,𝑘 for all 𝑗, 𝑘 ∈ [ℓ].

Whether this symmetry condition is a reasonable assumption is a matter of taste and application
domain. It turns out not to affect complexity as far as this paper is concerned: Our positive result
about ISOP is for the general case, while our hardness result holds even for Symmetric-ISOP.

Our final assumption is that the ordering of signals and outcomes carries information about the
hidden action. Intuitively, a classical contract design setting satisfies the Monotone Likelihood Ratio
Property (MLRP) when higher outcomes are more likely to be produced by a high-cost action than
a low-cost one. We extend the classical definition to settings with a second opinion by asserting
that MLRP holds for the signal distribution 𝑞0

𝑖,𝑘
and the outcome distribution 𝑞𝑘𝑖,𝑗 for each signal:

Definition 2.3 (Inspection-MLRP). A contract design setting (𝑞, 𝑐, 𝑑) satisfies Inspection-MLRP if
for every pair of actions 𝑖, 𝑖′ ∈ [𝑛] such that 𝑐𝑖 < 𝑐𝑖′ , the likelihood ratio 𝑞0

𝑖′,𝑘/𝑞
0
𝑖,𝑘

is increasing in 𝑘 ,
and the likelihood ratio 𝑞𝑘

𝑖′, 𝑗/𝑞𝑘𝑖,𝑗 is increasing in 𝑗 for all 𝑘 ∈ [ℓ].
As we will show, these assumptions affect tractability in a tight sense: In Section 3.3, we demon-

strate that the problem is tractable when both assumptions hold; In Section 3.4, we show that the
problem becomes computationally hard if even one of these assumptions is not satisfied.

2.2 First Best
Finally, we note that the second opinion model exhibits distinct economic properties compared
to classical contract design. In a delegation setting, the first-best represents the maximum utility
achievable in the non-strategic version of the problem where incentive constraints are ignored and
players cooperate to maximize the common good (i.e., the total “size of the pie” that can be divided
among them). This is given by the highest expected reward minus the corresponding cost of any
action, formally expressed as max𝑖∈[𝑛]{𝑅𝑖 − 𝑐𝑖 }.
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In the classical contract design literature, Dütting et al. [16] have shown that even linear contracts
can guarantee a fraction of the first-best (specifically at least the first best divided by the number
of actions). In contrast, under the second opinion model we identify instances where the first-best
is strictly positive, yet the principal’s optimal utility is exactly zero.
For example, consider the following instance, with two actions, one signal, and two outcomes,

defined as follows:

𝑞11, 𝑗 =
(
1 0

)
; 𝑞12, 𝑗 =

(
0 1

)
; 𝑐𝑖 =

(
0 1

)
; 𝑑1 = 1 𝑟1, 𝑗 =

(
0 2

)
.

This implies that the first-best is max𝑖 {𝑅𝑖 − 𝑐𝑖 } = 1 (attained for action 𝑖 = 2). To incentivize the
first action, the optimal contract is not to inspect the signal and pay 0. Under this contract, the
agent’s best response is to choose the first action, and the principal’s utility is 0. To incentivize
the second action, the optimal contract is to inspect the signal and pay 𝑡1,2 = 1 and 0 otherwise.
Under this contract, the agent’s best response, assuming tie-breaking in favor of the principal, is to
choose the second action, and the principal’s utility is also 0.
The key observation is that the signal is uninformative. As a result, an action with a positive

cost cannot be incentivized without inspection. Furthermore, the cost of inspection exactly offsets
the reward minus the payment. Thus, the principal’s optimal utility is 0, even though cooperation
can lead to a positive value.

3 Computing Optimal Contracts
We first consider two settings in which finding the optimal principal utility turns computationally
tractable, namely, when the number of actions is constant, or when ISOP and Inspection-MLRP both
hold. We then show that the problem becomes hard with a non-constant number of actions when
either ISOP or Inspection-MLRP are relaxed, completing the picture of the complexity landscape.

We seek the action 𝑖 that maximizes 𝑅𝑖 minus the expected inspection cost and payments required
to incentivize it. This amounts to solving the following Quadratically-Constrained Quadratic
Program (QCQP) for each action 𝑖 ∈ [𝑛]:

minimize
∑

𝑘∈[ℓ ] 𝑞
0
𝑖,𝑘

(
(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

(
𝑑𝑘 +

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗

))

subject to

𝑠𝑘 ≥ 0 ∀𝑘 ∈ [ℓ]
𝑡𝑘,𝑗 ≥ 0 ∀𝑘 ∈ [ℓ], 𝑗 ∈ [𝑚𝑘 ]
0 ≤ 𝑝𝑘 ≤ 1 ∀𝑘 ∈ [ℓ]∑

𝑘∈[ℓ ] 𝑞
0
𝑖,𝑘

(
(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗

)
− 𝑐𝑖 ≥∑

𝑘∈[ℓ ] 𝑞
0
𝑖′,𝑘

(
(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖′, 𝑗𝑡𝑘,𝑗

)
− 𝑐𝑖′ ∀𝑖′ ∈ [𝑛]

(1)

We denote the last constraint above as the IC constraint.
Note that in the deterministic inspection setting, which is the primary focus of our paper, we

additionally require each 𝑝𝑘 to take values in {0, 1}. However, it will be useful to consider the more
general problem without this restriction. Even when allowing 𝑝𝑘 to take any value in the interval
[0, 1], the program remains generally non-convex.
If we fix the values of 𝑝 and then optimize the remaining 𝑠 and 𝑡 variables, the problem reduces

to a linear program, as elaborated in the next subsection. This will allow us to treat Equation (1) as
a nested optimization problem, and provide tractability guarantees.

3.1 Combined Outcome Space and Distribution
A key ingredient in our tractability proofs is a correspondence between second opinion contracts
and classical contracts for any fixed inspection policy 𝑝 . Given a second opinion contract setting,
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action 𝑖 ∈ [𝑛]

signal 1

𝑞0
𝑖,1

signal 2

outcome (2, 1)

𝑞2
𝑖,1

outcome (2, 2)

𝑞2
𝑖,2

outcome (2, 3)

𝑞2
𝑖,3

𝑞0
𝑖,2

signal 3

𝑞0
𝑖,3

signal 4

𝑞0
𝑖,4

𝑝1 = 0 𝑝2 = 1 𝑝3 = 0 𝑝4 = 0

Fig. 2. Schematic diagram of the combined outcome space Ω, as defined in Section 3.1. When the inspection
policy 𝑝 is fixed, sampling from the combined outcome distribution 𝑓𝑖,𝜔 (Equation (2)) is equivalent to a random
walk on the inspection tree according to the signal and outcome probabilities (𝑞0

𝑖, 𝑗
and 𝑞𝑘

𝑖,𝑗
, respectively),

starting from the root and proceeding until a leaf is reached.

we define the combined outcome space and corresponding distributions, which provide a more
unified perspective on the signals and outcomes. For 𝑘 ∈ {0, . . . , ℓ}, we denote the set of signals
by Ω0 (such that |Ω0 | = ℓ), and the sets of outcomes by Ω𝑘 for 𝑘 ≥ 1 (such that |Ω𝑘 | = 𝑚𝑘 ). We
assume that elements in all sets are uniquely labeled, and therefore the sets do not intersect. The
combined outcome space Ω is the union:

Ω = Ω0 ∪ · · · ∪ Ωℓ .

Given inspection probabilities 𝑝 ∈ [0, 1]ℓ , for any action-outcome pair (𝑖, 𝜔) the combined outcome
distribution is:

𝑓𝑖,𝜔 (𝑝) =
{
𝑞0𝑖,𝜔 (1 − 𝑝𝜔 ) 𝜔 ∈ Ω0

𝑞0
𝑖,𝑘
𝑝𝑘𝑞

𝑘
𝑖,𝜔 𝜔 ∈ Ω𝑘 for 𝑘 > 0

(2)

For brevity, we denote 𝑓𝑖,𝜔 = 𝑓𝑖,𝜔 (𝑝) when 𝑝 is clear from context. We note that for any action 𝑖 ,
the vector 𝑓𝑖,𝜔 is a probability distribution since plugging in the definition and rearranging we get:∑︁
𝜔∈Ω

𝑓𝑖,𝜔 =
∑︁
𝜔∈Ω0

𝑓𝑖,𝜔 +
∑︁
𝑘∈[ℓ ]

∑︁
𝜔∈Ω𝑘

𝑓𝑖,𝜔 =
∑︁
𝑘∈[ℓ ]

(1 − 𝑝𝑘 )𝑞0𝑖,𝑘 +
∑︁
𝑘∈[ℓ ]

𝑝𝑘𝑞
0
𝑖,𝑘

∑︁
𝜔∈Ω𝑘

𝑞𝑘𝑖,𝜔︸    ︷︷    ︸
=1

=
∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘

= 1

Similarly, the combined payments vector is:

𝑣𝜔 =

{
𝑠𝜔 𝜔 ∈ Ω0

𝑡𝑘,𝜔 𝜔 ∈ Ω𝑘 for 𝑘 > 0
(3)

Figure 2 provides a schematic representation of the combined outcome space. Using these
notations, we reformulate the contract design problem:

Lemma 3.1. Equation (1) is equivalent to the following optimization problem:

minimize
∑

𝜔∈Ω 𝑓𝑖,𝜔𝑣𝜔 + 𝐷𝑖

subject to
𝑣 ≥ 0
𝑝 ∈ [0, 1]ℓ∑

𝜔∈Ω 𝑓𝑖,𝜔𝑣𝜔 − 𝑐𝑖 ≥
∑

𝜔∈Ω 𝑓𝑖′,𝜔𝑣𝜔 − 𝑐𝑖′ ∀𝑖′ ≠ 𝑖

(4)
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Proof. By definition of 𝑓𝑖,𝜔 (Equation (2)), 𝐷𝑖 (Section 2), and 𝑣𝜔 (Equation (3)).
The objective of Equation (1) is:∑︁

𝑘∈[ℓ ]
𝑞0
𝑖,𝑘

©«(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘
©«𝑑𝑘 +

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗
ª®¬ª®¬

Rearranging the sums, we obtain:∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘
(1 − 𝑝𝑘 )𝑠𝑘︸                  ︷︷                  ︸

=
∑

𝜔∈Ω0 𝑓𝑖,𝜔 𝑣𝜔

+
∑︁
𝑘∈[ℓ ]

∑︁
𝑗∈[𝑚𝑘 ]

𝑞0
𝑖,𝑘
𝑝𝑘𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗︸                         ︷︷                         ︸

=
∑

𝑘∈ [ℓ ]
∑

𝜔∈Ω𝑘 𝑓𝑖,𝜔 𝑣𝜔

+
∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘
𝑝𝑘𝑑𝑘︸          ︷︷          ︸

=𝐷𝑖

Which is equal to the objective
∑

𝜔∈Ω 𝑓𝑖,𝜔𝑣𝜔 + 𝐷𝑖 .
Similarly, the (IC) constraint in Equation (1) is:∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘

©«(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗
ª®¬ − 𝑐𝑖 ≥

∑︁
𝑘∈[ℓ ]

𝑞0
𝑖′,𝑘

©«(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖′, 𝑗𝑡𝑘,𝑗
ª®¬ − 𝑐𝑖′

Using the same arguments, we rearrange and obtain equivalence to the inequality as required:∑︁
𝜔∈Ω

𝑓𝑖,𝜔𝑣𝜔 − 𝑐𝑖 ≥
∑︁
𝜔∈Ω

𝑓𝑖′,𝜔𝑣𝜔 − 𝑐𝑖′ .

□

We make the following observation about Equation (4):

Lemma 3.2. For any fixed 𝑝 , the optimal 𝑣 in Equation (4) is a min-pay optimal contract.

Proof. In the objective of Equation (4),
∑

𝜔 𝑓𝑖,𝜔𝑣𝜔 is the expected pay of the contract 𝑣 , and 𝐷𝑖 is
an additive term which does not depend on 𝑣 . When 𝑝 in fixed, 𝑓𝑖 and 𝐷𝑖 are also fixed. In that case,
the constant term 𝐷𝑖 does not affect the optimization, and the optimization problem is therefore
equivalent to the classic Stackelberg min-pay problem. □

3.2 Tractability With a Constant Number of Actions
We show that the contract problem is tractable when the number of actions is constant. Intuitively,
our proof relies on a sparsity argument: When the number of actions is bounded by a constant,
there exists an optimal contract in which the number of inspected signals is also bounded by that
constant, significantly reducing the search space. Furthermore, we demonstrate that if a contract
inspects a signal but assigns zero payment for all its outcomes, eliminating this inspection while
appropriately adjusting the remaining payments preserves incentive compatibility and weakly
improves the principal’s utility. Combining these insights leads to an efficient enumeration-based
algorithm that computes an optimal contract in polynomial time.

Proposition 3.3. Let (𝑝, 𝑠, 𝑡) be a contract. If there exists an inspected signal 𝑘0 ∈ [ℓ] such that
𝑡𝑘0, 𝑗 = 0 for all 𝑗 ∈ [𝑚𝑘0 ], then there exists a contract (𝑝′, 𝑠′, 𝑡 ′) with 𝑝′

𝑘0
= 0 and 𝑝′

𝑘
= 𝑝𝑘 for all

𝑘 ≠ 𝑘0, which yields weakly higher utility for the principal.

Proof. Define a modified contract (𝑝′, 𝑠′, 𝑡 ′) such that:

𝑝′
𝑘
=

{
0 𝑘 = 𝑘0

𝑝𝑘 otherwise
, 𝑠′

𝑘
=

{
(1 − 𝑝𝑘0 )𝑠𝑘0 𝑘 = 𝑘0

𝑠𝑘 otherwise
, 𝑡 ′

𝑘,𝑗
= 𝑡𝑘,𝑗
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For any action 𝑖 ∈ [𝑛], the expected monetary transfer from the principal to the agent satisfies:

𝑇𝑖 (𝑝, 𝑠, 𝑡) =
∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘

©«(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗
ª®¬

=
∑︁

𝑘∈[ℓ ]\{𝑘0 }
𝑞0
𝑖,𝑘

©«(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗
ª®¬ + 𝑞0𝑖,𝑘0

©«(1 − 𝑝𝑘0 )𝑠𝑘0 + 𝑝𝑘0

∑︁
𝑗∈[𝑚𝑘0 ]

𝑞
𝑘0
𝑖, 𝑗

𝑡𝑘0, 𝑗︸︷︷︸
=0

ª®®®¬
=

∑︁
𝑘∈[ℓ ]\{𝑘0 }

𝑞0
𝑖,𝑘

©«(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗
ª®¬ + 𝑞0𝑖,𝑘0 (1 − 𝑝𝑘0 )𝑠𝑘0︸        ︷︷        ︸

=𝑠′
𝑘0

=
∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘

©«(1 − 𝑝′
𝑘
)𝑠′
𝑘
+ 𝑝′

𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖,𝑗𝑡
′
𝑘,𝑗

ª®¬ = 𝑇𝑖 (𝑝′, 𝑠′, 𝑡 ′)

The two contracts transfer identical amounts in expectation for any action, and therefore the
modified contract (𝑝′, 𝑠′, 𝑡 ′) implements the same action. The modified contract (𝑝′, 𝑠′, 𝑡 ′) also
yields weakly higher utility for the principal, as it does not inspect signal 𝑘0. □

Lemma 3.4. Consider a contract design setting (𝑞, 𝑐, 𝑑) with ℓ signals and 𝑛 actions. There is an
optimal contract which implements action 𝑖∗ while inspecting at most 𝑛 − 1 signals (with at most 𝑛 − 1
nonzero payments).

Proof. By contradiction. Denote by 𝑝∗ the inspection policy of an optimal contract, and denote
the corresponding inspection set by 𝑆 = {𝑘 | 𝑝∗

𝑘
> 0}. Assume that 𝑝∗ has a minimal inspection set

size |𝑆 | among all optimal contracts, and assume by contradiction that |𝑆 | ≥ 𝑛.
By Lemma 3.2, for any fixed inspection policy 𝑝 ∈ [0, 1]ℓ , and in particular for the given 𝑝∗, the

optimal signal and outcome payments 𝑠∗, 𝑡∗ are equivalent to a min-pay contract over the combined
outcome space Ω = Ω0∪· · ·∪Ωℓ . Denote by 𝑣∗𝜔 the representation of 𝑠∗, 𝑡∗ in the combined outcome
space, as given by Equation (3). By [16], a min-pay contract design problem over 𝑛 actions has an
optimal solution with at most 𝑛 − 1 nonzero payments, and therefore we assume that 𝑣∗𝜔 has at
most 𝑛 − 1 nonzero entries. By definition of the combined space Ω, there exist at most 𝑛 − 1 signals
𝑘 ∈ [ℓ] for which there exists 𝜔 ∈ Ω𝑘 such that 𝑣∗𝜔 > 0. Equivalently, in the 𝑠∗, 𝑡∗ representation,
there exist at most 𝑛 − 1 signals 𝑘 ∈ [ℓ] for which 𝑡∗

𝑘,𝑗
> 0 for some 𝑗 ∈ [𝑚𝑘 ].

Since |𝑆 | ≥ 𝑛, there exists at least one inspected signal 𝑘 ′ for which 𝑡∗
𝑘 ′, 𝑗 = 0 for all 𝑗 ∈ [𝑚𝑘 ′ ]. By

Claim 3.3, there exists a weakly-better contract (𝑝′, 𝑠′, 𝑡 ′) with a smaller inspection set, contradicting
the minimality of |𝑆 |. Therefore, there exist an optimal contract inspecting at most 𝑛− 1 signals. □

Theorem 3.5. Consider the family of contract design problems where the number of actions is
constant. There exists an algorithm which computes the optimal deterministic-inspection contract in
𝑂 (poly(ℓ,𝑚)) time for any contract design problem (𝑞, 𝑐, 𝑑) with ℓ signals and𝑚𝑘 ≤ 𝑚 outcomes for
each signal.

Proof. Denote the set of actions by [𝑛], and consider the following algorithm: For each subset
of signals 𝑆 ⊆ [ℓ] such that |𝑆 | ≤ 𝑛 − 1, compute the optimal payments 𝑠, 𝑡 to implement action 𝑖∗

under the constraint 𝑝𝑘 = 1𝑘∈𝑆 . Output the contract (𝑝∗, 𝑠∗, 𝑡∗) yielding the minimal expected pay.
By Lemma 3.2, for any fixed inspection policy 𝑝 ∈ [0, 1]ℓ , the optimization problem for the

signal and outcome payments 𝑠, 𝑡 is equivalent to a min-pay contract design problem, and therefore
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the optimal contract in each iteration can be computed in polynomial time by solving a linear
program. There are 𝑂 (ℓ𝑛) subsets of signals of size smaller than 𝑛, and since 𝑛 = 𝑂 (1), it holds
that 𝑂 (ℓ𝑛) = 𝑂 (poly(ℓ)). Multiplying the time complexity of each iteration by the total number of
iterations, we obtain that the algorithm described above runs in 𝑂 (poly(ℓ,𝑚)) time in total.

By Claim 3.4, there exists an optimal contract inspecting at most 𝑛−1 signals. Since the algorithm
enumerates all subsets of signals up to this size, it is guaranteed to encounter the optimal subset of
signals, and thus return an optimal result. □

3.3 Tractability When Both ISOP and Inspection-MLRP Hold
We demonstrate that tractability also emerges when the ISOP and Inspection-MLRP regularity
assumptions hold jointly. Intuitively, we prove that these assumptions, when holding simultaneously,
limit the number of binding constraints in the optimization problem, reducing computational
complexity. In Section 3.4, we prove that the problem becomes NP-Hard when any of these two
assumptions are relaxed.

Proposition 3.6. Let (𝑞, 𝑐, 𝑑) be a contract design setting satisfying ISOP and Inspection-MLRP,
and targeting the highest-cost action 𝑛. If the action is implementable, then any optimal contract pays
for at most one signal, and for at most one outcome.

Proof. Denote an optimal contract by (𝑝∗, 𝑠∗, 𝑡∗). Since the design setting satisfies ISOP, we
denote for brevity 𝑞𝑖,𝑘 = 𝑞0

𝑖,𝑘
= 𝑞𝑘

′

𝑖,𝑘
. We consider two cases:

If the contract doesn’t inspect any signal (i.e., 𝑝∗
𝑘
= 0 for all 𝑘 ∈ [ℓ]), then by Lemma 3.2, the

optimal pay for signals 𝑠∗ is a min-pay contract over the signal distribution 𝑞𝑖,𝑘 and costs 𝑐𝑖 . The
contract design problem (𝑞𝑖,𝑘 , 𝑐𝑖 ) satisfies MLRP, and therefore by [16] there exists an optimal
contract which only pays for the highest signal 𝑘 = ℓ .
Otherwise, the contract inspects at least one signal. By Lemma 3.2, the transfers 𝑠∗, 𝑡∗ are an

optimal solution to a min-pay contract design problem over the combined outcome space:

minimize
∑

𝜔∈Ω 𝑓𝑖,𝜔𝑣𝜔

subject to 𝑣 ≥ 0∑
𝜔∈Ω 𝑓𝑛,𝜔𝑣𝜔 − 𝑐𝑛 ≥ ∑

𝜔∈Ω 𝑓𝑖,𝜔𝑣𝜔 − 𝑐𝑖 ∀𝑖 < 𝑛

Where 𝑓𝑖,𝜔 is given by Equation (2), and 𝑣𝜔 is given by Equation (3). By [16], the dual of the min-pay
LP is:

maximize
∑

𝑖<𝑛 𝜆𝑖 (𝑐𝑛 − 𝑐𝑖 )

subject to 𝜆 ≥ 0∑
𝑖<𝑛 𝜆𝑖

(
𝑓𝑛,𝜔 − 𝑓𝑖,𝜔

)
≤ 𝑓𝑛,𝜔 ∀𝜔 ∈ Ω

Plugging in the definitions of 𝑓𝑖,𝜔 and Ω we get:

maximize
∑

𝑖<𝑛 𝜆𝑖 (𝑐𝑛 − 𝑐𝑖 )

subject to
𝜆 ≥ 0∑

𝑖<𝑛 𝜆𝑖
(
𝑞𝑛,𝑘 − 𝑞𝑖,𝑘

)
≤ 𝑞𝑛,𝑘 ∀𝑘 s.t. 𝑝∗

𝑘
= 0∑

𝑖<𝑛 𝜆𝑖
(
𝑞𝑛,𝑘𝑞𝑛,𝑗 − 𝑞𝑖,𝑘𝑞𝑖, 𝑗

)
≤ 𝑞𝑛,𝑘𝑞𝑛,𝑗 ∀𝑘 s.t. 𝑝∗

𝑘
= 1, 𝑗 ∈ [ℓ]
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Constraints for which 𝑞𝑛,𝑘 = 0 or 𝑞𝑛,𝑘𝑞𝑛,𝑗 = 0 represents signals and outcomes that cannot be
reached. They are satisfied for any 𝜆, and are therefore redundant.

Ignoring redundant constraints, we divide the first set of constraints by 𝑞𝑛,𝑘 and the second set
of constraints by 𝑞𝑛,𝑘𝑞𝑛,𝑗 to obtain:

maximize
∑

𝑖<𝑛 𝜆𝑖 (𝑐𝑛 − 𝑐𝑖 )

subject to

𝜆 ≥ 0∑
𝑖<𝑛 𝜆𝑖

(
1 − 𝑞𝑖,𝑘

𝑞𝑛,𝑘

)
≤ 1 ∀𝑘 s.t. 𝑝∗

𝑘
= 0∑

𝑖<𝑛 𝜆𝑖

(
1 − 𝑞𝑖,𝑘

𝑞𝑛,𝑘
· 𝑞𝑖,𝑗

𝑞𝑛,𝑗

)
≤ 1 ∀𝑘 s.t. 𝑝∗

𝑘
= 1, 𝑗 ∈ [ℓ]

From the Inspection-MLRP assumption, the ratio 𝑞𝑖,𝑘
𝑞𝑛,𝑘

is decreasing in 𝑘 . We denote 𝑘∗0 = max{𝑘 |
𝑝∗
𝑘
= 0}. For any 𝑖 < 𝑛, 𝑘 < 𝑘∗0 , and 𝜆𝑖 ≥ 0, it holds that:

𝜆𝑖

(
1 −

𝑞𝑖,𝑘

𝑞𝑛,𝑘

)
≤ 𝜆𝑖

(
1 −

𝑞𝑖,𝑘∗
0

𝑞𝑛,𝑘∗
0

)
and therefore the first set of constraints satisfies:∑︁

𝑖<𝑛

𝜆𝑖

(
1 −

𝑞𝑖,𝑘∗
0

𝑞𝑛,𝑘∗
0

)
≤ 1 ⇒

∑︁
𝑖<𝑛

𝜆𝑖

(
1 −

𝑞𝑖,𝑘

𝑞𝑛,𝑘

)
≤ 1 (5)

Similarly, we denote 𝑘∗1 = max{𝑘 | 𝑝∗
𝑘
= 1}. For any 𝑖 < 𝑛, 𝑘 < 𝑘∗1 , 𝑗 ∈ [ℓ], and 𝜆𝑖 ≥ 0, it holds that:

𝜆𝑖

(
1 −

𝑞𝑖,𝑘

𝑞𝑛,𝑘
·
𝑞𝑖, 𝑗

𝑞𝑛,𝑗

)
≤ 𝜆𝑖

(
1 −

𝑞𝑖,𝑘∗
1

𝑞𝑛,𝑘∗
1

· 𝑞𝑖,ℓ
𝑞𝑛,ℓ

)
and therefore the second set of constraints satisifes:∑︁

𝑖<𝑛

𝜆𝑖

(
1 −

𝑞𝑖,𝑘∗
1

𝑞𝑛,𝑘∗
1

· 𝑞𝑖,ℓ
𝑞𝑛,ℓ

)
≤ 1 ⇒

∑︁
𝑖<𝑛

𝜆𝑖

(
1 −

𝑞𝑖,𝑘

𝑞𝑛,𝑘
·
𝑞𝑖, 𝑗

𝑞𝑛,𝑗

)
≤ 1 (6)

From equations (5) and (6), the dual LP has at most two binding constraints, and therefore from
complementary slackness, the optimal solution for the primal LP pays for at most one signal, and
at most one outcome. □

Remark 3.1. Unlike the classical result of [16] where the optimal contract pays only for the highest
outcome, in our case, the optimal contract does not necessarily follow this structure (restrict payment
to the highest outcome of the highest signal). Instead, it pays for at most the highest not inspected
signal and at most the highest outcome of the highest inspected signal. This distinction separates our
model from the classical setting.

Theorem 3.7. An optimal deterministic inspection policy for a contract design setting satisfying
ISOP and Inspection-MLRP can be found in polynomial time.

Proof. By Claim 3.6, any optimal contract (𝑝∗, 𝑠∗, 𝑡∗) pays for one signal at most, and one
outcome at most. Therefore, by Claim 3.3 it can be assumed without loss of generality that in the
optimal contract there exists at most one 𝑘 ∈ [ℓ] such that 𝑝𝑘 = 1. All single-signal inspection
policies can be enumerated in linear time, and an optimal contract for each policy can be computed
in polynomial time, yielding a polynomial-time algorithm in total. □
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3.4 Hardness in the General Case
We next establish that the contract design problem is computationally hard in the general case.
Specifically, we show that computing the optimal principal utility is NP-hard when the number of
actions is not constant and at most one of the structural properties Inspection-MLRP and ISOP holds.
(In fact, we even show hardness for Symmetric-ISOP under the further restriction that all signals
cost the same amount to inspect.) This contrasts with the tractable cases where either the number
of actions is constant or both structural properties hold simultaneously, completely characterizing
the precise boundary between tractable and intractable instances within our framework.

Theorem 3.8. It is NP-hard to compute the optimal principal utility under a deterministic contract,
even in settings satisfying Inspection-MLRP.

Proof. We reduce from Vertex Cover. Given an input graph 𝐺 = (𝑉 , 𝐸), we define an instance
with 𝑛 := |𝐸 | + 1 actions, ℓ := |𝑉 | signals, and two outcomes for each signal, which we will refer to
as the good outcome and bad outcome for that signal. Each good outcome will have a reward of ℓ ,
and each bad outcome will have a reward of zero. The cost to the principal to inspect each signal
𝑘 is 𝑑𝑘 = 1. We arbitrarily number the vertices 𝑣1, 𝑣2, . . . , 𝑣ℓ and edges 𝑒1, 𝑒2, . . . , 𝑒𝑛−1 so that they
naturally correspond to the signals indexed from 1 to ℓ and actions indexed from 1 to 𝑛 − 1, which
we call bad actions. Each of these bad actions costs the agent nothing. Action 𝑛 is the good action,
and costs the agent 𝑐𝑛 = 1

3ℓ2 .
If the agent takes the good action, a uniformly random signal is drawn, and the outcome is the

good outcome for that signal. If the agent takes bad action 𝑖 , again a uniformly random signal 𝑘
is drawn, and the bad outcome is realized if edge 𝑒𝑖 is incident to vertex 𝑣𝑘 ; otherwise the good
outcome is realized. Accordingly, the expected reward from the good action is 𝑅𝑛 = ℓ and from any
bad action 𝑖 is 𝑅𝑖 = ℓ ·

(
1 − 2

ℓ

)
= ℓ − 2.

We note that this instance satisfies the definition of Inspection-MLRP. The cost of the good action
is the only one that is positive. When the agent takes the good action, the outcome is the good
outcome for a uniformly random signal. It is impossible to get a bad outcome under the good action

and therefore 𝑞𝑘
𝑛,𝑔𝑜𝑜𝑑

= 1 for all 𝑘 ∈ [ℓ]. Consequently, for all 𝑖 < 𝑛, it holds that
𝑞𝑘
𝑛,𝑏𝑎𝑑

𝑞𝑘
𝑖,𝑏𝑎𝑑

≤
𝑞𝑘
𝑛,𝑔𝑜𝑜𝑑

𝑞𝑘
𝑖,𝑔𝑜𝑜𝑑

for

all 𝑘 ∈ [ℓ] as required. In addition regardless of the action, a uniformly random signal is drawn,

which means that
𝑞0
𝑛,𝑘

𝑞0
𝑖,𝑘

= 1 for all 𝑖 < 𝑛, and thus, the required monotonicity in 𝑘 is also satisfied.
We claim that, for any positive integer 𝑦, it is possible for the principal to achieve an expected

utility of at least ℓ − 𝑦+1/2
ℓ

if and only if 𝐺 has a vertex cover of size at most 𝑦. For the backward
direction, given a vertex cover 𝐶 of size 𝑦, we consider the contract that inspects each signal 𝑘
such that 𝑣𝑘 ∈ 𝐶 and pays 1

2ℓ unless a signal is inspected and the bad outcome is realized, in which
case the payment is zero. If the agent takes a bad action 𝑖 , they will get an expected payoff of at
most 1

2ℓ · (1 −
1
ℓ
), since there is at least a 1

ℓ
chance that the signal corresponds to some vertex in 𝐶

covering 𝑒𝑖 , in which case the agent will get no payment. On the other hand, if they take the good
action, they will get a deterministic payoff of 1

2ℓ . Thus, the marginal payoff for taking the good
action rather than any bad action is at least 1

2ℓ2 , which is more than the cost of taking the good
action, 𝑐𝑛 = 1

3ℓ2 . So the agent will always take the good action. The principal’s reward is 𝑅𝑛 = ℓ ,
and their expected cost is 𝑦

ℓ
for inspection plus at most 1

2ℓ for paying the agent. The principal’s
expected utility is therefore at least ℓ − 𝑦+1/2

ℓ
.

For the forward direction, suppose the principal attains this level of utility with some deterministic
contract. We will show that

𝐶 := {𝑣𝑘 | the principal inspects signal 𝑘}
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is a vertex cover of 𝐺 of size at most 𝑦.
To see that |𝐶 | ≤ 𝑦, observe that inspection costs the principal an expected 𝑦

ℓ
for each vertex in

𝐶 . Hence, supposing toward a contradiction that the principal inspects more than 𝑦 (i.e., at least
𝑦 + 1) of the 𝑘 signals, they incur an expected cost of 𝑦+1

ℓ
, for a maximum possible payoff of ℓ − 𝑦+1

ℓ
.

This contradicts our assumption that they receive a payoff of at least ℓ − 𝑦+1/2
ℓ

, so |𝐶 | ≤ 𝑦.
Finally, we show that 𝐶 is a vertex cover. Suppose toward a contradiction that some edge 𝑒𝑖 is

uncovered. Since the signals for both of its incident vertices are never inspected, the principal will
never be able to tell whether the agent took action 𝑖 or action 𝑛; these are the only two signals
that can distinguish actions 𝑖 and 𝑛. Hence, the agent will never take action 𝑛, as it costs more
than action 𝑖 and leads to the same expected payment. Thus, the principal’s reward is at most
ℓ − 2 < ℓ − 𝑦+1/2

ℓ
, which again is a contradiction. □

The key observation is that unless the principal inspects a sufficiently large subset of signals,
corresponding to a vertex cover, the agent can always choose a bad action that goes undetected.
Consequently, minimizing the number of inspected signals aligns directly with solving theminimum
vertex cover problem, proving that computing the optimal contract is NP-hard.

Theorem 3.9. It is NP-hard to compute the optimal principal utility under a deterministic contract,
even in settings satisfying Symmetric-ISOP, even when all inspection costs are the same.

Proof sketch. This proof is considerably more involved, so is deferred to Appendix A. At a
high-level, we reduce from a variant of Set Cover through an intermediate problem that we call
Row-Sparsest Matrix (RSM). The objective of RSM is to fill in an𝑛×𝑛matrix with nonnegative entries
in a way that satisfies a series of linear constraints while having as few rows with nonzero entries as
possible. These matrix entries ultimately become the payments in the optimal contract. The types of
linear constraints in RSM take a very restricted form. Most notably, they are symmetric with respect
to transposing the matrix, which is why we are able to relate this problem to Symmetric-ISOP. □

4 Random Inspection
The optimality of nondeterministic mechanisms is a ubiquitous phenomenon in economic theory.
From selling multiple goods, to fairly dividing resources, to aggregating complex preferences,
randomization is frequently able to overcome impossibilities and improve utility.

In terms of our contract design model, a natural place to use randomness is in deciding whether
to obtain a second opinion. If we allow the principal to commit to a given inspection probability for
each signal 𝑘 , we derive a Quadratically-Constrained Quadratic Program (QCQP) from Equation (1),
with the constraints 𝑝𝑘 ∈ [0, 1] for all 𝑘 ∈ [ℓ]. However, we show that permitting probabilistic
inspection may preclude the existence of a Stackelberg equilibrium. Specifically, for any design
setting with positive inspection costs and a contract with a nonzero inspection probability, we
show that the principal can scale down the probability and accordingly scale up certain payments
in a way that preserves the IC constraint. This adjustment results is a new contract incentivizing
the same action as before, but at a strictly lower expected inspection cost. Thus, it may be the
case that no equilibrium exists under probabilistic inspection! Moreover, the contracts which
achieve close-to-optimal principal utilities are impractical, as they involve payments with vanishing
probabilities.
Obviously, such contracts are not encountered in practice. In response to this challenge, we

study two practical assumptions that can be imposed to eliminate this potential deviation by the
principal (see Figure 3). We begin by introducing these assumptions formally and discussing the
general computational approach for solving them. In Theorems 4.1 and 4.3, we show that having at
least one of the two assumptions is both necessary and sufficient for equilibria to exist outside of
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CoMI
Committed

Mixed Inspection

UMI
Uncommitted

Mixed Inspection

CoNI
Committed

Negative Inspection

UNI
Uncommitted

Negative Inspection

Principal cannot
commit to inspection

probabilities

Principal cannot
pay more after

inspecting

Fewer constraints,
higher Principal utility

More constraints,
lower Principal utility

Fig. 3. The four nondeterministic contract design problem variants we consider, partially ordered by optimal
principal utility.

trivial cases. We then give some initial results on the complexity of the contract design problem
and give an upper bound on the cost savings afforded by randomized inspection. Surprisingly, we
show in Theorem 4.6 that there are settings in which randomized inspection can yield a higher
principal utility even when the principal is unable to commit to inspection probabilities, and thus
must be indifferent about whether to pay for a second opinion.

4.1 Committed Mixed Inspection
In the Committed Mixed Inspection (CoMI) setting, the principal commits in advance to a random
inspection strategy, by assigning each signal a fixed probability of inspection, and then deciding
whether to inspect based on a biased coin toss. Formally, optimal CoMI contracts are optimal
solutions to Equation (1), under the constraint 𝑝𝑘 ∈ [0, 1] for all 𝑘 ∈ [ℓ], with 𝑝𝑘 interpreted as the
probability of inspecting signal 𝑘 upon observing it. For instance, consider an organization that
employs AI to generate code but remains concerned about potential bugs. To mitigate risk without
incurring prohibitive inspection costs, the organization might commit to further inspect at random
a fixed percentage (e.g., 10%) of the code modules that pass initial evaluation. Despite the intuitive
appeal of this randomized, pre-committed approach as a natural extension of the deterministic
second-opinion model, we show that the CoMI setting does not admit a Stackelberg equilibrium:

Theorem 4.1. Given any CoMI instance 𝑋 , let 𝑋 be the same as 𝑋 , except with zero inspection
costs. Then 𝑋 always has an optimal solution with some value (expected principal utility) 𝑦, and 𝑋
has an optimal solution if and only if one of the optimal solutions to 𝑋 incentivizes an action 𝑖 while
never inspecting any signal 𝑘 such that 𝑞0

𝑖,𝑘
𝑑𝑘 > 0; otherwise, there is a sequence of solutions to 𝑋 with

values converging to 𝑦.

Proof in Appendix B. As an immediate corollary, we can resolve the complexity of CoMI.

Corollary 4.2. There is a polynomial-time algorithm to solve CoMI (in the sense of computing the
supremum of possible expected principal utilities).
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Proof. Given any CoMI instance 𝑋 , consider the instance 𝑋 from Theorem 4.1. Since inspection
costs zero, it is without loss of generality to set each 𝑝𝑘 = 1. Then Equation (1) becomes a linear
program, so we can solve 𝑋 in polynomial time to obtain the supremum utility. □

Intuitively, the core argument in the proof of Theorem 4.1 is that for any contract which inspects
signals with some probability, the principal can lower their expected payment by decreasing
inspection probabilities and proportionally increasing payment for inspected outcomes – Implying
that no optimal contract exists under these conditions, and providing a series of contracts that
converge towards the optimal value 𝑦. Moreover, we note that the resulting contracts approaching
the optimal value 𝑦 become impractical: Their worst-case payment tends to infinity while the
probability of receiving any payment tends to zero, exceeding the budget limits of any practical
principal, and deterring agents with the slightest degree of risk-aversion. In light of these issues,
the next section demonstrates that equilibrium guarantees can be recovered by imposing additional
restrictions on the principal.

4.2 Restoring Equilibrium Guarantees
In this section, we show that equilibrium guarantees can be restored by imposing additional
restrictions on the principal. Specifically, we consider two variants: (1) disallowing commitment to
inspection probabilities, and (2) requiring that the payment for inspected outcomes always remains
at most that of corresponding uninspected signals. In Theorem 4.3, we prove that each of these
restrictions—individually or in combination—restores equilibrium guarantees.

4.2.1 Uncommitted Mixed Inspection (UMI). One possible way to restore equilibrium guarantees is
to consider settings which generalize beyond the traditional Stackelberg framework. Specifically, we
introduce the Uncommitted Mixed Inspection (UMI) variant, in which the principal only commits
to payments (𝑠, 𝑡), but does not commit in advance to an inspection policy 𝑝 . Unlike the Stackelberg
approach taken by classical contract design theory and by the settings we discussed thus far,
the objective in UMI is to design a contract (𝑝, 𝑠, 𝑡) which induces a subgame-perfect Bayes-Nash
equilibrium of the principal-agent interaction that is optimal for the principal. By inducing such
an equilibirium, the principal can declare an intention to inspect a particular signal 𝑘 with an
intermediate probability 0 < 𝑝𝑘 < 1, which the agent will accept as believable. Subgame perfection
necessitates that this is credible, meaning the principal must be genuinely indifferent between
inspecting and not inspecting the signal.
In view of the QCQP in Equation (1) which can be used to solve CoMI, we may handle UMI by

imposing the following additional subgame-perfection constraints:
• For each 𝑘 ∈ [ℓ] such that 𝑝𝑘 < 1,

𝑠𝑘 ≤ 𝑑𝑘 +
∑︁

𝑗∈[𝑚𝑘 ]
𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗 . (7)

• For each 𝑘 ∈ [ℓ] such that 𝑝𝑘 > 0,

𝑠𝑘 ≥ 𝑑𝑘 +
∑︁

𝑗∈[𝑚𝑘 ]
𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗 . (8)

Observe that it is without loss of generality to enforce the constraint given by Equation (7), even
when 𝑝𝑘 = 1. This is because the variable 𝑠𝑘 is irrelevant to both the objective function and the other
constraints, so we may satisfy this constraint by setting 𝑠𝑘 := 𝑑𝑘 +

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗 . We would like

to similarly expand the constraint given by Equation (8). However, when 𝑝𝑘 = 0 it is not without
loss of generality to assume constraint (8) holds, because if we were to apply the same trick it could
require setting some 𝑡𝑘,𝑗 to be negative. To circumvent this issue, suppose we fix a set of signals
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𝑆0 with the additional rule that 𝑝𝑘 = 0 for all 𝑘 ∈ 𝑆0, compatible with a computational approach
of enumerating all subsets of signals. Then we may enforce constraint (8) for all 𝑘 , as long as we
remove the stipulation that 𝑡𝑘,𝑗 ≥ 0 for 𝑘 ∈ 𝑆0. This lets us combine constraints (7) and (8) into a
single equation:

𝑠𝑘 = 𝑑𝑘 +
∑︁

𝑗∈[𝑚𝑘 ]
𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗 .

This equality must hold for all 𝑘 ∈ [ℓ], which allows us to simplify both the objective function and
the constraints, and remove all occurrences of the 𝑠𝑘 variables. Unfortunately, it does not let us
remove all of the quadratic terms in the IC constraint. The result is thus a Quadratically-Constrained
Linear Program (QCLP), parameterized by an action 𝑖 and a set of signals 𝑆0:

minimize
∑

𝑘∈[ℓ ] 𝑞
0
𝑖,𝑘
𝑑𝑘 +

∑
𝑘∈[ℓ ] 𝑞

0
𝑖,𝑘

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗

subject to

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗 ≥ −𝑑𝑘 for all 𝑘 ∈ 𝑆0

𝑡𝑘,𝑗 ≥ 0 for all 𝑘 ∈ 𝑆0, 𝑗 ∈ [𝑚𝑘 ]
𝑝𝑘 = 0 for all 𝑘 ∈ 𝑆0
0 ≤ 𝑝𝑘 ≤ 1 for all 𝑘 ∈ 𝑆0∑

𝑘∈[ℓ ] 𝑞
0
𝑖,𝑘

(
(1 − 𝑝𝑘 )𝑑𝑘 +

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗

)
− 𝑐𝑖 ≥∑

𝑘∈[ℓ ] 𝑞
0
𝑖′,𝑘

(
(1 − 𝑝𝑘 )

(
𝑑𝑘 +

∑
𝑗∈[𝑚𝑘 ] 𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗

)
for all 𝑖′ ∈ [𝑛]

+ 𝑝𝑘
∑

𝑗∈[𝑚𝑘 ] 𝑞
𝑘
𝑖′, 𝑗𝑡𝑘,𝑗

)
− 𝑐𝑖′

By enumerating all sets of signals 𝑆0, we may effectively optimize small UMI instances (as we do
for the proof of Theorem 4.6).

4.2.2 Committed Negative Inspection (CoNI). Another possible way to guarantee the existence of an
equilibrium is to impose that the payment for an inspected outcome never exceeds the payment for
the corresponding uninspected signal. This condition aligns well with scenarios where inspections
may uncover negative information, justifying reduced pay. For example, in the code generation
use-case discussed in the introduction, further inspection may uncover security vulnerabilities that
reduce the code’s value. Formally, this is represented by constraints requiring that 𝑡𝑘,𝑗 ≤ 𝑠𝑘 for all
𝑘 ∈ [ℓ] and 𝑗 ∈ [𝑚𝑘 ], ensuring that inspection can only reduce or maintain the monetary transfer.

4.2.3 Uncommitted Negative Inspection (UNI). Finally, we consider a problem variant which inte-
grates both the no-commitment and negative inspection assumptions. Here, the principal does not
commit to an inspection policy, and is also subject to the constraint 𝑡𝑘,𝑗 ≤ 𝑠𝑘 for all 𝑘 and 𝑗 .

4.2.4 Equilibrium Guarantees. Not every QCQP or QCLP has an optimal value. Hence, it is not
clear that any of the three variant games actually have an equilibrium, as there may not be one
optimal contract for the principal to choose. The following result, proved in Appendix B, shows
that optimal contracts exist in all variants:

Theorem 4.3. Any UMI, CoNI, or UNI instance has an optimal solution.

4.3 Deterministic vs. Optimal Inspection
Wenow turn to the question of how powerful randomized inspection policies can be, in terms ofwhat
actions they can incentivize and at what cost. The following theorem characterizes implementability
and bounds the cost savings of nondeterminism for CoMI, CoNI, and UMI. The relationships between
the principal’s minimal payment in each variant are depicted in Figure 4.
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Free Inspection CoMI CoNI, UMI,
UNI Determininistic

Free Inspection
+ E𝑘∼𝑞0

𝑖∗
[𝑑𝑘 ]

Exp. pay
of opt. contract

→ 0
Thm. 4.1

> 0
Thm. 4.4 (2)

≥ 0
Thm. 4.4 (3)

≥ 0
Thm. 4.4 (4)

Fig. 4. Relationships between expected payments in optimal deterministic versus nondeterministic contracts.
Note that the strict inequality holds only when second opinions are ever used in the optimal contract.

Theorem 4.4. For any contract design setting and any action 𝑖 :
(1) In each of CoMI, CoNI, UMI, and UNI, it is possible to incentivize an action 𝑖 with a nondeter-

ministic contract if and only if it is possible to incentivize 𝑖 with a deterministic contract.
(2) In CoNI, UMI, or UNI, if an optimal contract to incentivize 𝑖 ever pays for inspection, the principal

can incentivize 𝑖 with a strictly smaller expected payment in CoMI; otherwise, the minimum
expected payments are the same.

(3) In CoNI, UMI, or UNI, the principal’s minimal payment to incentivize 𝑖 is weakly smaller than
their minimum expected payment required under a deterministic contract.

(4) The infimum expected payment required to incentivize 𝑖 in CoMI is within E𝑘∼𝑞0
𝑖∗
[𝑑𝑘 ] of the

minimum expected payment required to incentivize 𝑖 in a deterministic contract.

Proof. We will show that it is possible to transform each of a deterministic, CoNI, UMI, and
CoMI contract into one another while incentivizing the same action 𝑖 , which will prove (1). We will
also bound the gaps between the minimum expected payments of each transformation, proving the
other three statements.

First suppose there is some deterministic contract incentivizing action 𝑖 . We will show that there
is an equivalent contract in UNI (and thus in CoNI and UMI as well). Specifically, for each signal
𝑘 , we will transform the 𝑠𝑘 and 𝑡𝑘,𝑗 variables in a way that satisfies the commitment/negativity
constraints and does not change the principal’s expected payment. For signals 𝑘 such that 𝑝𝑘 = 0,
the 𝑡𝑘,𝑗 variables are payoff-irrelevant. Thus, we may set 𝑡𝑘,𝑗 := 𝑠𝑘 to satisfy both the negativity
constraint and the relevant commitment constraint, namely Equation (7). Likewise, for all signals 𝑘
such that 𝑝𝑘 = 1, the 𝑠𝑘 variables are payoff-irrelevant, so we may set 𝑠𝑘 = 𝑑𝑘 +max𝑗 𝑡𝑘,𝑗 to both
the negativity constraint and the relevant commitment constraint, namely Equation (8). Thus, we
can transform any deterministic contract into an UNI contract with the same expected payment, so
the optimal CoNI/UMI/UNI contracts have weakly lower expected payments. This proves (3).
Next take an arbitrary contract in CoNI or UMI incentivizing action 𝑖 . Since such a contract

is also a valid solution to CoMI, the principal’s minimum expected payment in CoMI is weakly
smaller. If, additionally, the contract sometimes pays for a second opinion, there must be some
signal 𝑘 such that 𝑞0

𝑖,𝑘
> 0, 𝑝𝑘 > 0, and 𝑑𝑘 > 0. By Lemma B.1 (1) (stated and proved in Appendix B),

we can decrease the inspection probability of signal 𝑘 and adjust payments accordingly to get a
strictly smaller payment in CoMI. This proves (2).
Finally, to complete the cycle, take an arbitrary CoMI contract (𝑝, 𝑠, 𝑡) incentivizing action 𝑖 .

Consider the alternative contract (𝑝′, 𝑠′, 𝑡 ′) where each 𝑝′
𝑘
= 1, 𝑠′

𝑘
is defined arbitrarily, and

𝑡 ′
𝑘,𝑗

= (1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘𝑡𝑘,𝑗 .

In other words, (𝑝′, 𝑠′, 𝑡 ′) simulates (𝑝, 𝑠, 𝑡) by always inspecting every signal and sometimes simply
ignoring the outcome and using the old 𝑠𝑘 payments. The agent’s expected utilities for each action
are clearly the same in (𝑝′, 𝑠′, 𝑡 ′) as in (𝑝, 𝑠, 𝑡), so (𝑝′, 𝑠′, 𝑡 ′) still incentivizes action 𝑖 . The additional
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expected payment is ∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘
(1 − 𝑝𝑘 )𝑑𝑘 ≤

∑︁
𝑘∈[ℓ ]

𝑞0
𝑖,𝑘
𝑑𝑘 = E𝑘∼𝑞0

𝑖
[𝑑𝑘 ] ,

which proves (4). □

This result has complexity implications as well. One might hope that non-deterministic contracts
are easier to find since the domain of each 𝑝𝑘 variable is the convex set [0, 1] rather than the discrete
set {0, 1}. However, combining Theorem 4.4 (3) and an observation about the proof of Theorem 3.8,
we can conclude that at least two of our nondeterministic variants are still NP-hard:

Theorem 4.5. It is NP-hard to find the optimal principal utility in either UMI or UNI.

Proof. We observe that the reduction from Vertex Cover in Theorem 3.8 also works in both
UMI and UNI:

• For the forward direction, Theorem 4.4 (3) implies that the principal’s utility can only be
greater in UMI or UNI.

• For the backward direction, we define 𝐶 to be the set of vertices 𝑣𝑘 such that the principal
inspects signal 𝑘 with nonzero probability. Then the same argument as before shows that
𝐶 is a vertex cover. To prove that |𝐶 | < 𝑦, we observe that, since the principal is unable to
commit to probabilities, the principal must weakly prefer paying the inspection cost for the
signal of each vertex in𝐶 . Thus, we still have that it costs an expected 𝑦

ℓ
for each vertex in𝐶 ,

and the proof follows. □

Finally, we show that the middle inequality from Figure 4 is sometimes strict. In other words,
randomized inspection can improve principal’s optimal utility in some cases, even with either the
commitment or negativity constraints imposed.

Theorem 4.6. There exist instances of UMI and CoNI where nondeterministic inspection is strictly
optimal.

Proof. All numerical claims in this proof have been verified computationally, using Gurobi [22]
to solve the various non-convex programs discussed previously. Consider an instance with three
actions, two signals, and two outcomes per signal, with

𝑞0
𝑖,𝑘

=
©«
0.5 0.5
0.6 0.4
0.6 0.4

ª®¬ ; 𝑞1𝑖, 𝑗 = 𝑞2𝑖, 𝑗 =
©«
0.6 0.4
0.4 0.6
0.6 0.4

ª®¬ ; 𝑐𝑖 =
(
0 0 1

)
; 𝑑𝑘 =

(
1 1

)
.

Suppose the rewards are such that the principal wishes to incentivize the costly action 3. Since action
3 is positively correlated with signal 1 and outcome 1, the optimal deterministic contract inspects
signal 1 and only pays for outcome 1. The necessary payment is 16 + 2

3 , and the total expected cost
(including inspection) is 6.6. However, with a nondeterministic contract, it is preferable to save on
inspection cost by inspecting randomly. In CoNI, the optimal inspection probability is 0.625, for an
expected cost of 6.375; in UMI, the optimal probability is 0.525, for an expected cost of 6.315. □

5 Discussion
By extending the classical principal-agent framework to include outcome inspections, our model
reveals new layers of complexity and rich economic behavior absent from traditional models. Under
specific assumptions such as a constant number of agent actions or when ISOP and Inspection-
MLRP hold simultaneously we have shown that the contract design problem becomes tractable,
and that computational hardness emerges when these assumptions are violated. Additionally,
we have shown that classical equilibrium guarantees do not hold under probabilistic inspection,
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motivating the introduction of new methods to restore equilibrium in these settings. These insights
open avenues for future work on designing contracts that effectively balance the cost of acquiring
additional information with the benefits of improved decision-making.
In the realm of nondeterministic inspection, our work has opened several intriguing questions

about the structure of optimal contracts. We have shown that randomized inspection policies can
incentivize desirable actions at strictly lower cost, even under either of the two practical constraints
we consider. However, we do not have a tight upper-bound on just how large the cost savings can
be. Additionally, computational experiments suggest that randomization is not helpful at all when
there are only two actions. We are not able to offer any explanation for this phenomenon.
Complexity questions regarding nondeterministic inspection remain as well. We are able to

resolve the complexity (in the general case) for three of our four problem variants, but it is unknown
whether the final CoNI variant can be solved in polynomial time. It is also open whether any of the
regularity assumptions we consider in this paper for deterministic contracts can likewise make
these problems tractable.

Another open question concerns the complexity of contracts involving more than two opinions.
While our model extends classical contract design to accommodate a second opinion, the computa-
tional landscape for settings with three or more opinions remains unexplored. It is unclear whether
specific structural properties could render such problems tractable. Addressing this could shed new
light on the interaction between information acquisition and contract design.
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A Proof of Theorem 3.9 (Hardness of Symmetric-ISOP)
We show hardness via a series of two reductions from a variant of Set Cover. The intermediate
problem is a promise problem which we call Row-Sparsest Matrix, or RSM for short. An instance
of RSM is a tuple (𝐺,𝐴,𝑦), where 𝐺 = (𝑉 , 𝐸) is a simple, undirected graph on |𝑉 | = 𝑛 vertices
numbered 1, 2, . . . , 𝑛 with no isolated vertices, with 𝐴 ⊆ 𝑉 and 𝑦 ∈ [𝑛]. The instance is promised to
fall into one of the following two cases, with the objective being to determine which one holds.

YES instance. There exists an 𝑛 × 𝑛 matrix𝑀 of nonnegative real numbers such that:
(1) The average value in𝑀 is 1.
(2) At most 𝑦 rows of𝑀 contain nonzero values.
(3) For all {𝑖, 𝑗} ∈ 𝐸, we have𝑀𝑖,𝑖 = 𝑀𝑖, 𝑗 = 𝑀 𝑗,𝑖 = 𝑀 𝑗, 𝑗 = 0.
(4) For all 𝑘 ∈ 𝐴,

∑
𝑖∈[𝑛] 𝑀𝑖,𝑘 +

∑
𝑖∈[𝑛] 𝑀𝑘,𝑖 ≥ 10𝑛

NO instance. There does not exist an 𝑛 × 𝑛 matrix𝑀 of nonnegative real numbers such that:
(1) The average value in𝑀 is between 1 and 12

11 .
(2) At most 𝑦 rows of𝑀 contain values greater than or equal to 5

11 .
(3) For all {𝑖, 𝑗} ∈ 𝐸, we have𝑀𝑖,𝑖 , 𝑀𝑖, 𝑗 , 𝑀 𝑗,𝑖 , 𝑀𝑗, 𝑗 ≤ 5

11 .
(4) For all 𝑘 ∈ 𝐴,

∑
𝑖∈[𝑛] 𝑀𝑖,𝑘 +

∑
𝑖∈[𝑛] 𝑀𝑘,𝑖 ≥ 𝑛.

Lemma A.1. The problem RSM is NP-hard.

Proof. We reduce from the variant of Set Cover where the number of elements is restricted to be
exactly 1

9 the number of sets. (Set Cover remains NP-hard with this restriction since we can duplicate
elements and/or sets until the equality is satisfied.) The input to Set Cover consists of a collection
of elements 𝑥1, 𝑥2, . . . , 𝑥𝑚 , a collection of sets of elements which we number 𝑆𝑚+1, 𝑆𝑚+2, . . . , 𝑆𝑛 and
a target value 𝑦 ∈ [𝑛 −𝑚]. The objective is to determine whether a collection of at most 𝑦 of the
sets covers all𝑚 elements. By our assumption on the number of elements versus the number of
sets, we have 𝑛 = 10𝑚.

Given such an instance, let 𝐻 be the bipartite graph where there is an edge between 𝑖 ∈ [𝑛] and
𝑗 ∈ [𝑛] if 𝑖 ≤ 𝑚, 𝑗 > 𝑚, and element 𝑥𝑖 is contained in set 𝑆 𝑗 . We then output the RSM instance
(𝐺,𝐴,𝑦) where 𝐺 is the complement of 𝐻 and 𝐴 = [𝑚]. We will show that, if a set cover of size 𝑦
exists, then (𝐺,𝐴,𝑦) is YES instance; otherwise, it is a NO instance.
First suppose 𝐶 is a set cover of size 𝑦. For each element 𝑥𝑖 , let 𝑀 𝑗,𝑖 = 10𝑛 for one arbitrary 𝑗

such that 𝑥𝑖 ∈ 𝑆 𝑗 ∈ 𝐶 (which must exist since 𝐶 is a set cover). Let all other entries of 𝑀 be zero.
Observe that𝑀 satisfies all four YES instance properties:
(1) The sum of all nonzero elements is 10𝑛 ·𝑚 = 𝑛2, so the average value is 1.
(2) Only the 𝑦 rows corresponding to the sets in the cover have nonzero entries.
(3) We have a nonzero value at (𝑖, 𝑗) only when {𝑖, 𝑗} is an edge in 𝐻 . This does not include any

edges of 𝐺 (since 𝐺 is the complement of 𝐻 ) or diagonal entries.
(4) For each 𝑖 ∈ [𝑚], we know that, for some 𝑗 ,𝑀 𝑗,𝑖 = 10𝑛.
Conversely, suppose (𝐺,𝐴,𝑦) is not a NO instance. This means there does exists a matrix 𝑀

satisfying all of the NO instance properties. Let 𝐼 be the set of indices 𝑖 ∈ [𝑚] such that the 𝑖th row
of𝑀 contains values greater than or equal to 1

2 ; Let 𝐽 be the set of such indices from𝑚 + 1 to 𝑛. For
each 𝑖 ∈ 𝐼 , choose an arbitrary column 𝑗 such that𝑀𝑖, 𝑗 is at least 1

2 . Let 𝑓 : 𝐼 → [𝑛] be the mapping
of arbitrary choices for each such index 𝑖 . Consider the collection of sets

𝐶 := {𝑆 𝑓 (𝑖 ) | 𝑖 ∈ 𝐼 } ∪ {𝑆 𝑗 | 𝑗 ∈ 𝐽 }.
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Note that |𝐶 | ≤ |𝐼 | + |𝐽 | ≤ 𝑦 from property (2). We claim that𝐶 is a set cover. Consider an arbitrary
element 𝑥𝑖 . We know that there must exist some 𝑗 ∈ [𝑛] such that 𝑀 𝑗,𝑖 ≥ 1

2 or 𝑀𝑖, 𝑗 ≥ 1
2 , for

otherwise we would have ∑︁
𝑗∈[𝑛]

𝑀 𝑗,𝑖 +
∑︁
𝑗∈[𝑛]

𝑀𝑖, 𝑗 < 2𝑛 · 1
2
= 𝑛,

violating property (4). Furthermore, from the definition of 𝐺 , we know that 𝑗 must be an index
greater than𝑚, and 𝑆 𝑗 contains 𝑥𝑖 , for otherwise both cases𝑀 𝑗,𝑖 ≥ 1

2 and𝑀𝑖, 𝑗 ≥ 1
2 would violate

property (3). In the former case (𝑀 𝑗,𝑖 ≥ 1
2 ), we have 𝑗 ∈ 𝐽 , so 𝑥𝑖 ∈ 𝑆 𝑗 ∈ 𝐶 . In the latter case

(𝑀𝑖, 𝑗 ≥ 1
2 ), we have 𝑖 ∈ 𝐼 , so 𝑥𝑖 ∈ 𝑆 𝑓 (𝑖 ) ∈ 𝐶 . □

Proof of Theorem 3.9. We reduce from RSM, which is NP-hard by Lemma A.1. Given an in-
stance (𝐺,𝐴,𝑦) where𝐺 = (𝑉 , 𝐸) has 𝑛 vertices, we define an instance with 𝑛 + 1 signals/outcomes,
numbered 0, 1, 2, . . . , 𝑛. Let

𝜀 := 1 −
√︂

(𝑛 − 1)2 (𝑛 + 2)
𝑛3

> 0. (9)

The reward for any realization (𝑘, 𝑗), where 𝑘, 𝑗 ∈ {0, 1, 2, . . . , 𝑛}, is 1
𝜀
times the number of vertices

realized (i.e. nonzero values among 𝑘 and 𝑗 ). All signals cost 1
11 to get a second opinion, which will

be second independent sample from the same probability distribution.
There are three kinds of actions the agent can take, enumerated as follows.2

• Action 𝑔 (the good action), which costs 1 and leads to a uniformly random vertex.
• For each vertex 𝑘 ∈ 𝐴, an action 𝑎𝑘 which costs 1. With probability 𝜀, outcome 0 is realized;
and with probability 1 − 𝜀, a uniformly random vertex other than 𝑘 is realized.

• For each edge of𝐺 , between vertex 𝑖 and vertex 𝑗 , an action 𝑒𝑖, 𝑗 , which costs 0.With probability
𝜀, outcome 0 is realized; with probability 1−𝜀

2 , 𝑖 is realized; and with probability 1−𝜀
2 , vertex 𝑗

is realized.
We will show that, if (𝐺,𝐴,𝑦) is a YES instance, there exists a contract where the principal can

attain expected utility at least

𝑈 :=
2
𝜀
− 1 − 𝑦

11𝑛
;

Whereas if it is a NO instance, there does not exist such a contract. We derive an equivalent
interpretation of this utility target as follows. If the agent takes any action other than the good
action 𝑔, a vertex is realized each draw with probability at most 1 − 𝜀, so the expected reward of
the principal is at most

2 · (1 − 𝜀) · 1
𝜀
=
2
𝜀
− 2 < 𝑈 .

Hence, it is not possible for the principal to attain expected utility at least 𝑈 if the agent is taking
any action besides 𝑔. On the other hand, when the agent takes action 𝑔, the probability of realizing
a vertex is 1 each draw, so the principal’s expected reward is

2 · 1
𝜀
= 𝑈 + 1 + 𝑦

11𝑛
.

Thus, the principal can obtain expected utility at least𝑈 if and only if it is possible to incentivize
the agent to take action 𝑔 by paying at most 1 + 𝑦

11𝑛 in expectation.
For the forward direction, suppose (𝐺,𝐴,𝑦) is a YES instance. Consider the contract 𝑡 that pays

𝑀𝑖, 𝑗 when vertex 𝑖 is realized on the first draw and vertex 𝑗 is realized on the second draw. Any
time outcome 0 is observed, the payment is zero. By property (2), all but 𝑦 rows of𝑀 are all-zero,
2To maintain consistency in indices used for vertices throughout the proof, we break with the convention that 𝑖 is for
actions, 𝑗 is for outcomes, and 𝑘 is for signals.
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meaning they do not require inspection: Upon observing a vertex 𝑖 for which the 𝑖th row of𝑀 is
all-zero, the principal will simply pay zero and not inspect. Thus the total inspection cost is

(num inspected outcomes) · (probability of outcome) · (inspection cost) = 𝑦 · 1
𝑛
· 1
11

=
𝑦

11𝑛
.

Additionally, the total expected transfer from the principal to the agent under the good action 𝑔 is

𝑇𝑔 =
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛]

1
𝑛2

𝑀𝑖, 𝑗 = 1.

Hence, when the agent takes the good action 𝑔, the principal’s total expected payment is 1 + 𝑦

11𝑛 as
desired. It remains to check the incentive constraints, that 𝑔 is optimal for the agent.

Each of the 𝑒𝑖, 𝑗 actions yields a transfer of 0, as the only possible outcomes are combinations of 𝑖 ,
𝑗 , and 0, which all result in zero payment by property (3). Thus, 𝑒𝑖, 𝑗 costs one less than 𝑔 but also
earns one less, so the agent weakly prefers 𝑔.
Next consider an action 𝑎𝑘 . We may lower-bound the difference between the expected transfer

𝑇𝑔 if the agent chooses 𝑔 and 𝑇𝑎𝑘 if the agent chooses 𝑎𝑘 as follows:

𝑇𝑔 −𝑇𝑎𝑘 =
1
𝑛2

𝑀𝑘,𝑘 +
∑︁

𝑖∈[𝑛]\{𝑘 }

(
1
𝑛2

) (
𝑀𝑖,𝑘 +𝑀𝑘,𝑖

)
+

∑︁
𝑖, 𝑗∈[𝑛]\{𝑘 }

(
1
𝑛2

− (1 − 𝜀)2
(𝑛 − 1)2

)
𝑀𝑖, 𝑗

=
1
𝑛2

𝑀𝑘,𝑘 +
(
1
𝑛2

) ∑︁
𝑖∈[𝑛]\{𝑘 }

(
𝑀𝑖,𝑘 +𝑀𝑘,𝑖

)
+

(
− 2
𝑛3

) ∑︁
𝑖, 𝑗∈[𝑛]\{𝑘 }

𝑀𝑖, 𝑗

(rearranging Equation (9))

≥ 1
𝑛2

𝑀𝑘,𝑘 +
1
5𝑛2

∑︁
𝑖∈[𝑛]\{𝑘 }

(
𝑀𝑖,𝑘 +𝑀𝑘,𝑖

)
− 2
𝑛3

∑︁
𝑖, 𝑗∈[𝑛]

𝑀𝑖, 𝑗

(since
4
5𝑛2

≥ 2
𝑛3

for 𝑛 ≥ 3)

≥ 2
5𝑛2

𝑀𝑘,𝑘 +
1
5𝑛2

∑︁
𝑖∈[𝑛]\{𝑘 }

(
𝑀𝑖,𝑘 +𝑀𝑘,𝑖

)
− 2
𝑛3

∑︁
𝑖, 𝑗∈[𝑛]

𝑀𝑖, 𝑗

=
1
5𝑛2

©«
∑︁
𝑖∈[𝑛]

𝑀𝑖,𝑘 +
∑︁
𝑖∈[𝑛]

𝑀𝑘,𝑖
ª®¬ − 2

𝑛3

∑︁
𝑖, 𝑗∈[𝑛]

𝑀𝑖, 𝑗

≥ 1
5𝑛2

(10𝑛) − 2
𝑛3

∑︁
𝑖, 𝑗∈[𝑛]

𝑀𝑖, 𝑗 (from property (4))

=
2
𝑛

©«1 − 1
𝑛2

∑︁
𝑖, 𝑗∈[𝑛]

𝑀𝑖, 𝑗
ª®¬ = 0,

where in the final equality we have used property (1). Thus, the agent earns weakly more from
taking action 𝑔 than action 𝑎𝑘 . Since the two actions cost the same, the agent weakly prefers 𝑔.

For the backward direction, suppose there is a contract in which the principal incentivizes action
𝑔 by paying at most 1 + 𝑦

11𝑛 . Our objective is to show that (𝐺,𝐴,𝑦) is not a NO instance. Let 𝑀
be the matrix where 𝑀𝑖, 𝑗 is the payment upon realizing vertex 𝑖 from the first draw and 𝑗 from
the second draw. Note that 𝑀 is constant on rows corresponding to vertex indices that are not
inspected. We will show that𝑀 satisfies all four NO instance properties.
First, observe that, since the contract incentivizes the costly action 𝑔, it must transfer at least

𝑇𝑔 ≥ 1 in expectation from the principal to the agent, otherwise the agent is better off taking one
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of the actions that costs 0. It follows that the principal can only inspect 𝑦 actions, for otherwise the
total cost exceeds 1 + 𝑦

11𝑛 . On the other hand,

𝑇𝑔 ≤ 1 + 𝑦

11𝑛
≤ 1 + 1

11
=
12
11

.

This proves property (1), since 𝑇𝑔 is precisely the average value of the matrix𝑀 .
For any edge {𝑖, 𝑗} and any entry 𝑧 ∈ {𝑀𝑖,𝑖 , 𝑀𝑖, 𝑗 , 𝑀 𝑗,𝑖 , 𝑀𝑗, 𝑗 }, we have

𝑧 <
5(1 − 𝜀)2

4
𝑧 (for large enough 𝑛)

≤ 5(1 − 𝜀)2
4

(𝑀𝑖,𝑖 +𝑀𝑖, 𝑗 +𝑀 𝑗,𝑖 +𝑀 𝑗, 𝑗 )

= 5𝑇𝑒𝑖,𝑗
≤ 5(𝑇𝑔 − 1) (since the contract incentivizes 𝑔)

≤ 5
(
12
11

− 1
)

(from the inequality above)

=
5
11

.

This establishes property (3). Furthermore, since each row 𝑖 is constant if 𝑖 is not inspected, and
𝑀𝑖,𝑖 <

5
11 (each diagonal entry appears as some 𝑧 in the argument above because we assume 𝐺 has

no isolated vertices), we have that the entire row 𝑖 must be less than 5
11 if 𝑖 is not inspected. As

only 𝑦 rows are inspected, property (2) follows.
Finally, for each 𝑘 ∈ 𝐴, from the incentive constraint that the agent prefers action 𝑔 to 𝑎𝑘 , we

have

0 ≤ 𝑇𝑔 −𝑇𝑎𝑘

≤ 1
𝑛2

𝑀𝑘,𝑘 +
(
1
𝑛2

) ∑︁
𝑖∈[𝑛]\{𝑘 }

(
𝑀𝑖,𝑘 +𝑀𝑘,𝑖

)
+

(
− 2
𝑛3

) ∑︁
𝑖, 𝑗∈[𝑛]\{𝑘 }

𝑀𝑖, 𝑗

(the inequality is only due to the fact that the contract may pay for outcome 0)

≤ 4
𝑛2

𝑀𝑘,𝑘 +
2
𝑛2

∑︁
𝑖∈[𝑛]\{𝑘 }

(
𝑀𝑖,𝑘 +𝑀𝑘,𝑖

)
− 2
𝑛3

∑︁
𝑖, 𝑗∈[𝑛]

𝑀𝑖, 𝑗 (since
2
𝑛2

≥ 2
𝑛3

)

=
2
𝑛2

©«
∑︁
𝑖∈[𝑛]

𝑀𝑖,𝑘 +
∑︁
𝑖∈[𝑛]

𝑀𝑘,𝑖 − 𝑛𝑇𝑔
ª®¬

≤ 2
𝑛2

©«
∑︁
𝑖∈[𝑛]

𝑀𝑖,𝑘 +
∑︁
𝑖∈[𝑛]

𝑀𝑘,𝑖 − 𝑛
ª®¬ .

This implies property (4): ∑︁
𝑖∈[𝑛]

(
𝑀𝑖,𝑘 +𝑀𝑘,𝑖

)
≥ 𝑛.

□

B Proofs of Theorems 4.1 and 4.3 (Characterization of Equilibrium Existence)
We will require the following lemma for both proofs.
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Lemma B.1. Fix any feasible solution (𝑝, 𝑠, 𝑡) to a QCQP from CoMI and a signal 𝑘 ∈ [ℓ] such that
𝑝𝑘 ∈ (0, 1]. For any 𝑝′

𝑘
∈ (0, 𝑝𝑘 ), there is some value of 𝑠′

𝑘
and vector 𝑡 ′

𝑘
= (𝑡 ′

𝑘,1, 𝑡
′
𝑘,2, . . . , 𝑡

′
𝑘,𝑚𝑘

) giving a
feasible instance (𝑝′, 𝑠′, 𝑡 ′), where 𝑝′, 𝑠′, and 𝑡 ′ are the same as 𝑝 , 𝑠 , and 𝑡 except on indexes involving
signal 𝑘 . Furthermore:
(1) If 𝑞0

𝑖,𝑘
𝑑𝑘 > 0, then (𝑝′, 𝑠′, 𝑡 ′) has a strictly better objective value than (𝑝, 𝑠, 𝑡); specifically, the

principal’s expected payment changes by 𝑞0
𝑖,𝑘
(𝑝′

𝑘
− 𝑝𝑘 )𝑑𝑘 < 0.

(2) The map 𝑝′
𝑘
↦→ (𝑠′

𝑘
, 𝑡 ′
𝑘
) is continuous over the open interval (0, 𝑝𝑘 ).

Proof of Lemma B.1. For each 𝑗 ∈ [𝑚𝑘 ], we define

𝑠′
𝑘
:=

1 − 𝑝𝑘

1 − 𝑝′
𝑘

· 𝑠𝑘 , 𝑡 ′
𝑘,𝑗

:=
𝑝𝑘

𝑝′
𝑘

· 𝑡𝑘,𝑗 .

This is clearly continuous over the open interval (0, 𝑝𝑘 ). Observe that, for all 𝑖′ ∈ [𝑛] (including
𝑖′ = 𝑖 , where 𝑖 is the specified action the principal is trying to incentivize), we have

(1 − 𝑝′
𝑘
)𝑠′
𝑘
+ 𝑝′

𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖′, 𝑗𝑡
′
𝑘,𝑗

= (1 − 𝑝′
𝑘
) 1 − 𝑝𝑘

1 − 𝑝′
𝑘

𝑠𝑘 + 𝑝′
𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖′, 𝑗
𝑝𝑘

𝑝′
𝑘

𝑡𝑘,𝑗

= (1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

∑︁
𝑗∈[𝑚𝑘 ]

𝑞𝑘𝑖′, 𝑗𝑡𝑘,𝑗

(10)

Note that this equality holds for all signals (by definition), not just the specific 𝑘 for which the
variables changed. It follows that the IC constraint still holds. All of the other constraints obviously
continue to hold as well.
In what follows, we use a signal index variable 𝑘 ′ to avoid clashing with the specific signal 𝑘

from the theorem statement. The objective value of (𝑝′, 𝑠′, 𝑡 ′) is∑︁
𝑘 ′∈[ℓ ]

𝑞0
𝑖,𝑘 ′

©«(1 − 𝑝′
𝑘 ′ )𝑠′𝑘 ′ + 𝑝′

𝑘 ′
©«𝑑𝑘 ′ +

∑︁
𝑗∈[𝑚𝑘′ ]

𝑞𝑘
′

𝑖, 𝑗𝑡
′
𝑘 ′, 𝑗

ª®¬ª®¬
=

∑︁
𝑘 ′∈[ℓ ]

𝑞0
𝑖,𝑘 ′

©«(1 − 𝑝′
𝑘 ′ )𝑠′𝑘 ′ + 𝑝′

𝑘 ′

∑︁
𝑗∈[𝑚𝑘′ ]

𝑞𝑘
′

𝑖, 𝑗𝑡
′
𝑘 ′, 𝑗

ª®¬ +
∑︁

𝑘 ′∈[ℓ ]
𝑞0
𝑖,𝑘 ′𝑝

′
𝑘 ′𝑑𝑘 ′

=
∑︁

𝑘 ′∈[ℓ ]
𝑞0
𝑖,𝑘 ′

©«(1 − 𝑝𝑘 ′ )𝑠𝑘 ′ + 𝑝𝑘 ′

∑︁
𝑗∈[𝑚𝑘′ ]

𝑞𝑘
′

𝑖, 𝑗𝑡𝑘 ′, 𝑗
ª®¬ +

∑︁
𝑘 ′∈[ℓ ]

𝑞0
𝑖,𝑘 ′𝑝

′
𝑘 ′𝑑𝑘 ′ (by Equation (10) above)

=
∑︁

𝑘 ′∈[ℓ ]
𝑞0
𝑖,𝑘 ′

©«(1 − 𝑝𝑘 ′ )𝑠𝑘 ′ + 𝑝𝑘 ′

∑︁
𝑗∈[𝑚𝑘′ ]

𝑞𝑘
′

𝑖, 𝑗𝑡𝑘 ′, 𝑗
ª®¬ +

∑︁
𝑘 ′∈[ℓ ]

𝑞0
𝑖,𝑘 ′𝑝𝑘 ′𝑑𝑘 ′ +

∑︁
𝑘 ′∈[ℓ ]

𝑞0
𝑖,𝑘 ′ (𝑝′𝑘 ′ − 𝑝𝑘 ′ )𝑑𝑘 ′

=
∑︁

𝑘 ′∈[ℓ ]
𝑞0
𝑖,𝑘 ′

©«(1 − 𝑝𝑘 ′ )𝑠𝑘 ′ + 𝑝𝑘 ′
©«𝑑𝑘 ′ +

∑︁
𝑗∈[𝑚𝑘′ ]

𝑞𝑘
′

𝑖, 𝑗𝑡𝑘 ′, 𝑗
ª®¬ª®¬ +

∑︁
𝑘 ′∈[ℓ ]

𝑞0
𝑖,𝑘 ′ (𝑝′𝑘 ′ − 𝑝𝑘 ′ )𝑑𝑘 ′ .

Since the first sum in the final line above is the objective value of (𝑝, 𝑠, 𝑡), we see that the
difference is ∑︁

𝑘 ′∈[ℓ ]
𝑞0
𝑖,𝑘 ′ (𝑝′𝑘 ′ − 𝑝𝑘 ′ )𝑑𝑘 ′ .

Each of the terms in this sum is zero by definition, except for 𝑘 ′ = 𝑘 . Thus, the difference in objective
values is precisely 𝑞0

𝑖,𝑘
(𝑝′

𝑘
− 𝑝𝑘 )𝑑𝑘 as claimed. □
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Proof of Theorem 4.1. Fix a CoMI instance 𝑋 . First note that the instance 𝑋 with zero inspec-
tion costs has an optimal solution because it is without harm to inspect all signals, so we may set
𝑝𝑘 = 1 for all signals, obtaining a linear program.
We first prove the second part of the claim, that there is a sequence of solutions to 𝑋 whose

value converges to the optimal value of 𝑋 . Let (𝑝, 𝑠, 𝑡) be an optimal solution with value 𝑦. Let 𝑆
be the set of signals 𝑘 ∈ [ℓ] such that 𝑝𝑘 > 0, and suppose that the minimum nonzero 𝑝𝑘 value is
𝛿 . In 𝑋 , which has a different objective function but the same feasible set, the value of (𝑝, 𝑠, 𝑡) is
𝑦 +∑

𝑘∈𝑆 𝑞
0
𝑖,𝑘
𝑝𝑘𝑑𝑘 . For any 0 < 𝜀 < 𝛿 , we repeatedly apply Lemma B.1 to each signal 𝑘 ∈ 𝑆 such that,

obtaining a new solution which improves the objective value by an additive
∑

𝑘∈𝑆 𝑞
0
𝑖,𝑘
(𝜀 − 𝑝𝑘 )𝑑𝑘 .

Thus, the new solution, call it (𝑝𝜀 , 𝑠, 𝑡𝜀), has objective value

𝑦 +
∑︁
𝑘∈𝑆

𝑞0
𝑖,𝑘
𝑝𝑘𝑑𝑘 +

∑︁
𝑘∈𝑆

𝑞0
𝑖,𝑘
(𝜀 − 𝑝𝑘 )𝑑𝑘 = 𝑦 + 𝜀

∑︁
𝑘∈𝑆

𝑞0
𝑖,𝑘
𝑑𝑘

Sending 𝜀 → 0, we see that the value of (𝑝𝜀 , 𝑠, 𝑡𝜀) converges to 𝑦, as desired.
We now prove the characterization of when 𝑋 has an optimal solution. Clearly, if 𝑋 has an

optimal solution with 𝑝𝑘 = 0 for all 𝑘 such that 𝑞0
𝑖,𝑘
𝑑𝑘 > 0, then that same solution yields the

same objective value in 𝑋 . This is optimal because the minimum objective value in 𝑋 is necessarily
at least the minimum objective value of 𝑋 . Conversely, suppose that 𝑋 has an optimal solution
(𝑝, 𝑠, 𝑡) of some value 𝑦′. Then notice that 𝑦′ = 𝑦 by the claim proved in the previous paragraph,
since there are certainly solutions to 𝑋 of value arbitrarily close to 𝑦. This means that (𝑝, 𝑠, 𝑡) is
an optimal solution to 𝑋 , and it cannot possibly inspect any signal 𝑘 for which 𝑞0

𝑖,𝑘
𝑑𝑘 > 0 with

nonzero probability, for otherwise its objective value would be different in 𝑋 and 𝑋 . □

Proof of Theorem 4.3. In all three problem variants, every QCQP/LCQP has a continuous
objective function. Furthermore, the feasible set is closed, as all constraints are specified by weak
inequalities. Hence, as long as the feasible set is also bounded, an optimal solution exists, as it is
the result of minimizing a continuous function over a compact set. Note that all relevant variables
are bounded below, and the 𝑝𝑘 variables are bounded above (by one). Thus, an optimal solution is
guaranteed to exist as long as each 𝑠𝑘 and 𝑡𝑘,𝑗 is bounded above. We will show that, in each of UMI,
CoNI, and UNI, we may impose additional constraints upper-bounding these variables without
harming the value of the optimal solution.
We begin with UMI and UNI, where we saw that it is possible to rewrite each QCLP so that it

only involves variables 𝑡𝑘,𝑗 and not any 𝑠𝑘 . Fix an action 𝑖 ∈ [𝑛] and a set of non-inspected signals
𝑆0 ⊆ [ℓ]. For each 𝑘 ∈ [ℓ] and 𝑗 ∈ [𝑚𝑘 ], there are two cases to consider. If 𝑞0

𝑖,𝑘
· 𝑞𝑘𝑖,𝑗 = 0, then

variable 𝑡𝑘,𝑗 irrelevant to the game, so we may set it to zero without loss of generality. Otherwise, if
𝑞0
𝑖,𝑘
·𝑞𝑘𝑖,𝑗 > 0, then wemay upper-bound 𝑡𝑘,𝑗 by (max𝑖′∈[𝑛] 𝑅𝑖′ )/(𝑞0𝑖,𝑘𝑞

𝑘
𝑖,𝑗 ), for if 𝑡𝑘,𝑗 is greater than this

quantity, then the expected payment from the principal to the agent is more than (max𝑖′∈[𝑛] 𝑅𝑖′ ).
This means the principal’s utility is negative, so the principal would have been better off with
all-zero payments. Thus, in either case, we may upper bound all variables without harming the
optimal objective value.
We next consider CoNI. By similar reasoning, we first claim that we may upper bound each 𝑡𝑘,𝑗

by 0 (in the case where 𝑞0
𝑖,𝑘

· 𝑞𝑘𝑖,𝑗 = 0 for the given action 𝑖) or (max𝑖′∈[𝑛] 𝑅𝑖′ )/(𝑞0𝑖,𝑘𝑞
𝑘
𝑖,𝑗 ) (otherwise).

To see why the latter bound still holds, observe that, if it is violated, then the objective function
contains the term

𝑞0
𝑖,𝑘

(
(1 − 𝑝𝑘 )𝑠𝑘 + 𝑝𝑘

(
𝑑𝑘 + 𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗

))
≥ 𝑞0

𝑖,𝑘

(
(1 − 𝑝𝑘 )𝑡𝑘,𝑗 + 𝑝𝑘𝑞

𝑘
𝑖,𝑗𝑡𝑘,𝑗

)
≥ 𝑞0

𝑖,𝑘
𝑞𝑘𝑖,𝑗𝑡𝑘,𝑗 > max

𝑖′∈[𝑛]
𝑅𝑖′ ,
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where in the first inequality we have used the negative inspection constraint and dropped the
non-negative 𝑑𝑘 term, and in the second inequality we have used the fact that 𝑞𝑘𝑖,𝑗 ≤ 1. So as before,
the principal would have been better off with all-zero payments.

Having established that the 𝑡𝑘,𝑗 variables are bounded, we next proceed to bound the 𝑠𝑘 variables.
Specifically, we claim that it is without harm to the objective value to bound

𝑠𝑘 ≤ max
𝑗∈[𝑚𝑘 ]

𝑈𝑘,𝑗 ,

where𝑈𝑘,𝑗 is our previous upper bound on 𝑡𝑘,𝑗 . Suppose this inequality is violated. If 𝑝𝑘 = 0, then
we may easily again derive that the principal’s payment is more than max𝑖′∈[𝑛] 𝑅𝑖′ . Otherwise,
Lemma B.1 implies we can improve our objective value by locally decreasing 𝑝𝑘 and increasing
several 𝑡𝑘,𝑗 . Since 𝑠𝑘 is strictly larger than the largest 𝑡𝑘,𝑗 , a small enough perturbation will still
respect the negative inspection constraint. □


	Abstract
	Contents
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Model
	2.1 Regularity Assumptions
	2.2 First Best

	3 Computing Optimal Contracts
	3.1 Combined Outcome Space and Distribution
	3.2 Tractability With a Constant Number of Actions
	3.3 Tractability When Both ISOP and Inspection-MLRP Hold
	3.4 Hardness in the General Case

	4 Random Inspection
	4.1 Committed Mixed Inspection
	4.2 Restoring Equilibrium Guarantees
	4.3 Deterministic vs. Optimal Inspection

	5 Discussion
	References
	A Proof of Theorem 3.9 (Hardness of Symmetric-ISOP)
	B Proofs of Theorems 4.1 and 4.3 (Characterization of Equilibrium Existence)

