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Abstract

Alignment with human preferences is commonly framed using universal reward functions, even
though human preferences are inherently heterogeneous. We examine the limits of this homogene-
ity assumption and characterize settings where data from annotators can mitigate these challenges.
We show that aligning to heterogeneous preferences with a single policy is best achieved using
average reward. However, this requires annotator information. We examine improvements un-
der different information settings, focusing on direct alignment methods. We find that minimal
information can yield first-order improvements, while full feedback from each user type leads
to consistent learning of the optimal policy. Surprisingly, however, no sample-efficient consis-
tent direct loss exists in this latter setting. These results reveal a fundamental tension between
consistency and sample efficiency in direct policy alignment.

1 Introduction

Human rewards and preferences are heterogeneous [1, 2, 3, 4, 5]. Despite this, learning from preference
data often bypasses this insight, relying on what we dub the preference homogeneity assumption.
This tension in assumptions is readily apparent in standard human-AI alignment methods—such as
reinforcement learning from human feedback (RLHF) [6, 7, 8] and direct preference optimization
(DPO) [9]—which assume a single reward function captures the interests of the entire population.

We examine the limits of the preference homogeneity assumption when individuals belong to user
types, each characterized by a specific reward function. Recent work has shown that in this setting, the
homogeneity assumption can lead to unexpected behavior [10, 11, 12]. One challenge is that, under
this assumption, learning from human preferences becomes unrealizable, as a single reward function
cannot capture the complexity of population preferences with multiple reward functions [13, 14]. Both
RLHF and DPO rely on maximum likelihood estimation (MLE) to optimize the reward or policy.
Unrealizability implies their likelihood functions cannot fully represent the underlying preference data
distribution, resulting in a nontrivial optimal MLE solution. From another perspective, learning a
universal reward or policy from a heterogeneous population inherently involves an aggregation of
diverse interests, and this aggregation is nontrivial.

In the quest for a single policy that accommodates a heterogeneous population with multiple user
types, we show that the only universal reward yielding a well-defined alignment problem is an affine
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aggregation of the reward functions across user types, with the average reward as a natural choice.
However, standard methods like DPO do not maximize this user-weighted average reward. Building on
insights by Siththaranjan, Laidlaw, and Hadfield-Menell [15], we show that DPO implicitly maximizes
Borda count, which comes with unexpected drawbacks, e.g., the optimal solution depends on how
alternative responses are sampled, even for infinite data.

We observe that learning the average reward over user types—or equivalently, a policy that max-
imizes it—from anonymous data is impossible. Focusing on direct alignment methods, which avoid
explicit reward modeling, we study the benefits of using annotator data for a range of information
settings. We show that improving DPO with a first-order correction to its objective is possible with
minimal annotator information. Specifically, we design an approximate direct alignment method when
each preference data point is paired with another one labeled by the same user.

On the other hand, we find that there are limits to what is possible even with significant annotator
information. In particular, we propose a consistent loss function for direct alignment when we have
feedback on each data point from each user type. But this loss is sample-inefficient, using only data
where all annotator types agree. Surprisingly, we prove that no consistent loss uses the rest of the
data.

In summary, the homogeneity assumption leads to undesirable outcomes when aligning a single AI
agent to diverse preferences. Our analysis shows that there is a limited class of reward aggregation
that results in a valid objective for alignment, with average reward over user types emerging as
the natural candidate. This requires some annotator data, though small amounts of data can yield
significant improvements. Our findings, however, uncover a fundamental tension between consistency
and sample efficiency in direct alignment. To achieve both sample efficiency and consistency, we
must forgo the benefits of direct optimization and instead train individualized reward models, which
inevitably incurs significant training and storage costs.

2 Preliminaries

In the alignment problem, we consider a setting where a reward function r∗ evaluates responses to
queries. Formally, r∗([x,y]) is the reward value of responding y to a query x.

The alignment problem involves designing a policy, which chooses high-reward responses. Let π
denote a policy, defining a probability distribution over possible responses: i.e., given a query x, π
returns y with probability π(y | x). Commonly, we start with a reference policy πref , which serves as
a prior over y [16]. The goal is then to find a new policy π that, for every x, maximizes

Ey∼π(·|x)
[
r∗([x,y])

]
− βDKL

(
π(· | x);πref(· | x)

)
. (1)

We denote the optimal policy by π∗. In practice, πref is often a pretrained language model, and the
regularization parameter β controls deviation from it. Eq. (1) often includes Ex, which is important
in practice but does not affect π∗ in theory.

When r∗ is explicitly known, we can directly apply RL to maximize Eq. (1). In many real-world
settings, however, we do not know r∗ and must estimate it. In such cases, we can collect human
feedback to infer the reward function, after which we can use RL to optimize the policy, commonly
known as RLHF. While RLHF is widely used, tuning this approach can be challenging due to the
inherent complexities of RL. Recently, direct alignment with preferences has gained popularity as
an alternative approach [17, 9, 18]. Unlike RLHF, direct alignment methods bypass explicit reward
modeling to instead train a policy directly from human feedback.

Preference Model. Both direct alignment and RLHF rely on a model of human preference to relate
reward values with observed preference data. Consider the case where responses y1,y2 are generated
for a given query x. We express the probability that y2 is preferred to y1 as

Pr(y2 ≻ y1 | x; r∗) = σ
(
r∗([x,y2])− r∗([x,y1])

)
, (2)
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where σ is a non-decreasing function in [0, 1] [19, 20, 21]. A widely-used choice for σ is the sigmoid
function corresponding to the well-known Bradley-Terry (BT) model [22].

Direct Preference Optimization. Among direct alignment methods, DPO has emerged as the
most widely used approach. It leverages a closed-form solution to Eq. (1), which allows it to link
any reward directly to its optimal policy. Thereby, rather than explicitly estimating the reward,
DPO optimizes a policy whose induced reward best explains the observed preferences. We derive this
connection below:

First, maximizing Eq. (1) has a well-known solution [23]. The optimal policy π∗ takes the form:

π∗(y | x) = 1

Z(x)
πref(y | x) · exp

( 1

β
r∗([x,y])

)
. (3)

Here, Z(x) =
∑

y′ πref(y
′ | x) · exp( 1β r

∗([x,y′])) is the partition function. Eq. (3) establishes a direct
relationship between policy ratios and reward differences:

r∗(y2)− r∗(y1) = β log
π∗(y2)

πref(y2)
− β log

π∗(y1)

πref(y1)
. (4)

Henceforth, we omit x when we can do so without ambiguity. This equation shows that the difference
in rewards between two responses is fully captured by the difference in their policy ratios. Using this

formulation, we can define the induced reward of a policy π by β log π(y)
πref (y)

. The induced reward of π

is the reward for which π is the optimal policy.
The difference in rewards of y1 and y2 is sufficient to express the likelihood of y2 ≻ y1 in Eq. (2).

Using Eq. (4), we can therefore write the likelihood as a function of π∗:

Pr(y2 ≻ y1 | π∗) = σ
(
β log

π∗(y2)

πref(y2)
− β log

π∗(y1)

πref(y1)

)
. (5)

For any policy π, we can define Pr(y2 ≻ y1 | π) similarly. We can then estimate π∗ using MLE: Given
a dataset D with query and response pairs (x,yl,yw), where yw ≻ yl, DPO finds π∗ by maximizing
the log-likelihood ∑

(x,yl,yw)∈D

log Pr(yw ≻ yl | x;π) , (6)

or equivalently, minimizing the cross-entropy loss. Under mild assumptions, MLE is a consistent
estimator of π∗.

3 Problem Formulation

The alignment problem is traditionally framed under a preference homogeneity assumption, where
a single reward is presumed to capture all individual interests. In practice, people’s preferences can
differ significantly. To better capture real-world settings, we formalize preference heterogeneity by
allowing reward functions to vary across user types.

Heterogeneous Preferences. The influential study of “individual choice behavior” by Luce [20]
and other foundational works on human decision-making in mathematical psychology such as Shepard
[24] focus on individual preference models. Luce [20] uses an axiomatic approach to establish the
existence of a value function for each individual that, once normalized, explains the individual’s
choice probabilities. The widely used BT is one such example.

In practice, we often cannot observe individuals’ identities. Therefore, standard approaches in
preference modeling use a single reward function across the entire population. This homogeneity
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assumption makes preference learning unrealizable: Even if a specific model family can explain prefer-
ences of every individual, we cannot ensure that a model from the same family explains population-level
choices. For example, we cannot represent a mixture of BT models with a single BT (we prove this
in Proposition B.1 for completeness).

To account for heterogeneity, we need to define individual rewards. However, learning at scale
with this level of granularity is impractical, especially when working with finite data. Hence, we
group individuals into multiple user types, denoted by U . Individuals with the same type have similar
rewards, but this need not hold across types.

For a given user of type u ∈ U , we denote the corresponding reward function by r∗(·;u). This
function assigns a scalar reward r∗([x,y];u) for every response y to a given query x. We model the
preferences of an individual of type u with

Pr(y2 ≻ y1 | r∗, u) = σ
(
r∗(y2;u)− r∗(y1;u)

)
, (7)

The population-level preferences are therefore given by:

Pr(y2 ≻ y1 | r∗) = Eu

[
σ
(
r∗(y2;u)− r∗(y1;u)

)]
. (8)

The Extended Alignment Problem. Our goal is to find a single policy that can effectively ac-
commodate a heterogeneous population. This is essential when user types are not observable during
inference. Furthermore, a universal policy may be preferable when personalization comes with signif-
icant drawbacks: e.g., cases where prioritizing a broadly accepted notion of truth or safety is more
important than catering to individual preferences [25, 26].

Deriving a universal policy requires aggregation of diverse rewards. As we show next, an affine
combination is the only form of aggregation that guarantees a well-defined problem, i.e., a problem
that yields the same optimal policy for every reward that is consistent with the preference data.

Proposition 3.1. Consider an aggregation f : RU → R. If f
(
{r(y;u)}u∈U

)
induces the same ordering

over y for every reward r consistent with the preferences distribution, then under weak regulatory
assumptions, f must be affine.

See proof on page 20. This result rules out many commonly-used aggregations, such as Max-Min
[27] or Nash social welfare [28]. The expected reward across user types emerges as a natural choice
here. Any other affine combination would weigh people unequally, which requires strong justifications
and is rare in practice.

To summarize, our objective is to maximize

Ey∼π(·|x)
[
Eu

[
r∗([x,y];u)

]]
−βDKL

(
π(· |x);πref(· |x)

)
(9)

for every prompt x. With this extended framework in mind, we next discuss why standard approaches
like RLHF or DPO do not necessarily yield the optimal policy.

4 Implications of Homogeneity Assumption

With heterogeneous preferences, standard RLHF or DPO cannot yield the optimal policy π∗ that
maximizes Eq. (9). If they did, it would also be possible to learn the user-weighted average reward
as the induced reward of π∗. However, as we show in Proposition 5.1 and was previously observed
by Siththaranjan, Laidlaw, and Hadfield-Menell [15] and Procaccia, Schiffer, and Zhang [29], learning
the expected reward from anonymous preferences is impossible.

To explain DPO’s failure in finding π∗, we extend its derivation to the heterogeneous setting in
Section 4.1. This analysis lays the foundations to account for heterogeneity in DPO later on. In
Section 4.2, we show that DPO’s policy aligns with Borda count and, in Section 4.3, highlight its
limitations. While our analysis focuses on DPO, similar insights extend to RLHF by substituting the
policy with its induced reward.
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4.1 Objective is Not the Expected Reward

We follow DPO’s derivation from Section 2 but under heterogeneity. We show the closed-form con-
nection between π∗ and r∗ is no longer sufficient to express the likelihood function. Beginning with
Eq. (9), the optimal policy is

π∗(y) =
1

Z(x)
πref(y) · exp

( 1

β
Eu

[
r∗(y;u)

])
. (10)

Define ∆r∗(y1,y2;u) := r∗(y2;u) − r∗(y1;u). The policy ratios of π∗ are related to the expected
difference in rewards:

Eu

[
∆r∗(y1,y2;u)

]
= β log

π∗(y2)

πref(y2)
− β log

π∗(y1)

πref(y1)
. (11)

In the homogeneous case, ∆r∗ was sufficient to describe the likelihood of y2 ≻ y1. However, with
heterogeneous preferences, Eu[∆r

∗] alone does not suffice to write the likelihood function in Eq. (8).
It is only under the approximation

Eu

[
σ
(
∆r∗(y1,y2;u)

)]
≈ σ

(
Eu

[
∆r∗(y1,y2;u)

])
(12)

that we can write Pr(y2 ≻ y1 | r∗) in terms of policy ratios as in Eq. (5), and minimize DPO’s loss to
find π∗.

4.2 Ordinal Consistency with Borda Count

If DPO were the answer, what would the question be? We partially answer this question by an
adaptation of a result from Siththaranjan, Laidlaw, and Hadfield-Menell [15] which we restate for
completeness. First, define Borda count as follows.

Definition 4.1 (Normalized Borda count). For a prompt x, let D(· | x) denote the distribution of
alternative responses sampled for x. The Normalized Borda Count (NBC) of y at x is the probability
that an annotator with a random type prefers y over an alternative response y′ ∼ D(· | x):

NBC(y | x) := Ey′∼D(·|x)

[
Pr(y ≻ y′ | x; r∗)

]
. (13)

We next show that DPO’s policy ratios are ordinally consistent with the normalized Borda count.

Proposition 4.2. Suppose responses to x in the preference dataset are drawn from D(· | x). In the

limit of many data points, DPO’s induced reward, or equivalently πDPO(·|x)
πref (·|x) , has the same ordering

over responses as NBC(· | x).1

See proof on page 20. Proposition 4.2 also applies to the homogeneous setting. In this case,
however, NBC aligns with r∗. It is worth mentioning that DPO is not the only method consistent
with NBC; identity preference optimization (IPO) [30] uses NBC as its objective. We next highlight
key differences between NBC and the user-weighted expected reward along with DPO’s drawbacks in
practice.

1We can view NBC(y | x) as an aggregation of rewards at y. One can verify that NBC meets the order consistency
condition of Proposition 3.1. However, it uses the reward value at y′ ̸= y to define the aggregated reward at y and thus
does not fall under Proposition 3.1. In fact, this interdependency causes the issues we discuss Section 4.3.
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4.3 Practical Drawbacks

In case of heterogeneous preferences, Borda count can significantly diverge from the user-weighted
expected reward. This is studied under distortion in social choice problems [31]. Notably, NBC in
Eq. (13) depends on D. Therefore, although data collection is irrelevant in defining the optimal policy,
it does affect πDPO.

Next, we illustrate two key differences between π∗ and πDPO using examples. Unless otherwise
stated, we assume D(· | x) and πref(· | x) are uniform, and annotators follow BT. Refer to Appendix A
for further drawbacks of DPO (minority suppression and IIA violation).

Sensitivity to Preference Dataset Distribution. Suppose U = {A,B} and types are equally
represented. Given three possible responses, type A prefers y1 but type B prefers y2:

r∗(y1;A) = 6, r∗(y2;A) = 1, r∗(y3;A) = 4 ,

r∗(y1;B) = 3, r∗(y2;B) = 9, r∗(y3;B) = 4 .

One can verify when D(y1) = D(y2), increasing D(y3) from 0.02 to 0.04 changes πDPO’s preference
from y2 to y1.

DPO’s policy is also sensitive to the preference model. Consider a variation of BT with a tem-
perature of 2: σ2(z) := (1 + exp(−z/2))−1. For the same users and uniform sampling of alternatives,
increasing the temperature from 1 to 2 flips πDPO’s ranking over y1 and y2 while the preference model
has no effect on π∗.

We have to emphasize that the dependence of NBC, and consequently πDPO, on the dataset
sampling distribution D is not due to finite-sample limitations or insufficient offline dataset support.
This issue persists even with complete data coverage and in the limit of infinite data.

Mediocrity Promotion. Consider the task of summarization. Suppose U = {A,B,C} and types
are equally represented. Type A (B) strongly favors longer (shorter) summaries while type C slightly
prefers medium-length ones:

r∗(short;A) = 0, r∗(med;A) = 1, r∗(long;A) = 4 ,

r∗(short;B) = 4, r∗(med;B) = 1, r∗(long;B) = 0 ,

r∗(short;C) = 0, r∗(med;C) = 1, r∗(long;C) = 0 .

In this case, π∗(short) = π∗(long) > π∗(med), however, NBC(short) = NBC(long) < NBC(med).
DPO prefers medium-length summaries not strongly favored by any type.

Real-World Examples. The examples above are not contrived; in real-world cases, NBC can
produce rankings different from π∗ and is sensitive to dataset distribution as extensively studied
under distortion of social choice rules. To show this with a real example, we use Pew Research Center
surveys and analyze a question to 5101 participants: “The next time you purchase a vehicle, how
likely are you to consider purchasing an electric vehicle?” (options from A: very likely to D: not at
all likely). We discuss how we select this question in Appendix D. Responses come from groups of
different political leanings: Republican (45%), Democratic (48%), and Neither/refused (7%).

Assuming the Luce-Shepard model [24] (see Eq. (27)), we estimate the reward for each group
to calculate NBC and a user-weighted average reward. To find NBC, we use two distributions for
alternatives: a uniform distribution DU and a slightly altered distribution Da with 0.2 total variation
distance (TV) from DU . As shown in Fig. 1, NBC (with DU ) ranks option C first despite its mediocrity:
it is the second or third preference for the three groups (see Fig. 8). In contrast, the user-weighted
average reward favors D: the first and second preference for Republicans and the no-lean groups,
respectively. Notably, altering DU to Da flips NBC’s top ranking, highlighting NBC’s sensitivity to
dataset distribution. Similar discrepancies appear in other Pew surveys (see Appendix D).
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Figure 1: “The next time you purchase a vehicle, how likely are you to seriously consider purchasing
an EV?” NBC ranking differs from the user-weighted average reward and is sensitive to the dataset
distribution.

5 Approximate Direct Alignment with
Minimal Annotator Information

The failure of standard alignment methods to find the optimal policy π∗ raises the question of whether
it is even possible to design a method that identifies π∗. The answer is no without annotator informa-
tion. To show this, it suffices to prove that the ranking based on the user-weighted average reward is
not learnable. This implies that π∗ is also not learnable since its induced reward corresponds to this
average reward by definition. We defer the formal definition of learnability to Definition B.2 in the
appendix. Based on this definition, we prove the following impossibility:

Proposition 5.1. If there are at least two alternatives and two user types with a continuous preference
model, the ranking based on the user-weighted expected reward is not learnable without annotator
information.

See proof on page 21. Siththaranjan, Laidlaw, and Hadfield-Menell [15] (Theorem 3.4) presented
a version of Proposition 5.1 in case of two alternatives and two types with σ(∆r) = 1{∆r > 0}.
Procaccia, Schiffer, and Zhang [29] (Theorem 2.2) generalized this to BT. Proposition 5.1 presents a
fresh perspective by generalizing the impossibility to any continuous preference model and presenting
multiple proof strategies, including one that draws on a robust version of Arrow’s theorem [32].

To circumvent the impossibility in Proposition 5.1, we must either relax the requirement of exactly
identifying π∗ or collect some information from the annotators. This section focuses on the former,
and the latter is the subject of Section 6. Next, we introduce an approximate alignment objective,
along with the required information and algorithms to solve it.

5.1 First-Order Approximation

The approximation in Eq. (12) is equivalent to using a zeroth-order Taylor expansion of σ(·) around the
average reward to calculate the likelihood function. To improve it, we extend DPO by incorporating an
additional non-zero term from the expansion, which we call first-order corrected DPO. The derivation
is as follows. Expanding σ

(
∆r∗(y1,y2;u)

)
around ∆r̄∗(y1,y2) := Eu

[
∆r∗(y1,y2;u)

]
up to the second

order gives the below approximation for the likelihood:

Eu

[
σ
(
∆r∗(y1,y2;u)

)]
≈ σ

(
∆r̄∗(y1,y2)

)
+

1

2
σ′′(∆r̄∗(y1,y2)

)
·Varu

[
∆r∗(y1,y2;u)

]
.

(14)
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Note that Eq. (12) is loose when σ is nonlinear and preferences have high variance. We improve
likelihood approximation by incorporating the variance term from Eq. (14). To calculate Eq. (14), we
can substitute ∆r̄∗ in by the difference in log policy ratios (Eq. (11)). We then need to estimate the
variance term. Section 5.3 offers a variance estimator.

Once the variance is estimated by a function V (y1,y2), first-order corrected DPO estimates
Pr(y2 ≻ y1 | π) using

σ
(
h(y1,y2;π)

)
+
α

2
σ′′(h(y1,y2;π)

)
· V (y1,y2) .

Here, α > 0 determines the strength of correction, and

h(y1,y2;π) := β log
π(y2)

πref(y2)
− β log

π(y1)

πref(y1)
(15)

denotes the difference of π’s induced rewards. Given Pr(y2 ≻ y1 | π) and a preference dataset D, we
can maximize the log-likelihood similar to Eq. (6). For numerical stability, we use a stable logarithm

l̃og(z) := log(max{z, ϵ}) in computations. Note that our theory suggests α = 1 while DPO uses
α = 0. Our empirical findings in Section 7.2 show that larger values of α improve the effectiveness of
the correction. We next discuss the estimation of V (y1,y2).

5.2 Impossibility without Annotator Information

If we limit our algorithms to M-estimators, which encompass most practical learning methods, con-
sistent estimation of the variance term is impossible with anonymous data:

Proposition 5.2. There is no M-estimator that can estimate V (x,y1,y2) := Varu
[
∆r∗(x,y1,y2;u)

]
consistently without annotator information.

See proof on page 23. While Proposition 5.1 already implies that we cannot learn π∗ without
annotation information, Proposition 5.2 goes further, showing that even improving DPO with a first-
order approximation is practically impossible. Next, we show how minimal annotation information
can overcome this impossibility.

5.3 Using Paired Preferences

We can get around Proposition 5.2 by collecting additional information on annotators. Specifically,
it suffices to have a dataset D of pairs of preferences in the form {(x,y1,y2, o), (x

′,y′
1,y

′
2, o

′)} where
o = 1{y2 ≻ y1}, o′ = 1{y′

2 ≻ y′
1} are labeled by the same person. Using D, we can train a joint

likelihood model J(x,y1,y2,x
′,y′

1,y
′
2) by minimizing cross-entropy between J and (o ·o′) as the label.

The joint likelihood model consistently estimates

Eu

[
σ
(
∆r∗(x,y1,y2;u)

)
· σ

(
∆r∗(x′,y′

1,y
′
2;u)

)]
.

This is in fact sufficient to estimate the variance term:

Lemma 5.3. Using J1 and J2 as shorthands for J(x,y1,y2,x,y1,y2) and J(x,y1,y2,x,y2,y1), we
can use the following to estimate the variance term:

V (y1,y2) =
J1 − (J1 + J2)

2

σ′
(
∆r̄∗(y1,y2)

)2 . (16)

See proof on page 24. Note that we can substitute ∆r̄∗(y1,y2) in terms of log policy ratios from
Eq. (11). Thus, we have all the elements to calculate V in Eq. (16). This completes our derivation of
first-order corrected DPO.
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6 Direct Alignment with Maximum Annotator Information

Recall that learning the optimal policy from anonymous data is impossible, and an approximate
improvement to DPO requires only minimal information about the annotations. But what if we
collect richer data? Can we design a direct alignment method that consistently learns the optimal
policy π∗? To explore this, we consider a dataset where every sample is labeled by representatives of
all user types. We show that consistent direct alignment is possible using this dataset.

Suppose user types are in a finite set U and equally represented. This assumption makes our
negative results stronger. Consider a rich data collection: for every context and candidate pairs
(x,y1,y2), we collect one preference data point from each user type. Let o ∈ {0, 1}|U| be the vector
that indicates preferences where ou = 1 if user of type u ∈ U has preferred y2, and 0 otherwise. Given
such a dataset D with context, candidates, and preferences represented as (x,y1,y2,o), our goal is to
design a loss function

L(D;π) =
1

|D|
∑

(x,y1,y2,o)∈D

l(x,y1,y2,o;π) (17)

such that argminπ L(D;π) is a consistent estimator of π∗. Designing such a loss is, in fact, pos-
sible. For instance, suppose we only look into the agreement cases in D where o is either all one
or zero. Conditioned on agreement, we will show that the probability of y2 ≻ y1 is proportional
to exp

(∑
u ∆r

∗(y1,y2;u)
)
. We can write this likelihood in terms π∗ directly as we have a correspon-

dence between π∗ and the difference in user-weighted average rewards (see Eq. (11)). We formally
show this possibility through a temperature-adjusted DPO:

Proposition 6.1. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


− log σ

(
|U| · h(y1,y2;π)

)
, o = 1⃗ ,

− log σ
(
|U| · h(y2,y1;π)

)
, o = 0⃗ ,

0 o.w.

Here, h is the difference of π’s induced rewards (Eq. (15)).

See proof on page 24. Consistent loss function is not unique. We give another example in Propo-
sition B.3, and a systematic way to find such losses in Lemma C.2. In both examples, loss functions
reduce to the standard DPO loss when |U| = 1.

While the loss function in Proposition 6.1 benefits from consistency, it only uses samples where
all user types have agreed. In other words, it discards a sample with any disagreement. A natural
question arises: Can we design a loss function that uses all data, including those with disagreement,
while maintaining consistency? Surprisingly, the answer is no:

Theorem 6.2. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . If there are more
than three types of user and the preferences follow BT, any loss L that allows a consistent estimation
of the optimal policy discards samples with disagreement, i.e., those with o /∈ {0,1}.

See proof on page 25. This theorem highlights a tension: To improve efficiency, one must compro-
mise either consistency or direct optimization. The approximate direct alignment method proposed
in Section 5 exemplifies forgoing consistency. Next, we discuss an alternative that favors consistency.

An Indirect Practical Solution: Averaging Personalized Rewards. The tradeoff between
sample efficiency and consistency arises from the requirement for direct optimization. To regain sample
efficiency, we may relax the requirement for direct alignment by training reward models while still
avoiding RL. Specifically, we can learn personalized reward models r(·;u) for different user types u ∈ U ,
calculate a user-weighted expected reward, and use it to relabel a preference dataset. A dataset labeled
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with this average reward makes any direct alignment method applicable and avoids RL. It is both
consistent and sample-efficient when personalized reward learning is feasible, but comes at the cost of
additional training for each user type and memory to store multiple models. Relabeling followed by
DPO is found effective in practice [33].

7 Experiments

We provide empirical evidence for our claims throughout the paper. Section 7.1 extends our sensitivity
example in Section 4.3 to a real-world preference dataset. In Section 7.2, we simulate DPO and our
proposed improvements in a synthetic, small-scale environment where we can visualize and compare
the resulting policies. Finally, we scale this experiment in Section 7.3 by fine-tuning large language
models, illustrating the extent of improvement over DPO. Our code for reproducing the experimental
results is publicly available at https://github.com/arashne/dahp.

7.1 NBC Sensitivity to Sampling Distribution

Recall from Section 4.2 that the common practice of alignment assuming homogeneity results in
ordinal consistency with NBC. Here, we analyze the sensitivity of NBC to the distribution of pairwise
preference datasets in real-world cases by using Pew surveys [34], the same dataset used in Section 4.3.
Specifically, we address two questions: (i) Across the questions in the Pew surveys, how often would
NBC rankings change when the sampling distribution of alternatives varies (while retaining support
over all alternatives)? (ii) How much must the sampling distribution deviate from uniform to alter
NBC rankings?

To answer these questions, we first estimate the reward of each option in each question (see
Section 4.3 and Appendix D for further details). Given the rewards, we can calculate NBC under any
sampling distribution using Eq. (13).

For question (i), among 1519 questions from 19 Pew surveys, NBC rankings change due to changing
the sampling distribution from uniform in 20% of cases (306 questions), with the preferred choice
changing in 136 cases. For question (ii), we find that a modest change in the sampling distribution
suffices; in half the cases, a total variation (TV) distance of less than 0.23 from uniform alters the
rankings. The cumulative distribution function (CDF) of the minimum TV distances required to
change NBC rankings is shown in Fig. 2. Further experimental details are in Appendix D.

0.0 0.5 1.0
TV distance from uniform

0.0

0.5

1.0

CD
F

Figure 2: CDF of the minimum TV distances (from uniform) required to change the NBC order in
the Pew surveys. A change of 0.23 is sufficient to change the order in half the questions.

7.2 Synthetic Experiments

We generalize the discrete environment of Xu et al. [35] with a heterogeneous population. This
environment enables us to visualize the differences between DPO’s policy and the optimal policy,
as well as to evaluate the effectiveness of applying a first-order correction (Section 5) and using a
consistent loss function (Section 6).
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Environment. A prompt x can take a value from 1 to n. There are also only n possible responses
to each x. The reward for responding y to x for a type u is r∗([x, y];u) = Ru(dist(x+u, y)), where dist
is a circular distance, and Ru is a linearly decreasing function floored at zero. In this experiment, we
set n = 40 and consider three equally represented types: U = {−10, 0, 10}. We assume BT annotators.

Since the reward (and thus the policies) depends only on y− x, we can reduce everything to a 1D
representation by setting δ := y − x and averaging over x. For example, for a policy π, define a 1D
policy π(δ) := 1

n

∑
x∈[n] π(x + δ | x), and similarly a 1D reward r∗(δ;u). We also compute standard

errors of these 1D representations across x. Fig. 3 shows our choice of rewards as well as the expected
reward across user types.

20 0 20
0

2

4

r* (
;u

)

u = 10
u = 0

u = 10
[r * ]

Figure 3: Rewards in the synthetic experiments

Policies. For a uniform πref and β = 1, Eq. (10) implies π∗(y | x) ∝ exp
(
1
3

∑
u∈U r

∗([x, y];u)
)
. We

generate a large dataset of preferences under uniform context and alternative distributions and use
the Adam optimizer to minimize the loss for different methods. For the first-order correction of DPO,
we additionally train a joint likelihood model J to estimate the variance term V from Eq. (16). We
use the loss from Proposition 6.1 as our choice for the consistent loss. This loss effectively utilizes less
data compared to other methods since it throws away data points with disagreement. Refer to the
accompanying code for more details.

Results. Fig. 4(a) presents πDPO along with π∗ and NBC. Unlike the optimal policy which prefers δ
around −10 and 10, DPO prefers δ ≈ 0. To a large extent, DPO’s policy is ordinally consistent
with NBC.

Fig. 4(b) shows that increasing correction strength α brings the corrected DPO policy closer
to π∗. In particular, at α = 1, the corrected DPO already favors alternatives with δ ∈ {−10, 10},
consistent with π∗. Furthermore, increasing α makes these alternatives even more favorable. In
the full-information setting, Fig. 4(c) shows that minimizing the consistent loss largely leads to π∗.
Note that minor deviations from theoretical derivations are likely due to limited data and imperfect
optimization in these experiments.

7.3 Semi-Synthetic Experiments

To demonstrate our findings in a realistic setup, we use LoRA [36] to fine-tune Llama-3-8B [37] for both
reward learning and direct alignment on two relabeled variations of the HH-RLHF dataset [38], which
contains user prompts with pairs of chatbot responses. To simulate heterogeneous preferences, we
define three user types with distinct length-based rewards: the first type prefers long, the second type
prefers short, and the third type prefers mid-length prompt response combinations (see Appendix E
for details). Recall from Section 3 that we argued for the average reward across user types as the
proper objective for alignment with heterogeneous preferences. Therefore, we use agreement with the
ground-truth average reward on the test set as the success metric.

First, we use vanilla reward learning and DPO with the homogeneity assumption on an anonymous
preference dataset where every sample is labeled with a random user type. As Fig. 5 shows in blue,
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Figure 4: Policies explicitly accounting for heterogeneity are more consistent with the average reward
across types in a synthetic setup.

their induced order agrees with the average reward in 89.6% and 67.4% of the test cases, respectively.
Next, we use the loss function in Proposition 6.1 on a dataset with maximum annotator information
(Section 6). To create this dataset, for every response pair to a prompt, we sample the preferences
of the three user types until a consensus is reached, using the agreed-upon preference as the label.
As Fig. 5 shows in red, the learned reward and the induced reward by the learned policy agree
with the average reward in 93.9% and 71.7% of the test cases. In summary, explicitly accounting
for heterogeneity increases the agreement with the average reward across user types by 4.3%—an
additional 368 test cases—for both reward learning and direct alignment.
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Reward Learning
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Modeling Heterogeneity Ignoring Heterogeneity

Figure 5: In the presence of preference labels from every user type, our proposed loss function produces
reward models (left) and aligned policies (right) that are more consistent with the average reward
across user types, compared to typical approaches that overlook heterogeneity. Bars show the mean,
and whiskers denote the second and third quartiles across five random seeds.

8 Related Work

The challenge of handling heterogeneous preferences in alignment has been recognized as a significant
problem in alignment research [39, 40, 11, 12]. This problem has attracted considerable attention from
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researchers in the field. Here, we highlight a few representative works that address key directions in
tackling this challenge.

Analysis of DPO. Our study of how standard preference learning methods, such as DPO, behave in
the presence of heterogeneous preferences was inspired by Siththaranjan, Laidlaw, and Hadfield-Menell
[15]’s result, which shows that RLHF aggregates preferences according to a well-known voting rule
called Borda count. Chakraborty et al. [27] highlights the impossibility of aligning with a singular
reward model in RLHF by providing a lower bound on the gap between the optimal policy and
a subpopulation’s optimal policy. Dumoulin et al. [13] adopts a density estimation perspective on
learning from human feedback to illustrate the challenges of preference learning from a population of
annotators with diverse viewpoints. Rosset et al. [41] and Gao et al. [42] point out the limitations
of point-wise reward models in expressing complex, intransitive preferences that may arise due to
the aggregation of diverse preferences. Additionally, frameworks that generalize DPO and unify
different alignment methods have been proposed to analyze current approaches and explore possible
alternatives [43, 44, 30, 45].

Policy Personalization. Many works in the literature have proposed personalization as a solution
to the problem of pluralistic alignment. Poddar et al. [46] propose a latent variable formulation of the
problem and learn rewards and policies conditioned on it. Chen et al. [47] use an ideal point model
for preferences and learn latent spaces representing different preferences. Mapping user information
to user representations, Li, Lipton, and Leqi [48] perform personalized DPO to jointly learn a user
model and a personalized language model. Balepur et al. [49] use abductive reasoning to infer user
personas and train models to tailor responses accordingly. Lee et al. [50] explore the possibility of
steering a language model to align with a user’s intentions through system messages. Dang et al. [51]
extend personalized alignment to text-to-image diffusion models. Jang et al. [52] perform personalized
alignment by decomposing preferences into multiple dimensions. Lau et al. [53] dynamically adapt
the model to individual preferences using in-context learning.

Preference Aggregation. Closely aligned with our goal of serving the entire population with a
single policy, several works have explored ways to aggregate diverse preferences. The rich literature on
social choice theory has proven to be a valuable source of inspiration for studying existing preference
learning approaches and proposing new ones [10, 54, 55, 11, 56]. Drawing insights from social choice
theory, robustness to approximate clones has been proposed as a desirable property of RLHF algo-
rithms, which current methods lack [29]. The Minimax Winner, a concept in preference aggregation,
has inspired the use of the proportion of wins as the reward for a particular trajectory to align a
model through self-play [57]. The impact of heterogeneity on strategic behavior in feedback and its
effects on aggregation are also explored in Park et al. [14], which further examines the use of different
social welfare functions for preference aggregation.

Methods. Solutions proposed to address different formulations of the problem span a wide range of
methods. Siththaranjan, Laidlaw, and Hadfield-Menell [15] estimate a distribution of scores for alter-
natives to account for heterogeneity as hidden context. Chidambaram, Seetharaman, and Syrgkanis
[58] propose an Expectation-Maximization (EM) version of DPO to minimize a notion of worst-case
regret. Multi-objective reinforcement learning [59, 52] and its direct optimization variant [60] have
also been proposed to align with diverse preferences. Wang et al. [61] train a multi-objective reward
model to capture diverse preferences. Zhong et al. [62] use meta-learning to learn diverse preferences
and aggregate them using different social welfare functions. Li et al. [63] design an optimal-transport-
based loss to calibrate their model with the categorical distribution of preferences. Producing a Pareto
front of models has also been explored as a solution. Boldi et al. [64] employ an iterative process to
select solutions, while Rame et al. [65] interpolate the weights of independent networks linearly to
achieve a Pareto-optimal generalization across preferences.
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Empirical Observations. Empirical studies of alignment methods have had a significant impact
on the study of preference learning. Zhang et al. [5] demonstrate the Bradley-Terry model’s failure
to distinguish between unanimous agreement among annotators and the majority opinion in cases of
diverging user preferences. Chen et al. [66] show that RLHF and DPO struggle to improve ranking
accuracy. Zeng et al. [67] study the role of model size and data size in the impact of diversified
human preferences. Bansal, Dang, and Grover [68] demonstrate the significant influence of feedback
protocol choice on alignment evaluation. Santurkar et al. [69] explore the opinions reflected by a
language model, while Bakker et al. [70] investigate a language model’s ability to generate consensus
statements by training it to predict individual preferences. Jiang et al. [71] propose individualistic
alignment to predict an individual’s values, and Zollo et al. [72] introduce the PersonalLLM benchmark
to measure a model’s adaptation to a particular user’s preferences.

9 Discussion and Conclusion

Aligning a single policy to the average reward across user types in a heterogeneous population re-
quires collecting annotator information. This can range from minimal information such as linking two
instances labeled by the same annotator, to richer information like using questionnaires to infer an-
notator types. We improved DPO using the former and introduced a consistent loss when annotators
from all user types label every data point. With additional assumptions, unsupervised methods might
be able to identify annotator types from anonymous datasets [73]. Further research should explore
the additional structures that, when used during data collection, can help with identifiability.

Our results revealed a tension between consistency and sample efficiency in direct alignment.
Thus, an alternative approach—individual reward training and aggregation—may be more practical
for addressing heterogeneity when individual rewards are identifiable.

We use the average reward across user types, as the natural choice among aggregations that define
a well-defined alignment problem from pairwise preferences. However, the choice of aggregation is
inherently a social and policy question rather than purely a technical one. In certain contexts, the
policymaker might prefer to give higher weight to disadvantaged people to address issues such as
inequality. Additionally, in some cases, the very existence of a reward function may be questionable,
requiring objectives to be defined in terms of choice probabilities rather than rewards.

We believe that trained policies should not be used to elicit or represent aggregate preferences, even
when reward aggregation is appropriate and estimation is consistent. While such policies may capture
certain patterns in user behavior, they do not necessarily reflect the underlying interests or values of
the population. In other words, we view the resulting policy as a functional tool for decision-making
rather than a true representation of users’ collective interests.

In summary, while preference heterogeneity is well recognized in mathematical psychology, stan-
dard methods often bypass this complexity. As we showed, accounting for heterogeneity, even when the
goal remains the same as in the homogeneous setting—to derive a single policy—can render common
techniques inefficient or inapplicable. Understanding these limitations calls for new approaches that
explicitly incorporate heterogeneity while effectively balancing efficiency, consistency, and practicality.
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A Additional Drawbacks of DPO under Heterogeneity

Violating Independence of Irrelevant Alternatives (IIA). Suppose U = {A,B} and types are
equally represented. Given two possible responses y1 and y2, type A prefers y1 but type B prefers y2:

r∗(y1;A) = 6, r∗(y2;A) = 1 ,

r∗(y1;B) = 3, r∗(y2;B) = 9 .

A direct calculation shows Eu[r
∗(y2)] > Eu[r

∗(y1)] and NBC(y2) > NBC(y1). So, both π
∗ and πDPO

prefer y2. Let’s consider another possible response y3 which is not the preferred response for any user
type:

r∗(y3;A) = r∗(y3;B) = 2 .

While π∗ still prefers y2 to y1, now NBC(y1) ≈ 0.62 > NBC(y2) ≈ 0.55, so, introducing an irrelevant
alternative can alter DPO’s ranking over existing alternatives.

Tyranny of Majority. Suppose U = {A,B} with type A shaping 90% of the population. Given
two responses y1,y2, type A slightly favors y2 but type B finds y2 offensive:

r∗(y1;A) = 0.5, r∗(y2;A) = 1 ,

r∗(y1;B) = 0.5, r∗(y2;B) = −10 .

In this case, π∗ prefers y1 even though type B is a minority. In contrast, we have NBC(y1) ≈
0.47,NBC(y2) ≈ 0.53, which implies that the majority dominates in DPO.

B Additional Statements

Proposition B.1. There exists a mixture of BTs that a single BT cannot represent.

See proof on page 25.

Definition B.2 (Learnability). Denote by Dr,σ an i.i.d. sampled pairwise preference dataset labeled
by random users with reward r and preference model σ. Let r̄(y) := Eu[r(y;u)]. We say that the
ranking based on r̄ is (weakly) learnable if, for some ϵ > 0, there exists an algorithm with a bounded
sample complexity m, such that for every reward r, when given a dataset Dr,σ of size |Dr,σ| ≥ m(ϵ, r̄),
it outputs a ranking consistent with r̄ with a probability at least ϵ above the chance level.

Proposition B.3. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


−σ

(
h(y1,y2;π)

)
− I

(
σ
(
h(y1,y2;π)

))
, o = 1 ,

−σ
(
h(y2,y1;π)

)
− I

(
σ
(
h(y2,y1;π)

))
, o = 0 ,

0 o.w.

Here, we define I(θ) :=
∫ θ

1

(
1
θ′ − 1

)|U|
dθ′, and h is the difference of π’s induced rewards (Eq. (15)).

See proof on page 26.
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C Missing Proofs

Proposition 3.1. Consider an aggregation f : RU → R. If f
(
{r(y;u)}u∈U

)
induces the same ordering

over y for every reward r consistent with the preferences distribution, then under weak regulatory
assumptions, f must be affine.

Proof of Proposition 3.1. First of all, if a reward function r∗(y;u) can explain the preferences of a user
type u, any other reward function r(y;u) := r∗(y;u) + c(u) induces the same preference distribution:

Pr(y2 ≻ y1 | r;u) = σ
(
r(y2;u)− r(y1;u)

)
= σ

(
r∗(y2;u)− r∗(y1;u)

)
= Pr(y2 ≻ y1 | r∗;u) .

Therefore, r∗ is identifiable up to a bias term that can depend on the context and user type.
Consider a reward aggregation function f : RU → R. Denoting all the rewards from different user

types by a vector r(y) ∈ RU , the aggregation f(r(y)) should induce the same ranking for every r
consistent with (possibly infinite) preference data. Our above argument then implies that f(r∗(y)+c)
should induce a consistent ranking for every c ∈ RU . For a sufficiently large space of alternatives,
where r∗(y) can take any value within a closed interval of R, this is possible only if there exists a
function ψ : RU → R such that

f(r2 + c)− f(r1 + c) = ψ(r2 − r1) ,

for every c, r1, and r2 in RU . Choosing c = −r1, this implies f(r) = f(0) + ψ(r) for every r.
Therefore, we have the following Cauchy functional equation for ψ:

ψ(r +∆) = ψ(r) + ψ(∆) .

Under weak regularity conditions such as the monotonicity or continuity of f , it is well-known that ψ
has to be a linear function. This implies that f has to be an affine function which completes the
proof.

Proposition 4.2. Suppose responses to x in the preference dataset are drawn from D(· | x). In the

limit of many data points, DPO’s induced reward, or equivalently πDPO(·|x)
πref (·|x) , has the same ordering

over responses as NBC(· | x).2

Proof of Proposition 4.2. We start from DPO’s objective in Eq. (6). For notational simplicity, we
assume π(y | x) already contains a normalization by πref(y | x). In the limit of many data points, we
can rewrite DPO’s objective as the minimization of a cross-entropy loss

LDPO(π) := −Ex,y,y′

[
σ̄
(
∆r∗(x,y′,y)

)
· log σ

(
β log

π(y | x)
π(y′ | x)

)
+
(
1− σ̄

(
∆r∗(x,y′,y)

))
· log

(
1− σ

(
β log

π(y | x)
π(y′ | x)

))]
,

where σ̄
(
∆r∗(x,y′,y)

)
is shorthand for Pr(y ≻ y′ | x; r∗) = Eu

[
σ
(
r∗([x,y];u)− r∗([x,y′];u)

)]
. The

minimizer of LDPO should meet the first-order condition: ∂LDPO

∂π(y|x) = 0, for every x and y. Then, a

direct calculation shows that the optimal policy π∗ meets

Ey′∼D(·|x)

[
σ
(
β log

π∗(y | x)
π∗(y′ | x)

)]
− Ey′∼D(·|x)

[
σ̄
(
∆r∗(x,y′,y)

)]
= 0 . (18)

Recognize that the second term is NBC(y | x):

NBC(y | x) = Ey′∼D(·|x)

[
Eu

[
σ
(
r∗([x,y];u)− r∗([x,y′];u)

)]]
.

2We can view NBC(y | x) as an aggregation of rewards at y. One can verify that NBC meets the order consistency
condition of Proposition 3.1. However, it uses the reward value at y′ ̸= y to define the aggregated reward at y and thus
does not fall under Proposition 3.1. In fact, this interdependency causes the issues we discuss Section 4.3.
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In the absence of heterogeneity, we have σ̄ = σ, so setting β log π∗(y | x) = r∗([x,y]) + C(x) for
a normalizing C would solve Eq. (18). In general, we are not aware of any closed-form solution.
However, we can still infer the ordering the optimal policy induces from Eq. (18): Since the first term
is increasing in π∗(y | x), the optimal policy will be monotone in NBC(y | x). This completes the
proof.

Proposition 5.1. If there are at least two alternatives and two user types with a continuous preference
model, the ranking based on the user-weighted expected reward is not learnable without annotator
information.

Proof of Proposition 5.1. We give three related proof strategies. The first strategy works for every
preference model. The second strategy draws on a connection to a robust version of Arrow’s impos-
sibility theorem [32]. The third strategy is inspired by Procaccia, Schiffer, and Zhang [29]. We start
with the notation and definitions specific to this proof.

Notation and Definitions. Consider a fixed prompt x with a set of possible responses Y. Let R
denote a complete ranking over Y, where y2Ry1 indicates whether y2 ≻ y1 or vice versa. A profile
refers to a set of complete rankings. For a heterogeneous reward function r(y;u) and a prior P over
user types U , let Rr̄ be the ranking according to r̄(y) := Eu∼P [r(y;u)].

A pairwise preference dataset D consists of tuples (y1,y2, o), where o := 1{y2 ≻ y1}. We assume
that y1 and y2 are i.i.d. draws. When a random user with a reward function r labels each instance
in the dataset, we denote the resulting dataset by Dr. A pairwise learning algorithm A produces a
complete ranking over Y based on the pairwise preference dataset D.

Proof Strategy 1. Suppose there exists an algorithm A such that for some Y with |Y| ≥ 2, for
any reward function r and any preference dataset Dr with |Dr| ≥ nr̄, it outputs Rr̄ on Y with a
probability of at least 1

|Y|! + ϵ.

Suppose r is a heterogeneous reward function that its expectation induces a complete ranking Rr̄

with no tie. Define a new heterogeneous reward function rγ as follows. Consider a new user type 0 /∈
U . For some γ > 1, let rγ(y;u) = γ r(y;u) when u ̸= 0, and rγ(y; 0) = 0. Define a new user
distribution Pγ(u) := (1− 1

γ )1{u = 0}+ 1
γP(u). It is straightforward to verify r̄γ := Eu∼Pγ

[rγ(y;u)] =
r̄. Therefore, with high probability, A outputs Rr̄γ = Rr̄ from Drγ for every γ > 1:

Pr
(
A(Drγ ) = Rr̄

)
≥ 1

|Y|!
+ ϵ .

As we increase γ, for any continuous preference model σ, the pairwise preference dataset Drγ ap-
proaches a uniform preference dataset Dunif labeled mostly by an indifferent annotator of type u = 0.
So, we have

Pr
(
A(Dunif) = Rr̄

)
≥ 1

|Y|!
+ ϵ . (19)

This is true for every r. For different choices of r, agreements with Rr̄ are disjoint events. Since there
are |Y|! different rankings overall, the pigeonholed principle implies ϵ = 0.

Proof Strategy 2. The proof is by contradiction. Suppose there exists an algorithm A that for
any reward function r and any preference dataset Dr with |Dr| ≥ nr̄, it outputs Rr̄ with a probability
of at least 1 − ϵ. We follow Friedgut, Kalai, and Naor [32] and define a social choice function as
a function that yields an asymmetric relation on the alternatives given a profile. A social choice is
rational if it is an order relation on the alternatives, and is neutral if it is invariant under permutations
of alternatives.

Let Y3 = {y1,y2,y3} be an arbitrary subset of Y with size 3. Next, we construct a neutral social
choice function f acting on Y3 that is independent of irrelevant alternatives (IIA). Here is how we
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design f : Let Pr be a profile of size n ≥ nr̄ at the input, where every R ∈ Pr is an i.i.d. draw
from a Plackett–Luce (PL) ranking model with exp(r) as the weight of the alternatives. Note that
the marginal distribution induced by PL on any two alternatives follows BT. Create three pairwise
preference datasets Dr,12, Dr,23, and Dr,13 where Dr,ij = {yiRyj | R ∈ Pr}. The social function f
applies A to every dataset to obtain a relation over Y3. By construction, f is neutral and IIA.

By assumption, for every internal dataset Dr,ij we have Pr
(
A(Dr,ij) = Rr,ij

)
≥ 1− ϵ, where Rr,ij

is the projection of Rr̄ to only two alternatives yi and yj . Using union bound, we have

Pr
(
f(Pr) = Rr̄

)
≥ 1− 3ϵ .

Similar to strategy 1, we can define a new reward function rγ with r̄γ = r̄ such that the above holds
for every rγ with γ > 1. Then, by increasing γ, the profile Prγ approaches a uniformly distributed
profile Punif . In this case, since Rr̄ is an order relation, we have Pr

(
f is rational

)
≥ 1 − 3ϵ. Then

Theorem 1.3 of Friedgut, Kalai, and Naor [32] implies that for some global constant K,

Pr
(
f is dictatorship

)
≥ 1− 3Kϵ .

On the other hand, we know that the order that Rr̄ induces for different r is not a dictatorship, so,
we have

Pr
(
f is dictatorship

)
< 3ϵ .

Putting these together, we obtain a lower bound on ϵ:

ϵ ≥ 1

3(K + 1)
> 0 .

The rest of the proof is similar for the second and third strategies. We can use a boosting argument
to show that from any weak pairwise learner, we can obtain an arbitrarily strong weak learner corre-
sponding at the cost of collecting a larger dataset. We show this when for the weak learner ϵ < 1

2 but
a weaker condition of choosing Rr̄ better than chance level is sufficient for our argument. Consider
a pairwise preference dataset Dr of size mnr̄. Partition Dr into m equal-size datasets. Let Ri be
the output of A on the ith dataset. Since samples in Dr are independently generated, Ris err inde-
pendently. Construct a meta-algorithm Amaj that outputs the majority winner of Ris. A standard
Hoeffding bound implies

Pr
(
Amaj(Dr) ̸= Rr̄

)
≤ exp

(
− 2(1/2− ϵ)2m

)
.

A simple calculation then shows that for any arbitrarily small ϵ′ > 0, by choosing m = O
(
log( 1

ϵ′ ) (
1
2 −

ϵ)−2
)
the majority-winner algorithm agrees with Rr̄ with probability of at least 1−ϵ′. This contradicts

the lower bound we established earlier and completes the proof.

Proof Strategy 3. The proof is by contradiction and is inspired by Procaccia, Schiffer, and Zhang
[29]. This proof requires at least four different user types. Suppose there are two equally represented
user types U = {A,B} who follow BT. For some arbitrary response y0 ∈ Y and 0 < τ < 1

3 , consider
the following reward function:

rτ (y;u) =


0 , y ̸= y0 ,

σ−1( 23 + τ) = log
2
3−τ
1
3+τ

, y = y0, u = A ,

σ−1( 23 − τ) = log
2
3+τ
1
3−τ

, y = y0, u = B .

(20)

One can see Pr(y0 ≻ y | rτ ) = 2
3 for every y ̸= y0. Therefore, rτ induces the same pairwise preference

distribution for every τ . On the other hand, r̄τ (y0) := Eu[rτ (y0;u)] = log
4
9−τ2

1
9−τ2 > 0 is an increasing

function of τ .
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Consider two arbitrary τ1 and τ2 such that 0 < τ1 < τ2 <
1
3 . Sample a pairwise preference dataset

at follows. Draw a random u and a random permutation ρ over Y. If ρ is not identity, ask an annotator
of type u with reward rτ1(·;u) to label this sample and permute the ranking with ρ. If ρ is identity,
ask an annotator of type u with reward rτ2(·;u) to label. This sampling is equivalent to sampling
from 2 ∗ |Y|! different user types. By symmetry, this pairwise preference dataset is distributionally
equivalent to a dataset Dunif with indifferent preferences. However, our construction implies that y0

has the highest expected reward and other alternatives have similar rewards:

r̄(y) =
1

|Y|

{
r̄τ1(y) , y ̸= y0 ,

r̄τ2(y) , y = y0 .

Denote the ranking based on r̄ above by R0.
Similar to the second strategy, suppose there exists an algorithm A that for any reward function r

and any preference dataset Dr with |Dr| ≥ nr̄, it outputs Rr̄ with a probability of at least 1 − ϵ.
Collect a preference dataset as explained above with at least nr̄ samples. Then, by assumption,

Pr
(
A(Dunif) = R0

)
≥ 1− ϵ .

Note that our choice of y0 could be any of the alternatives. Therefore, the above should be true when
any of the alternatives has the highest expected reward. This implies a lower bound on ϵ:

ϵ ≥ 1− 1

|Y|
> 0 .

The rest of the proof is similar to the second strategy.

Proposition 5.2. There is no M-estimator that can estimate V (x,y1,y2) := Varu
[
∆r∗(x,y1,y2;u)

]
consistently without annotator information.

Proof of Proposition 5.2. Consider a dataset D of context, candidate pairs, and preference represented
as (x,y1,y2, o), where o = 1{y2 ≻ y1}, and y1,y2 are independently drawn. Then consider an M-
estimator

argmin
V

∑
(x,yl,yw)∈D

ρ(x,yl,yw;V ) =
∑

(x,y1,y2,o)∈D

o · ρ(x,y1,y2;V ) + (1− o) · ρ(x,y2,y1;V ) .

Under preference model of Eq. (2), for a reward r, we have E[o | x,y1,y2;u] = σ
(
∆r(x,y1,y2;u)

)
.

In the limit of a large dataset, the M -estimator solves

argmin
V

Ex,y1,y2,o,u

[
o · ρ(x,y1,y2;V ) + (1− o) · ρ(x,y2,y1;V )

]
= Ex,y1,y2,u

[
σ
(
∆r(x,y1,y2;u)

)
· ρ(x,y1,y2;V ) + σ

(
∆r(x,y2,y1;u)

)
· ρ(x,y2,y1;V )

]
(V has no o)

= Ex,y1,y2

[
Eu

[
σ
(
∆r(x,y1,y2;u)

)]
· ρ(x,y1,y2;V ) + Eu

[
σ
(
∆r(x,y2,y1;u)

)]
· ρ(x,y2,y1;V )

]
(V has no u)

= 2Ex,y1,y2

[
Eu

[
σ
(
∆r(x,y1,y2;u)

)]
· ρ(x,y1,y2;V )

]
. (y1,y2 are i.i.d)

Here, we used the fact that V does not depend on u. We also relied on the assumption that y1 and y2

are identically and independently distributed. The above equation suggests that regardless of how ρ is
designed, V (x,y1,y2) can only depend on u’s distribution through Eu

[
σ
(
∆r(x,y1,y2;u)

)]
. Therefore,

no consistent M-estimator can generally estimate Varu
[
∆r(x,y1,y2;u)

]
even with the availability of

infinite preference data.
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Lemma 5.3. Using J1 and J2 as shorthands for J(x,y1,y2,x,y1,y2) and J(x,y1,y2,x,y2,y1), we
can use the following to estimate the variance term:

V (y1,y2) =
J1 − (J1 + J2)

2

σ′
(
∆r̄∗(y1,y2)

)2 . (16)

Proof of Lemma 5.3. First of all, J can give us the likelihood itself:

J(x,y1,y2,x,y1,y2) + J(x,y1,y2,x,y2,y1) = Eu

[
σ
(
∆r∗(y1,y2;u)

)2
+ σ

(
∆r∗(y1,y2;u)

)
· σ

(
∆r∗(y2,y1;u)

)]
= Eu

[
σ
(
∆r∗(y1,y2;u)

)]
.

Here, we used the property σ
(
∆r∗(y2,y1;u)

)
= 1 − σ

(
∆r∗(y1,y2;u)

)
. We also dropped x from the

notation for simplicity. Since J can give us both the first and second moments, we can use it to find
Varu

[
σ
(
∆r∗(x,y1,y2;u)

)]
as follows:

Varu
[
σ
(
∆r∗(x,y1,y2;u)

)]
= Eu

[
σ
(
∆r∗(x,y1,y2;u)

)2]− Eu

[
σ
(
∆r∗(x,y1,y2;u)

)]2
= J(x,y1,y2,x,y1,y2)−

(
J(x,y1,y2,x,y1,y2) + J(x,y1,y2,x,y2,y1)

)2
.

In the last piece of the proof, we connect Varu
[
σ(∆r∗)

]
with Varu

[
∆r∗

]
. The Taylor expansion of

σ(∆r∗) around ∆r̄∗ := Eu[∆r
∗] gives

Varu
[
σ(∆r∗)

]
= Varu

[
σ(∆r̄∗) + σ′(∆r̄∗) · (∆r∗ −∆r̄∗) +O

(
(∆r∗ −∆r̄∗)2

)]
= σ′(∆r̄∗)2 ·Varu

[
∆r∗

]
+O

(
Eu

[
(∆r∗ −∆r̄∗)3

])
.

We can neglect the third-order term in calculations as first-order correction uses up to O
(
Eu

[
(∆r∗ −

∆r̄∗)2
])

in its approximation.

Proposition 6.1. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


− log σ

(
|U| · h(y1,y2;π)

)
, o = 1⃗ ,

− log σ
(
|U| · h(y2,y1;π)

)
, o = 0⃗ ,

0 o.w.

Here, h is the difference of π’s induced rewards (Eq. (15)).

Proof of Proposition 6.1. The proof follows similar steps as the derivation of DPO. First of all, con-
ditioned on agreement, the likelihood of observing y2 ≻ y1 under the BT model is

Pr(y2 ≻ y1 | r∗, agreement) =
Πuσ

(
∆r∗(y1,y2;u)

)
Πuσ

(
∆r∗(y1,y2;u)

)
+Πuσ

(
∆r∗(y2,y1;u)

)
=

exp
(∑

u r
∗(y2;u)

)
exp

(∑
u r

∗(y1;u)
)
+ exp

(∑
u r

∗(y2;u)
)

= σ
(
|U| · Eu

[
∆r∗(y1,y2)

])
.

On the other hand, Eq. (11) allows us to write Eu

[
∆r∗(y1,y2)

]
with difference π’s induced rewards,

i.e., h:
Pr(y2 ≻ y1 | π∗, agreement) = σ

(
h(y1,y2;π

∗)
)
.

We can define the likelihood in this way for every policy π. Then, the proposed loss function is
equivalent to maximizing log-likelihood, which under mild conditions is a consistent estimator for π∗.
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Theorem 6.2. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . If there are more
than three types of user and the preferences follow BT, any loss L that allows a consistent estimation
of the optimal policy discards samples with disagreement, i.e., those with o /∈ {0,1}.

Proof of Theorem 6.2. The proof involves three steps: First, the next lemma shows that any loss
function l in Eq. (17) with the desired consistency property can only depend on π through the

ratio π(y2|x)
π(y1|x) .

Lemma C.1. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . Then, for any l
that gives a consistent estimation of the optimal policy in Eq. (10), there exists an equivalent loss l̃
such that

l
(
x,y1,y2,o;π) = l̃

(
o;h(x,y1,y2;π)

)
,

where h is defined in Eq. (15).

See proof on page 27.
In the second step, we further limit the search space of l̃ (as introduced by Lemma C.1) to those

that meet certain first- and second-order conditions:

Lemma C.2. Any loss l̃ as in Lemma C.1 that leads to a consistent estimation of the optimal policy
meets ∑

o∈{0,1}U

∂l̃

∂θ

(
o; θ∗(z)

)
· χo

(
z
)
= 0 ,

∑
o∈{0,1}U

∂2 l̃

∂θ2
(
o; θ∗(z)

)
· χo

(
z
)
≥ 0 ,

for every z ∈ [0, 1]U . Here, we define

χo(z) :=
∏
u∈U

zouu (1− zu)
1−ou .

and

θ∗(z) :=
1

|U|
∑
u∈U

σ−1(zu) .

See proof on page 28.
Finally, we show that when preferences follow the BT model and there are more than three user

types, all l̃(o; θ) terms corresponding to o /∈ 0,1 do not depend on θ. Therefore, these terms do not
depend on π and can be removed from the loss function, thereby completing the proof.

Lemma C.3. If |U| > 3, for any loss l̃ that meets the first-order condition of Lemma C.2, we have
∂l̃
∂θ (o; θ) = 0 for every o /∈ {0,1}.

See proof on page 29.

Proposition B.1. There exists a mixture of BTs that a single BT cannot represent.

Proof of Proposition B.1. Suppose the pairwise comparison distribution over a set of alternatives
(y1,y2,y3, . . . ) satisfies the Bradley-Terry (BT) model; i.e. Pr(yi ≻ yj) = σ

(
r∗(y2) − r∗(y1)

)
.

Then:

Pr(y1 ≻ y2) Pr(y2 ≻ y3) Pr(y3 ≻ y1) =

∏3
i=1 exp(r

∗(yi))∏3
i=1

(
exp(r∗(yi)) + exp(r∗(y(i+1) mod 3+1))

)
= Pr(y1 ≻ y3) Pr(y3 ≻ y2) Pr(y2 ≻ y1) .
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Now, consider two BT models corresponding to u1 and u2, with a uniform mixture over them. For
the mixture:

Pr(yi ≻ yj) =
Pr(yi ≻ yj | u1) + Pr(yi ≻ yj | u2)

2
.

The probability of cyclic preferences in one direction is given by

Pr(y1 ≻ y2) Pr(y2 ≻ y3) Pr(y3 ≻ y1) =

∑
s∈{1,2}3

∏3
i=1 Pr(yi ≻ y(i+1) mod 3+1 | usi)

8
,

which is not necessarily equal to the probability of the cyclic preferences in the reverse direction:

Pr(y1 ≻ y3) Pr(y3 ≻ y2) Pr(y2 ≻ y1) =

∑
s∈{1,2}3

∏3
i=1 Pr(y(i+1) mod 3+1 ≻ yi | usi)

8
.

To verify this, consider specific examples such as Pr(yi ≻ yj | uk) = exp(rik)

exp(rik)+exp(rjk)
with r1 = (1, 2, 3)

and r2 = (1, 2, 4). More generally, the BT assumption implies that, for a fixed reward r∗, the likelihood
of a set of pairwise comparisons {(yp,1 > yp,2)}p∈[P ] is proportional to

∏
i exp(r

∗(yi))
|{p∈[P ] |yp,1=i}|

and depends only on the number of times each option is preferred in the comparisons. However, as
demonstrated above, this property does not hold for a mixture of BT models.

Proposition B.3. Defining l in Eq. (17) as follows results in a consistent estimation of the optimal
policy when preferences follow the BT model:

l(y1,y2,o;π) =


−σ

(
h(y1,y2;π)

)
− I

(
σ
(
h(y1,y2;π)

))
, o = 1 ,

−σ
(
h(y2,y1;π)

)
− I

(
σ
(
h(y2,y1;π)

))
, o = 0 ,

0 o.w.

Here, we define I(θ) :=
∫ θ

1

(
1
θ′ − 1

)|U|
dθ′, and h is the difference of π’s induced rewards (Eq. (15)).

Proof of Proposition B.3. Recall Pr(ou = 1 | x,y1,y2) = σ
(
∆r∗(x,y1,y2;u)

)
. We use zu(x,y1,y2)

as a shorthand for this quantity and will drop the dependence on (x,y1,y2) whenever it is clear from
the context. We also use s as a shorthand for σ(h). In the limit of a very large dataset, the proposed
loss approaches

L(s) = −Ex,y1,y2

[( ∏
u∈U

zu
)(
s+ I(s)

)
+
( ∏
u∈U

(1− zu)
)(
1− s+ I(1− s)

)]
.

Note that we wrote L as a function of s instead of π since s is the only place that π appears. We first
show that L(s) has a unique global minimizer. To show an s is a global minimizer of L, it suffices to
show that s minimizes the term inside expectation for every (x,y1,y2). Such a minimizer meets the
first-order condition:( ∏

u∈U
zu
)(

1 + (
1

s
− 1)|U|

)
+
( ∏
u∈U

(1− zu)
)(

− 1− (
1

1− s
− 1)|U|

)
= 0 .

Here, we used dI
dθ = ( 1θ −1)|U|. Define w := ( 1−s

s )|U|. Then, the above condition reduces to a quadratic
equation in terms of w:

1 + w −
( ∏
u∈U

(
1

zu
− 1)

)
(1 + w−1) = (1 + w−1)

[
w −

∏
u∈U

(
1

zu
− 1)

]
= 0 .

Solving for w, we obtain

s∗ =
1

1 +
(∏

u∈U (
1
zu

− 1)
) 1

|U|
.
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For the BT model, a direct calculation then shows

s∗(x,y1,y2) = σ
( 1

|U|
∑
u∈U

∆r(x,y1,y2;u)
)
. (21)

In fact, s∗ is the only global minimizer of L(s). This is because L(s) is convex in s:

d2L
ds2

= Ex,y1,y2

[( ∏
u∈U

zu
)
· |U|
s2

(
1

s
− 1)|U|−1 +

( ∏
u∈U

(1− zu)
)
· |U|
(1− s)2

(
1

1− s
− 1)|U|−1

]
≥ 0 .

Finally, one can verify that the policy that results in s∗ (Eq. (21)) is the optimal policy π∗. This
completes the proof that the proposed loss is a consistent loss for π∗.

Lemma C.1. Suppose l in Eq. (17) only depends on (x,y1,y2) through π and πref . Then, for any l
that gives a consistent estimation of the optimal policy in Eq. (10), there exists an equivalent loss l̃
such that

l
(
x,y1,y2,o;π) = l̃

(
o;h(x,y1,y2;π)

)
,

where h is defined in Eq. (15).

Proof of Lemma C.1. Since l only depends on (x,y1,y2) through π and πref , we overload the notation
and use l

(
o;π(y1 | x), π(y2 | x)

)
to denote the loss from (x,y1,y2,o). In the limit of many data

points, L(D;π) converges to

L(π) = Ex,y1,y2,o

[
l
(
o;π(y1 | x), π(y2 | x)

)]
.

Using Pr(ou = 1 | x,y1,y2) = σ
(
∆r∗(x,y1,y2;u)

)
, the tower rule implies

L(π) = Ex,y1,y2

[
Eo

[
l
(
o;π(y1 | x), π(y2 | x)

)
| x,y1,y2

]]
= Ex,y1,y2

[ ∑
o∈{0,1}U

l
(
o;π(y1 | x), π(y2 | x)

)
·
∏
u∈U

σ
(
∆r∗(x,y1,y2;u)

)ou(
1− σ

(
∆r∗(x,y1,y2;u)

))1−ou
]
.

For notational simplicity, let’s define

zu(x,y1,y2) := σ
(
∆r∗(x,y1,y2;u)

)
,

χo(z) :=
∏
u∈U

zouu (1− zu)
1−ou .

Note that χo implicitly depends on (x,y1,y2) through z, which we drop from the notation when it is
clear from the context. Using this notation, we can rewrite the L(π)’s expansion as follows:

L(π) = Ex,y1,y2

[ ∑
o∈{0,1}U

l
(
o;π(y1 | x), π(y2 | x)

)
· χo

(
z(x,y1,y2)

)]
. (22)

Overloading notation, we can always equivalently represent
(
π(y1 | x), π(y2 | x)

)
as

(
π(y1,y2 |

x), π(y2 | y1,y2,x)
)
, that is, with the probability that either of the two responses is chosen and the

probability that the second one is preferred. Therefore, there exists a loss l′ such that

l
(
o;π(y1 | x), π(y2 | x)

)
= l′

(
o;π({y1,y2} | x), π(y2 | {y1,y2},x)

)
.

If π is optimal, π(y2 | y1,y2,x) should also be optimal. Since π(y2 | y1,y2,x) appears in only one
term of the expectation in Eq. (22), we can conclude that

argmin
θ′

∑
o∈{0,1}U

l′
(
o;π∗({y1,y2} | x), θ′

)
· χo

(
z(x,y1,y2)

)
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is the optimal π(y2 | {y1,y2},x) for every optimal π({y1,y2} | x). On the other hand, a property of
the optimal policy π∗ is that

π∗(y2 | {y1,y2},x) =
π∗(y2 | x)
π∗(y1 | x)

=
πref(y2 | x)
πref(y1 | x)

· exp
( 1

β
Eu

[
∆r∗(x,y1,y2;u)

])
.

Therefore, for every optimal policy π∗({y1,y2} | x), we have

πref(y2 | x)
πref(y1 | x)

· exp
( 1

β
Eu

[
∆r∗(x,y1,y2;u)

])
=

argmin
θ′

∑
o∈{0,1}U

l′
(
o;π∗({y1,y2} | x), θ′

)
· χo

(
z(x,y1,y2)

)
.

(23)

Recall from the optimal policy (Eq. (10)) that we can modify the reward function for responses
other than (x,y1,y2) while keeping ∆r∗(x,y1,y2;u) constant. This allows arbitrary changes to
π∗({y1,y2} | x) without altering the rest of Eq. (23). So, we can argue that l′ does not depend
on π({y1,y2} | x) and we drop it from l′ notation. Define a new loss based on l′:

l̃(o; θ) := l′
(
o;
πref(y2 | x)
πref(y1 | x)

· exp
( 1
β
θ
))
.

Note that l̃ implicitly depends on (x,y1,y2) through πref which we dropped from notation. Using l̃,
we can write the original loss l as

l
(
o;π(y1 | x), π(y2 | x)

)
= l′

(
o;π(y2 | {y1,y2},x)

)
= l′

(
o;
π(y2 | x)
π(y1 | x)

)
= l̃

(
o;β log

π(y2 | x)
π(y1 | x)

− β log
πref(y2 | x)
πref(y1 | x)

)
= l̃

(
o;h(x,y1,y2;π)

)
.

This completes the proof.

Lemma C.2. Any loss l̃ as in Lemma C.1 that leads to a consistent estimation of the optimal policy
meets ∑

o∈{0,1}U

∂l̃

∂θ

(
o; θ∗(z)

)
· χo

(
z
)
= 0 ,

∑
o∈{0,1}U

∂2 l̃

∂θ2
(
o; θ∗(z)

)
· χo

(
z
)
≥ 0 ,

for every z ∈ [0, 1]U . Here, we define

χo(z) :=
∏
u∈U

zouu (1− zu)
1−ou .

and

θ∗(z) :=
1

|U|
∑
u∈U

σ−1(zu) .
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Proof of Lemma C.2. We will refer to the proof of Lemma C.1 in this proof. Using l̃ in place of l′ in
Eq. (23), since exp(·) is monotone increasing, we have

Eu

[
∆r∗(x,y1,y2;u)

]
= argmin

θ

∑
o∈{0,1}U

l̃(o; θ) · χo

(
z
)
.

On the other hand, using the fact that user types in U are equiprobable, we can write

Eu

[
∆r∗(x,y1,y2;u)

]
=

1

|U|
∑
u∈U

σ−1(zu) .

Putting these together, it is necessary to have

1

|U|
∑
u∈U

σ−1(zu) = argmin
θ

∑
o∈{0,1}U

l̃(o; θ) · χo

(
z
)

for every z ∈ [0, 1]U . The rest of the proof is straightforward.

Lemma C.3. If |U| > 3, for any loss l̃ that meets the first-order condition of Lemma C.2, we have
∂l̃
∂θ (o; θ) = 0 for every o /∈ {0,1}.

Proof of Lemma C.3. First of all, for the BT model, a direct calculation shows

θ∗(z) :=
1

|U|
∑
u∈U

σ−1(zu) =
1

|U|
log

∏
u∈U

( zu
1− zu

)
=

1

|U|
log

(χ1

χ0

)
.

Since θ∗(z) depends on z only through χ0

χ1
, we denote ∂l̃

∂θ

(
o; θ∗

)
by g

(
o; χ0

χ1

)
. The proof has two steps:

In the first step, we relate g
(
o; χ0

χ1

)
to g

(
o⊕u′

; χ0

χ1

)
, where we define

o⊕u′
:=

{
ou , u ̸= u′ ,

1− ou , u = u′ .

Using this connection, in the second step, we will show that g
(
o; χ0

χ1

)
= 0 for any o ∈ {0,1} when

|U| ≥ 4.

Step 1. Consider any o /∈ {0,1}. When |U| ≥ 3, there exists u′ ∈ U such that o⊕u′
/∈ {0,1}. For

such o and u′, we define two non-empty sets

S1 := {u | u ∈ U , u ̸= u′, ou = 1} ,
S0 := {u | u ∈ U , u ̸= u′, ou = 0} .

We set z such that ∏
u∈S1

zu =
∏
u∈S0

(1− zu) ,

zu → 1− , ∀u ∈ S1 ,

zu → 0+ , ∀u ∈ S0 .

(24)

For this choice of z, asymptotically, we have

χ0

χ1
=

1− zu′

zu′
,

χo = z
ou′
u′ (1− zu′)1−ou′ ,

χo⊕u′ = z
1−ou′
u′ (1− zu′)ou′ ,

χo′ = 0 , ∀o′ /∈ {o,o⊕u′
} .
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Using the above, we can simplify the first-order condition in Lemma C.2 as

g
(
o;

1− zu′

zu′

)
· zou′

u′ (1− zu′)1−ou′ + g
(
o⊕u′

;
1− zu′

zu′

)
· z1−ou′

u′ (1− zu′)ou′ = 0 .

This condition should be held for every zu′ ∈ [0, 1]. Therefore, we can conclude

g(o⊕u′
;α) = −g(o;α) · α1−2ou′ , (25)

for every α ∈ R. This completes the first part of the proof.

Step 2. When o /∈ {0,1} and |U| ≥ 4, there exist distinct user types u′ and u′′ such that none of
o⊕u′

, o⊕u′′
, and o⊕(u′,u′′) are in {0,1}. Here, we used o⊕(u′,u′′) as a shorthand for (o⊕u′

)⊕u′′
. For

such o, u′, and u′′, we define two non-empty sets

S1 := {u | u ∈ U \ {u′, u′′}, ou = 1} ,
S0 := {u | u ∈ U \ {u′, u′′}, ou = 0} .

We set z according to Eq. (24). Then, asymptotically,

χo′ = 0 , ∀o′ /∈ {o,o⊕u′
,o⊕u′′

,o⊕(u′,u′′)} .

Using the above, we can simplify the first-order condition in Lemma C.2 as

g
(
o;
χ0

χ1

)
· χo + g

(
o⊕u′

;
χ0

χ1

)
· χo⊕u′ + g

(
o⊕u′′

;
χ0

χ1

)
· χo⊕u′′ + g

(
o⊕(u′,u′′);

χ0

χ1

)
· χo⊕(u′,u′′) = 0 . (26)

Because of the symmetry of this equation, we can assume without loss of generality that ou′ = 0 and
ou′′ = 1. Therefore, asymptotically, we have

χ0

χ1
=

(1− zu′

zu′

)(1− zu′′

zu′′

)
,

χo = (1− zu′) · zu′′ ,

χo⊕u′ = zu′ · zu′′ ,

χo⊕u′′ = (1− zu′) · (1− zu′′) ,

χo⊕(u′,u′′) = zu′ · (1− zu′′) .

Eq. (25) also implies

g(o⊕u′
;α) = −g(o;α) · α ,

g(o⊕u′′
;α) = −g(o;α) · α−1 ,

g(o⊕(u′,u′′);α) = g(o;α) .

Plugging these into Eq. (26) and simplifying equations, we obtain

g
(
o;

(1− zu′

zu′

)(1− zu′′

zu′′

))
· (2zu′ − 1)(2zu′′ − 1) = 0 .

This equation should be held for every zu′ and zu′′ . By appropriately setting zu′ and zu′′ , we can
conclude that g(o;α) should be zero for every α. This completes this proof.

D PEW Surveys Experiments: Details and Additional Exam-
ples

In this section, we expand on our PEW surveys experiment where we used polling data on key political
and social issues to show: (i) how NBC rankings can differ from those maximizing the average reward;
(ii) How sensitive NBC is to the sampling distribution of the pairwise preference data.
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Data. We use several Pew Research Center surveys, specifically the American Trends Panel surveys
number 35, 52, 79, 83, 99, 109, 111, 112, 114, 119, 120, 121, 126, 127, 128, 129, 130, 131, and 132.
The choices are a mix of recent surveys and those relevant to science, technology, data and AI. Each
survey include questions asked to thousands of participants. We categorize participants by political
party leanings to define types. When processing the questions, we discard responses that are empty,
as well as discarding the option ”Refused”. We note that discarding the option ”Refused” had no
effect on the results as it is not frequently chosen.

Reward Estimation. Although we observe how often each group selects a particular option, we
don’t directly observe respondents’ internal rewards. To estimate this, we apply the Luce-Shepherd
model [24, 20]:

Pr
(
option i is chosen from S

)
=

exp (r(i;u))∑
j∈S exp (r(j;u))

, (27)

where S is the set of options, and r(·;u) is the reward for type u. This allows us to estimate each
option’s reward (up to a constant additive term) for each type. From these estimates and observed
probabilities, we compute both the expected reward and the NBC metric, where in the latter we
assume the uniform probability for alternatives unless specified otherwise.

Sensitivity Experiments. In Section 7.1, we estimate the sensitivity of NBC rankings to the
sampling distribution of pairwise preference data by determining the minimum Total Variation (TV)
distance required, if possible, to alter NBC rankings from that attained under the uniform distribution.

Recall that NBC is defined as:

NBC(y;D) := Ey′∼D(·)
[
Pr(y ≻ y′ | x; r)

]
.

To compute this, we first estimate the reward function r, then evaluate Pr(y ≻ y′; r) for all (y,y′) ∈
Y×Y, where Y is the set of alternatives. Next, consider the feasibility of swapping the ranking induced
by the uniform distribution DU for alternatives yi and yj with a new distribution Da, assuming
NBC(yi;DU ) > NBC(yj ;DU ). This is equivalent to solving the following linear program:

minimize
1

2
1⊤s,

subject to: q > ϵ1,

s ≥ 1

N
1− q,

s ≥ q− 1

N
1,

Piq < Pjq+ δ,

1⊤q = 1,

q > 0.

Here, N = |Y|, and labeling the alternatives as y1, . . . ,yN , we define Pij = Pr(yi ≻ yj ; r), qi =
Da(yi), and Pk as the k-th row of P. The parameter ϵ > 0 ensures support for all alternatives, and
δ > 0 controls the required magnitude of change in NBC beyond what is required for the swap. We
set ϵ = δ = 10−5.

To compute the minimum TV distance, we solve the program for all pairs (i, j) where NBC(yi;DU ) >
NBC(yj ;DU ) and record the smallest objective value. In this analysis, we group respondents by polit-
ical leaning (specifically, the column F PARTYSUM FINAL). We also note that in this analysis we exclude
survey questions with fewer than three options.
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Additional Examples. We highlight some of the examples of discrepancies that we find in some of
the surveys listed above in Figures 6, 7, 8, 9, and 10. We note though that while we indeed find a few
examples of the discrepancy, NBC rankings is actually aligned with average reward rankings in most
cases. One possible explanation for this is that in many questions, the distributions of responses across
types were very similar, suggesting that a homogeneous reward model would have been appropriate,
causing NBC and average reward to align.
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Figure 6: Do you think the plans and policies of the Biden administration will make the country’s
response to the coronavirus outbreak: A: A lot better; B: A little better; C: Not much different; D: A
little worse; E: A lot worse
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Figure 7: How would you rate the job Joe Biden is doing responding to the coronavirus outbreak?
A: Excellent; B: Good; C: Only fair; D: Poor
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(c) Ranking

Figure 8: The next time you purchase a vehicle, how likely are you to seriously consider purchasing
an electric vehicle? A: Very likely; B: Somewhat likely; C: Not too likely; D: Not at all likely; E: I do
not expect to purchase a vehicle
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(c) Ranking

Figure 9: What is your overall opinion of Kamala Harris? A: Very favorable; B: Mostly favorable;
C: Mostly unfavorable; D: Very unfavorable; E: Never heard of this person.
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Figure 10: What is your overall opinion of Joe Biden? A: Very favorable; B: Mostly favorable; C:
Mostly unfavorable; D: Very unfavorable; E: Never heard of this person.
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Figure 11: Reward definition for three user types in semi-synthetic experiments (Section 7.3) based
on the length of prompt response combination. The first user type prefers long prompt response
combinations, the second user type prefers short prompt response combinations, and the third user
type prefers mid-length prompt response combinations. The dashed cyan line shows the average
reward across the three user types.

E Semi-Synthetic Experiment: Fine-Tuning Llama-3-8B on
HH-RLHF

Reward Models. Fig. 11 shows the three distinct rewards we use for the three user types along
with their average. In order to have a reliable ground-truth reward which we can rely on in evaluation,
we define these rewards as functions of the number of tokens in prompt-response combinations.

Anonymous Dataset. We use prompts and response pairs from both helpfulness and harmlessness
subsets of Anthropic’s HH-RLHF dataset [38] and relabel the chosen and rejected responses manually.
We filter for data points in which the sum of the number of tokens in the prompt and the number of
tokens in the longer response do not exceed 512. This leaves us with 160, 800 training and 17, 104 test
data points. For every data point (a prompt with a pair of responses), we sample one of the three
user types uniformly at random. Given the type of user, we sample a preference based on BT [22] to
label the two alternatives.

Dataset with Maximum Annotator Information. We use prompts and response pairs from
both helpfulness and harmlessness subsets of Anthropic’s HH-RLHF dataset [38] and relabel the
chosen and rejected responses manually. We filter for data points in which the sum of the number of
tokens in the prompt and the number of tokens in the longer response do not exceed 512. This leaves
us with 160, 800 training and 17, 104 test data points. For every data point (a prompt with a pair of
responses), we keep sampling BT [22] preferences from all user types until they agree with each other.
Once the consensus is achieved, we stop sampling and use the agreed-upon preference as the label for
this data point.

Fine-Tuning Details. We fine-tune Llama-3-8B [37] base model with LoRA [36]. We fine-tune for
one epoch with a batch size of 2, and use a linear learning rate schedule that starts with 3× 10−5 and
decreases to zero. We use the Adam optimizer with a weight decay of 0.001 [74]. Regarding LoRA’s
hyper-parameters, we use the matrix rank of r = 8, α = 32, and the dropout probability of 0.1.

For direct alignment experiments, we use a uniform reference policy. When ignoring heterogeneity,
we do vanilla DPO over the anonymous dataset. When modeling heterogeneity, we use the loss function
we propose in Proposition 6.1 over the dataset with maximum annotator information. We use the
ordinal agreement between the ground-truth average reward and the reward induced by the aligned
policy as the measure of accuracy.

For the reward learning experiments, we fine-tune the Llama-3-8B as a reward model. When
ignoring heterogeneity, we assume BT and maximize the probability of the anonymous preference
dataset under the learned reward model. When modeling heterogeneity, we use the loss function in
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Table 1: Raw Accuracy (%) in Alignment Experiments

Seed Ignoring Homogeneity Modeling Heterogeneity

0 65.61 66.63
1 67.55 69.55
2 68.77 75.21
3 68.70 72.04
4 66.28 74.95

Table 2: Raw Accuracy (%) in Reward Learning Experiments

Seed Ignoring Homogeneity Modeling Heterogeneity

0 92.33 95.26
1 85.38 92.01
2 88.46 94.6
3 89.69 93.57
4 91.94 93.87

Proposition 6.1 over the dataset with maximum annotator information, but replace h(y1,y2;π) with
the difference in rewards, i.e., r(y2)− r(y1). We use the ordinal agreement between the ground-truth
average reward and the learned reward as the measure of accuracy.

Detailed Results. We conduct every experiment with five different random seeds. Fig. 5 shows
the average, 25th percentile, and 75th percentile of accuracy across the five random seeds. Tables 1
and 2 show the raw accuracy numbers across the five random seeds.
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