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Abstract

Algorithmic predictions are increasingly informing societal resource allocations
by identifying individuals for targeting. Policymakers often build these systems
with the assumption that by gathering more observations on individuals, they
can improve predictive accuracy and, consequently, allocation efficiency. An
overlooked yet consequential aspect of prediction-driven allocations is that of
timing. The planner has to trade off relying on earlier and potentially noisier
predictions to intervene before individuals experience undesirable outcomes, or they
may wait to gather more data to make more precise allocations. We examine this
tension using a simple mathematical model, where the planner collects observations
on individuals to improve predictions over time. We analyze both the ranking
induced by these predictions and optimal resource allocation. We show that though
prediction accuracy may improve over time, counter-intuitively, the average ranking
loss can worsen. As a result, the planner’s ability to improve social welfare can
decline. We identify inequality as a driving factor behind this phenomenon. Our
findings provide a nuanced perspective and challenge the conversational wisdom
that it is preferable to wait for more accurate predictions to ensure the most efficient
allocations.

1 Introduction

Algorithmic predictions are playing a central role in societal resource allocation. Policymakers and
organizations are increasingly turning to algorithmically-driven systems in contexts where resources
are scarce in order to target resources with greater precision [1–6]. Underpinning this growing
reliance on predictions is the assumption that by gathering more observations about individuals over
time, we can improve prediction accuracy and, consequently, targeting and allocation efficiency.

In practice, decisions around the timing of predictions and how they inform allocations reveal
consequential trade-offs that the planner must navigate when designing prediction-driven allocation
systems. On the one hand, the planner may wait to collect extensive data to refine their predictions
before intervening. On the other hand, they can intervene early by relying on coarser data and noisier
predictions. The potential advantage of the latter is that, in a fixed-horizon setting where the planner
wants to prevent individuals from experiencing undesirable outcomes, the “window of opportunity”
for this undesirable outcome to be realized closes. Furthermore, the underlying population changes
with time, as those at greatest risk of experiencing such outcomes are more likely to “fail out” of the
population early if they do not receive resources [7–9]. These factors pull in different directions, and
it is not immediately apparent which factor dominates.

We examine this tension using a simple, versatile model where the planner predicts and intervenes
on a population over time. Modeling a generic resource allocation problem, we assume the planner
has a fixed budget of resources to prevent individuals from experiencing undesirable outcomes, such
as eviction, job loss, poor health, or dropping out of school [4, 5, 10–14].1 At each time step, the
planner collects observations about individuals to improve their estimate of their underlying failure

1We present an extensive discussion on motivating and related work in Appendix B.



probability. The planner then uses the rankings induced by these estimates to allocate resources.
Specifically, we ask:

1. Ranking: How does the ranking loss change as the planner collects more data, but some individu-
als fail out of the population?

2. Allocation: For a given instance of this problem, what is the optimal time to allocate resources?
When is early intervention justified?

We present our results for two allocation problems: First, in a stylized setting, the planner is tasked
with allocating all resources at once but can choose when to do so. We then use this as a building
block to study the case where the planner can allocate resources over time. For both the ranking
and allocation problems, we examine the role of inequality—as measured by the variance in the
underlying failure probabilities—and surface it as a driving factor behind the optimal solutions.

We show that although prediction accuracy improves with more observations, counter-intuitively, this
does not translate into improvements in the average ranking loss. To observe this, we decompose
ranking loss into two counteracting effects: one due to improvements in prediction from additional
observations and the second due to the change in population as individuals fail out of the active pool.
We identify fundamental statistics that drive these two effects. We show that the change-in-population
effect negatively impacts ranking performance and that this effect grows at least proportionally to the
variance in the failure probabilities.

We then address both instantiations of the resource allocation problem. For the setting where
the planner must allocate all resources simultaneously, we derive an upper bound on the optimal
allocation time when targeting is broad, and the pool of active individuals is small. We show that,
in this setting, allocating resources earlier yields greater social welfare. For the setting where the
designer can allocate the budget over time, we design a provably optimal algorithm whose running
time is independent of the number of individuals. Using this algorithm, we then demonstrate that
the optimal solution can concentrate the allocation around any time-point t, depending on the prior
distribution of failure probability among individuals.

Our results provide a nuanced perspective on the role of timing in prediction-driven allocations. In
settings where the planner observes and intervenes on a population over time, they must balance the
desire for more accurate predictions with the necessity for timely interventions. In the presence of
significant inequality within the population, more accurate predictions do not necessarily lead to better
ranking or improved allocations, providing a potential justification for early resource allocation.

2 Model and preliminaries

In this section, we first introduce the notations necessary to present our basic models. We provide
further notation, as needed, throughout the paper and summarize the key notations along with their
interpretation in Table 1.

We model the population over which the planner acts. We assume there is an initial population of
N individuals and consider a finite horizon setting where t ∈ [1, T ].2 Each individual i has some fail-
ure probability pi ∈ [0, 1], which captures their likelihood of dropping out of the population between
time steps. This failure probability remains the same across time in the absence of interventions.
Once an individual fails, they are no longer in the active pool of the population. We denote this active
pool at time t by At and define N t := |At| and nt := N t/N .

Prediction and ranking. At each time step t, the planner observes a signal oti from each active
individual i ∈ At. These signals are analogous to observing loan or rental payments in housing and
credit scoring, exam scores in education, and medical check-ups and tests in clinical settings. In our
working model, these signals are drawn independently from a noisy Bernoulli process

oti ∼ Ber(f(pi))⊕ Ber(ϵ) , (1)

where we flip the Bernoulli random variable’s value with probability ϵ < 1/2. This noise parameter ϵ
controls the level of uncertainty in the observations. The function f : [0, 1]→ [0, 1] is an increasing

2Though we primarily consider the finite horizon setting, we also show that the key insights hold in the
infinite horizon setting.
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function: The more likely an individual is to fail, the more likely we are to observe signals indicating
this possibility. When ϵ = 0, individual i will leave f(pi)/pi observations in expectation. Therefore,
a larger f corresponds to more observations from individuals before they fail.

We note that Ber(f(p)) ⊕ Ber(ϵ) is itself a Bernoulli random variable with effective parameter
p̃(p) := (1 − ϵ)f(p) + (1 − f(p))ϵ. For ϵ < 1/2, this parameter p̃ is increasing in p since f is
increasing. We omit the dependence of p̃(·) on p when it is clear from the context.

The planner is interested in the predictions as a means to rank individuals. Given observations drawn
from Eq. (1) and a prior over the failure probability, we examine how the pairwise ranking risk of the
Bayes optimal ranking, measured on the active population, changes over time.

Targeting and allocation. The planner has a budget B of resources to allocate to individuals in the
active pool. Examples include housing vouchers, food assistance programs, unemployment insurance,
or preventative health screenings. We assume a fixed unit cost in the budget to assign a resource to an
individual at any time t. Once an individual i receives such a resource, they will not fail out of the
population at subsequent time steps.

When the planner allocates a resource to an individual, the utility of this intervention is equivalent to
the probability that this individual would have failed by time T without this resource. That is,

ut(p) := 1− (1− p)T−t . (2)

The optimal allocation maximizes the overall utility over the whole population.

We consider two allocation problems: We first study a stylized version, which we call one-time
allocation, where the planner is tasked with finding the optimal time t to allocate their entire budget
to maximize the total utility. Using this as a building block, we then consider an over-time allocation
problem, where the planner can spend their budget over time. The planner is tasked with finding the
optimal distribution of the budget across time. For both versions, the planner allocates resources to
the individuals with the highest predicted rank at that time.

3 Ranking over time

The planner uses predictions as risk scores to rank individuals, with the goal of prioritizing the most
vulnerable individuals. We are therefore interested in the ranking loss. We decompose the ranking
problem into finding a pairwise ranker that, given observations from two individuals, predicts which
individual has a higher failure probability.

Define yti :=
∑

t′∈[t] o
t′

i as the number of positive observations from an active individual i up to
time t. Let Pt be the posterior over p for an individual active at t and assume that Pt has no point
mass. Proposition E.4 shows that, under the observation model in Eq. (1), ranking individuals based
on their yt is Bayes optimal in terms of the zero-one pairwise ranking loss. Formally, the zero-one
risk of optimal (pairwise) ranking at time t is

Rt = Prt1,2
(
yt2 < yt1 | p2 ≥ p1

)
.

Here, Prt1,2(·) is the probability involving two independently chosen active individuals at t. For a
given p̃, the term yt follows Binomial(t, p̃). For analytic tractability, we approximate this distribution
with N (t · p̃, t · σ̃2), where σ̃2 := p̃ · (1− p̃). The independence of the draws implies that yt

2−yt
1

t |
(p̃1, p̃2) ∼ N

(
p̃2 − p̃1,

σ̃2
12

t

)
, where σ̃2

12 := σ̃2
1 + σ̃2

2 . Denoting the cumulative distribution function
of the standard normal distribution with G(·), it is then straightforward to simplify Rt as

Rt ≈ Et
1,2

[
G
(
− |p̃2 − p̃1|

σ̃12

√
t
)]

.

The dependence of Rt on t appears in two places: inside G(·) and in Et
1,2. The former captures the

effect of gathering more observations over time, and the latter models a change-in-population effect.

We are interested in understanding the change in Rt over one time step: ∆Rt := Rt+1 − Rt. The
sign of ∆Rt determines whether ranking improves over time. Using the above observations, we can
decompose ∆Rt into two parts: one capturing the change of G(·)’s argument and another capturing
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the change of Et
1,2 due to the change of Pt(p1)Pt(p2). We can approximate the former by taking

the derivative with respect to t. To find the latter, since an active individual at time t with a failure
probability of p survives until t+ 1 with a probability of 1− p, we can write

Pt+1(p) =
( 1− p

1− µt

)
Pt(p) , (3)

where µt := Et[p]. This allows us to write Et+1
1,2 [·] = Et

1,2[(1 − p1) (1 − p2) · (·)]/(1 − µt)2. By
approximating G(x) with 1√

2πx
exp(−x2/2), we obtain

∆Rt ≈ Et
1,2

[
1√
2πt

exp
(−(p̃2 − p̃1)

2

2σ̃2
12

t
)
·
{ σ̃12

|p̃2 − p̃1|
[ (1− p1)(1− p2)

(1− µt)2
− 1

]
− |p̃2 − p̃1|

2σ̃12

}]
.

(4)

Intuitively, we can think of the exponential multiplier as a kernel enforcing similarity of p̃1 and p̃2.
Such a filter pushes ∆Rt towards positive values, which means that as the filter becomes stricter
for larger t, the effect of losing vulnerable individuals dominates the gain from collecting more
observations. We formalize this intuition in the following proposition.
Proposition 3.1. Suppose there exists a constant α ∈ (0, 1) bounded away from zero such that
plugging the approximation exp(−x2) ≈ 1{exp(−x2) ≥ α} into Eq. (4) does not change the value
of ∆Rt. Denote the mean and variance of p for an active individual at t by µt := Et[p] and Vart[p],
respectively. If f−1 in Eq. (1) is O(1)-Lipschitz, we can bound ∆Rt as

∆Rt ≥

√
t

2 ln(1/α)
·
{ Vart[p]

(1− µt)2
− O

( 1√
t

)
︸ ︷︷ ︸

loss of vulnerable individuals

− ln(1/α)√
2π t︸ ︷︷ ︸

gain in observations

}
. (5)

See proof on page 19. The proof presents the exact form of O
(
1/
√
t
)
, which we skip here for clarity

of exposition. The lower bound of Eq. (5) decomposes into two terms: the first due to vulnerable
individuals dropping out of the population and the second due to information gain. Factoring the
common terms, the positive term grows proportionally to Vart[p]/(1− µt)2 and the negative term
scales with 1/

√
t. So, a higher variance of p and a larger µt (corresponding to the average failure

probability) contribute positive cost to waiting. On the other hand, the gain from collecting more
observations declines rapidly. Therefore, in the presence of high inequality or a high average failure
probability, the cost of waiting for accurate predictions may not be justified.

4 One-time allocation

In this instantiation of the problem, the planner must select a time t where they allocate their entire
budget. This stylized problem will provide preliminary insights into the allocation problem and
provide a building block for the more general problem studied in Section 5.

Our main observation in this section is that under weak conditions, the optimal allocation time to
maximize an eligibility-based utility function occurs before targeting becomes broad.
Theorem 4.1 (Informal). Assuming a Lipschitz condition on f in the observation model of Eq. (1), if
targeting is broad, deferring the allocation is not justified.

An eligibility-based utility is a lower bound for the utility ut in Eq. (2). It assumes that a fixed
utility will be realized if an individual with ut(p) larger than a threshold u∗ is treated, i.e., ut(p) :=
u∗ · 1{ut(p) ≥ u∗}. Focusing on this notion of utility allows us to establish a clearer connection
between the ranking and allocation problems and to theoretically analyze the optimal allocation.

Roughly speaking, targeting becomes broad when there are more eligible individuals than the
available budget. Targeting may become broad for two particular reasons: As we approach the
horizon, ut decreases, and therefore, even for a fixed population, the pool of eligible individuals
shrinks due to a stricter eligibility requirement. On the other hand, even if the eligibility criterion
is fixed in terms of the minimum value of p, the relative number of eligible individuals above a
threshold decreases as the individuals with a higher p are more likely to fail. We will connect this
latter phenomenon to inequality, as measured by the Gini index of the p values.
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To prove Theorem 4.1, we first derive the expected utility of allocating the budget at time t to
maximize an eligibility-based utility in the limit of many individuals. We then formally define broad
targeting and its relation with inequality. By examining how overall utility changes over time, we
prove that broad targeting justifies early allocation.

4.1 Derivation of the total utility

For a chosen time t, we assume the planner ranks the active individuals at t, denoted by At, and
targets the first B of them. Denote such a ranking by injection rt : [N t]→ At, where, for example,
rt(1) is the most eligible individual from the planner’s view. We assume the planner uses a Bayes
optimal ranking. Assuming the prior over failure probability p has no point mass, Proposition E.4
implies that under the observation model of Eq. (1) the optimal ranking would be to simply rank
individuals in descending order in terms of their number of positive observations thus far, denoted
by yt. In case of a tie, we can assume any arbitrary individual will be chosen.

For a ranking rt, the total utility of allocating budget B at t is
∑B

i=1 u
t
(
prt(i)

)
. To make the

connection between the allocation problem and the ranking problem clearer and to make the solution
analytically easier to follow, we next derive a lower bound for this utility using a threshold function
that assesses eligibility. We then redefine the planner’s problem based on this lower bound.

Eligibility-based utility function. Suppose an individual i is eligible for receiving intervention if
their utility ut(pi) exceeds a certain threshold u∗. This eligibility criterion can define a new utility
function ut(p) := u∗ ·1{ut(p) ≥ u∗} that serves as a lower bound for ut(p). The monotonicity of ut

allows us to simplify ut as an eligibility criterion over p instead of ut. More precisely, excluding
t = T since spending budget at T is not rational (uT (p) = 0), ut(p) of Eq. (2) is increasing in p, and
we can write ut(p) = u∗ · 1{p ≥ ct}, where

ct := (ut)−1(u∗) = 1− (1− u∗)1/(T−t) . (6)
Using ut(p) = u∗ · 1{p ≥ ct} in place of ut, the planner’s problem becomes

argmax
t

Nt∑
i=1

1{prt(i) ≥ ct} · 1{i ≤ B} =
∑
i∈At

1{pi ≥ ct} · 1{(rt)−1(i) ≤ B} . (7)

Substituting rt by the Bayes optimal ranking, we can further upper bound (rt)−1(i) by∑
j∈At 1{ytj ≥ yti}. Plugging this into Eq. (7) further bounds the total utility of the allocation.

We assume the planner maximizes this lower bound, referred to as U t, in order to decide on the
optimal time of intervention.

Total utility in the limit of many individuals. As the number of individuals grows (N → ∞)
while the ratio B/N remains fixed, the planner must solve

argmax
t

U t := N nt Prt1(p1 ≥ ct) · Prt1
(
nt Prt2(y

t
2 ≥ yt1) ≤ B/N | p1 ≥ ct

)
. (8)

In this context, Prti denotes the probability when pi ∼ Pt and yti =
∑

t′∈[t] o
t′

i is drawn according to
the observation model of Eq. (1). Our focus in the following will be on this asymptotic case.

Introducing b̃t and simplifying U t. Define ERt(k) := N t Prt(yt ≥ k) as the expected pessimistic
rank for an individual with k positive observations at t. Note that ERt(k) is a decreasing function
of k. Suppose the budget is neither excessively large, so that B ≤ N , nor very small, ensuring
that it can always treat those individuals who have consistently shown positive observations until t:
B ≥

∑
i∈At 1{yti = t}. Then

b̃t :=
1

t
·min

{
k | ERt(k) ≤ B

}
(9)

is well-defined. Intuitively, b̃t represents the minimum proportion of times an agent must send a
positive signal to be expected among the B targeted individuals. As individuals with higher p̃ are more
likely to fail at each time step, the threshold to be expected among the top B individuals decreases,
so b̃t decreases over time. We also define bt := p̃−1(b̃t) as the failure probability corresponding to b̃t.
Using b̃t, we can further simplify U t in Eq. (8) as

U t = N t Prt(p ≥ ct) · Prt(yt ≥ t · b̃t | p ≥ ct) . (10)
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4.2 Broad targeting

Intuitively, if there are not many eligible individuals with p ≥ ct compared to the available budget,
deferring allocation may not be justified, as it risks losing those already rare eligible ones. We call
this scenario a case of broad targeting. Intuitively, the targeting may become broad due to either a
high value of ct as we approach the horizon or the lack of individuals with a high p. We next formally
define broad targeting and the factors that may constitute it.

First, it is helpful to introduce some shorthand notation that will be used throughout the rest of this
section: Let σ̃(p)2 := p̃(p) · (1− p̃(p)) denote the variance of observations from an individual with
failure probability p, and let c̃t := p̃(ct). With these definitions, broad targeting formally means:
Definition 4.2 (Broad targeting). We say targeting is broad at t if ct ≥ 1/2 and

c̃t − b̃t ≥ σ̃t(ct)√
t

. (11)

Targeting becomes more broad as time progresses: ct, and so c̃t, increases over time while b̃t

decreases. Therefore, the left-hand side of Eq. (11) increases while the right-hand side decreases.
Note that a smaller value of b̃t contributes to a broader targeting. In the extreme case of a negligible b̃t,
the condition for broad targeting reduces to c̃t ≥ σ̃t(ct)/

√
t.

We next show that high inequality necessarily implies a small b̃t. More precisely, denoting the
Gini index of p̃ at time t by G̃t, in Proposition 4.3, we show an upper bound on b̃t that scales with
(1− G̃t)2. Therefore, high inequality at time t implies a small value of b̃t and consequently pushes
the allocation towards a broader targeting regime.
Proposition 4.3. Suppose the probability density function of p̃ at time t is non-increasing. In the
limit of many individuals, denote the (population) Gini index of p̃ at time t by G̃t. If G̃t ≥ 1/3, then
b̃t (Eq. (9)) is bounded from above:

b̃t ≤ 9

8
· N

t

B
· (1− G̃t)2 +

1

t
.

See proof on page 19. Complementing this observation, Proposition E.6 shows that G̃t can only
increase over time. So, an initially high inequality pushes the allocation towards broader targeting at
every subsequent step. We next show allocation should not be postponed if the targeting is broad.

4.3 Optimal intervention time in case of broad targeting

At the heart of Theorem 4.1 is the following lemma, which provides an upper bound on the change
in U t over a single time step. If this change is negative at time t, then the optimal allocation should
occur at t or earlier. The lemma decomposes the change of U t into two counteracting effects: a
positive effect due to gathering more information and a negative effect caused by losing easy-to-
predict vulnerable individuals. Using this decomposition, we will then show that when targeting
becomes broad, the latter negative effect becomes dominant, which will prove Theorem 4.1.

Lemma 4.4 (Decompose and upper bound dUt

dt ). Let t∗ be the earliest time when targeting is
broad according to Definition 4.2 and suppose Pt∗(p) is a non-increasing function of p. By
approximating the binomial distribution with a Gaussian distribution according to the central limit
theorem, for t ≥ t∗, we can bound the change in U t over one step as

1

N t

dU t

dt
≤ Prt(p ≥ ct) ·

{ c̃∗

2σ̃∗ ·
1√
t
g
(√

t/t∗
)

︸ ︷︷ ︸
gain in observations

− G
(√

t/t∗
)
·
[ct − bt

2
+

dct

dt

]
︸ ︷︷ ︸

loss of vulnerable individuals

}
. (12)

Here G(·) and g(·) denote the cumulative distribution and density function of the standard normal
distribution, and c̃∗ and σ̃∗ are shorthands for c̃t

∗
and σ̃(ct

∗
).

See proof on page 20. This theorem suggests that while the marginal gain from extra information
diminishes exponentially, the marginal cost of losing vulnerable individuals from the active pool
consistently increases. We next present the formal statement of Theorem 4.1.
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Theorem 4.1. Let t∗ be the earliest time when targeting is broad according to Definition 4.2 and
suppose Pt∗(p) is a non-increasing function of p. Approximating the binomial distribution with a
Gaussian distribution, if f in Eq. (1) is L-Lipschitz with L ≤

√
2πG(1)
1−2ϵ , then dUt

dt ≤ 0 for any t ≥ t∗.

See proof on page 23.

5 Over-time allocation

We now study the problem of allocating B over time. In general, the state at every time step t can
be described by the number of individuals with yt = k, denoted by N t

k, for k ≤ t. An allocation
policy then specifies how many individuals from each group k will be treated at each state. The policy
and the current state, along with the prior distribution over p, are sufficient to specify a distribution
over the next state. Therefore, we can think of the optimal dynamic allocation problem as a Markov
decision process (MDP). We first characterize the optimal over-time allocation as the optimal policy
for this MDP. Based on this characterization, we then devise an efficient algorithm to find the optimal
allocation. Using this algorithm, we simulate different scenarios and intuitively present the factors
that can lead to early intervention being optimal.

5.1 Characterizing the optimal over-time allocation

Lemma E.2 implies that individuals with a higher yt yield a higher expected utility. Therefore, the
optimal allocation at every time t should treat those with the highest yt. Given a budget of B, a
rollout of such a policy in the described MDP can be specified by the budget spent at each time
step. Therefore, there are

(
B+1
T−1

)
possibilities. In the case of many agents, and so a large B, the

MDP dynamics become almost deterministic due to the law of large numbers, and the optimal policy
converges to a single fixed rollout. However, naively iterating through all

(
B+1
T−1

)
possibilities to find

the optimal rollout is computationally infeasible. The next theorem further characterizes the optimal
allocation in the limit of many individuals.
Theorem 5.1 (Characterize optimal over-time allocation). Consider any utility function ut(p) that is
non-decreasing in p and non-increasing in t. Assuming the prior over failure probability has no point
mass, the optimal over-time allocation in the limit of many individuals follows a specific pattern: For
a non-decreasing sequence q : [T ]→ {0, 1, . . . , T}, and an exceptional time step t̂ ∈ [T ],

• At t ̸= t̂, everyone with yt ≥ q(t) will be treated, and q(t+ 1) ∈ {q(t), q(t) + 1}.

• At t = t̂, everyone with yt > q(t) and some with yt = q(t) will be treated, and q(t + 1) ∈
{q(t) + 1, q(t) + 2}.

See proof on page 23.

5.2 Designing an efficient algorithm

Theorem 5.1 leaves three parameters of the optimal allocation unspecified: t̂, q(·), and the portion of
individuals with yt̂ = q(t̂) to be treated at t̂. We next explain how we can search this space.

There are T possibilities for t̂. A valid sequence q(·) can then be determined by specifying q(1)
and a binary sequence of length T − 1. The tth binary value in this sequence determines whether
q(t+ 1)− q(t) will be: 0 or 1 if t ̸= t̂, or 1 or 2 if t = t̂. Since the maximum yt at each time t is t,
one can verify that for any sequence that starts with q(1) > 2, there exists another sequence with
q(1 ≤ 2) that treats similar individuals. Therefore, there are effectively only three choices for q(1).
Thus far, we counted 3T · 2T−1 possibilities.

Given t̂ and a valid sequence q(·), the allocation at t̂ can be determined based on the available budget.
Let At

k be the set of active individuals at t with yt = k. Denote the proportion of At̂
q(t̂)

who are not

treated by ρ. One can verify that for a fixed t̂ and q(·), both the spending and the expected total utility
are linear in ρ. Therefore, to find ρ, we only need to simulate an allocation for two distinct values of
ρ. This allows us to identify the linear relationship and determine the optimal ρ under the budget
constraint. In Algorithm 1, we do this by simulating the trajectories for ρ = 0 and ρ = 1.
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We use Algorithm 2 to simulate a trajectory. At the heart of this algorithm is the backup formula that
updates N t

k =:= |At
k| based on N t−1

k and N t−1
k−1. Algorithm 2 also requires calculating expectation

with respect to p ∼ Pt(· | yt = k). In our simulation, this posterior has a closed form. However,
in general, since p is a bounded scalar, the posterior calculation can be approximated by a constant
number of operations. The expectation of utility under this posterior will also be used in calculating
the expected total utility in Algorithm 1.

Since simulating a trajectory in Algorithm 2 requires O(T 2) operations, the overall running time of
Algorithm 1 is O(T 3 · 2T ). In practical applications, such as a tenant facing eviction or a student
at risk of dropping out, time steps are typically on the scale of a year or a month. Therefore, T is
usually a small constant. The significant improvement of Algorithm 1 compared to the naive iteration
over

(
B+T−1
T−1

)
possible trajectories is its independence from the number of individuals and B. With

the help of this algorithm, we next simulate the optimal over-time allocation in multiple scenarios.

Algorithm 1 Optimal over-time allocation
1: Uopt ← 0

2: for t̂ = 1 to T and q(·) ∈ valid sequences according to Theorem 5.1 do
Simulate as At̂

q(t̂)
are all treated:

3: {N t
q(t)}

T
t=1 ← SIMULATETRAJ(1, {N1

0 , N
1
1 }, q(·))

4: Emax ← 1{q(1) = 0} ·N1
1 +

∑T
t=2 N

t
q(t) ▷ maximum expenditure

Simulate the difference as if no one in At̂
q(t̂)

was treated:

5: {∆N t
q(t)}

T
t=t̂
← SIMULATETRAJ(t̂, {0, . . . , 0, N t̂

q(t̂)
, 0, . . . , 0}, q(·) + 1{(·) = t̂})

6: ∆E ← N t̂
q(t̂)
−
∑T

t=t̂ ∆N t
q(t) ▷ decrease from the max. expenditure

7: ρ← Emax−B
∆E ▷ proportion of At̂

q(t̂)
to be left untreated

8: if ρ ≥ 1 or ρ ≤ 0 then continue to the next possible q(·) end if

Calculate the total expected utility:
9: for t = 1 to T and k = q(t) do ut

k ← Ep∼Pt(·|yt=k)[u
t(p)] end for

10: U ← (1− ρ)N t̂
q(t̂)

ut̂
q(t̂)

+
∑

t ̸=t̂(N
t
q(t) + ρ∆N t

q(t))u
t
q(t) + 1{q(1) = 0} ·N1

1 u1
1

11: if U > Uopt then Uopt ← U , qopt ← q, t̂opt ← t̂ end if ▷ check for optimality
12: end for
13: return Uopt, qopt, t̂opt

5.3 Simulations

Algorithm 1 enables us to tractably find the optimal over-time allocation in various simulated settings.
Using this algorithm, we next present the effect of the prior distribution of p and the relative budget
size. For simplicity, suppose f(p) = p and ϵ = 0, so p̃ = p. Suppose the failure probabilities of
individuals before entering the process are drawn from P0 = Beta(α, β). Since the Beta distribution
is a conjugate prior for the Binomial distribution, the posterior over failure probability has a closed
form: P(· | yt = k) = Beta(α+ k, β + 2t− k).

Fig. 1 shows the optimal allocation along with the optimal q(·) over T = 5 time steps for three
different prior distributions. One can see that as the population concentrates around smaller values
of p, distinguishing individuals becomes harder, and the call to predict and act becomes less pressing.
Therefore, more of the budget is allocated at later times. Such deferral requires a significant population
close to p = 0 though, and typically early interventions are preferred.

We study the effect of budget size in Fig. 2 (in Appendix D). For a fixed distribution, we change
the relative size of the budget compared to the initial number of individuals. As the figure suggests,
prediction will be postponed only when the relative size of the budget becomes very small. This is
consistent with our observation in Section 4 that deferring prediction and allocation when the budget
is large and targeting is broad cannot be justified.
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(a) P0 = Beta(α = 0.4, β = 1)
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(b) P0 = Beta(α = 0.2, β = 1)
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(c) P0 = Beta(α = 0.1, β = 1)

Figure 1: Optimal over-time allocation for three different priors and a fixed budget. The orange curve
depicts the optimal q(·) and the filled circle corresponds to t = t̂.

6 Discussion

Our work contributes a timing dimension to an emerging body of research on evaluating prediction-
driven allocation. Predictive systems are introduced with the promise of minimizing waste and
increasing efficiency. This existing predisposition, amplified further by the traditional focus on
maximizing predictive accuracy, encourages practices that favor waiting to collect more information
over acting early with noisier signals. Our study presents a simple model that challenges this practice.

Our work opens numerous lines of inquiry. For instance, we assume the planner has a fixed budget B,
corresponding to a fixed unit-cost intervention, that they can allocate all at once or over time. There
are various natural variations worth exploring: For instance, we could consider heterogeneity in cost
across time or different pi values. In the same spirit as Perdomo [15], we can also consider trading
off this B with other interventions or parameters in the problem.

We make generic assumptions about the failure probabilities and collection of observations. In settings
motivating our study, the failure probabilities change over time, favoring increasing inequality in the
absence of interventions. Likewise collecting observations for vulnerable individuals may be more
costly, contain less signal, or may otherwise be undesirable [16]. Finally, though the individuals have
heterogeneous values of pi, we do not assume that they have different “starting points.” Enriching the
model we study to include such insights would only further justify early interventions in the presence
of high inequality, though it would be interesting to examine the extent to which it does so.

Our work introduces a potential lens through which to examine tradeoffs incurred by waiting to
improve prediction accuracy. Our results, on their own, do not endorse early or late allocations for
any specific setting. Each policy problem should be examined empirically, and policymakers must
consider various community, policy, and practical considerations. Indeed, targeting as an effective
means of improving welfare—which has fueled the use of predictive systems—is, itself, an actively
debated policy concept. Nonetheless, we believe that the machine learning community can contribute
to discussions around how to best evaluate predictive systems in such policy settings.
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A Notational conventions

The variables related to an individual i are indexed with a subscript i. The variables related to time t
are indexed with a superscript t. The variables transformed with p̃(·) are denoted with a tilde.

Symbol Notion
t Time step which takes a value from 1 to T
T Horizon
pi Failure probability of individual i
oti Binary observation from an active individual at time t
ϵ Noise on observation model of Eq. (1)
p̃ p̃(p) := (1− ϵ)f(p) + (1− f(p))ϵ

yti Number of positive observations from an active individual i up to time t: yti :=
∑

t′∈[t] o
t′

i

At Set of active individuals at time t
At

k Set of active individuals at t with yt = k: At
k := {i | yti = k}

It Set of individuals treated at t
Āt

k At
k excluding those who will be treated at t: Āt

k := At
k \ It

N Number of initial individuals at time t = 1
N t Number of individuals who made it to time t: N t := |At|
nt Proportion of initial individuals who made it to time t: nt := N t/N
nt
k nt

k := |At
k|/N

n̄t
k n̄t

k := |Āt
k|/N

Pt(·) Posterior over p for an active individual at t
Pt(p | yt = k) Posterior over p given an individual has made it to t and yt = k
Prt(·) Probability measure over active individuals at time t
Prt1,2(·) Probability measure over two independent active individuals 1 and 2 at time t

Prt(yt = k) Probability that an active individual at t has yt = k
Prt(yt = k | p) Likelihood that an active individual with failure probability p shows yt = k
Et[·] Expectation over active individuals at time t
Et
1,2[·] Expectation over two independent active individuals 1 and 2 at time t

µt Mean of failure probability at time t: µt := Et[p]
Vart[·] Variance under Prt(·)
σ̃2
i σ̃2

i := p̃i · (1− p̃i)
σ̃2
12 σ̃2

12 := σ̃2
1 + σ̃2

2
G(·) Cumulative distribution function (CDF) of the standard normal distribution
g(·) Probability density function (PDF) of the standard normal distribution
b̃t See Eq. (9)

Table 1: Glossary
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B Related work

Algorithmic predictions are increasingly employed to identify individuals who are most in need
of limited resources. In many of these applications, the timing of prediction and allocation is
of the utmost importance. Examples of such applications include directing assistance to tenants
at risk of eviction based on their predicted risk, which is informed by their past records [4], or
prioritizing homelessness assistance while considering potential population dynamics, such as housing
stability [6] and the likelihood of re-entry into homelessness [3], or making ICU discharge decisions
based on readmission probability [11], or improve targeting of humanitarian aids [17]. Another
example that aligns with our model is the use of early warning systems to identify students at risk
of dropping out, allowing for timely interventions to support their academic success and retention
within the targeted educational division [13, 14, 5]. For a discussion on the role of machine learning
in clinical medicine in particular, refer to Obermeyer and Emanuel [18].

Our work is closely related to subsidy allocation in the presence of income shocks, as studied by Abebe
et al. [7]. Their model captures a more general dynamic where individuals fail after experiencing
potentially multiple shocks, and their reserve to resist failure increases over time. However, it assumes
a full information setting. In contrast, our focus is on understanding the accumulation of information
through time and the risks associated with waiting for more information.

Welfare maximizing assignment of treatments under a budget constraint is well-studied in economics.
However, it has often focused on estimating a static heterogeneous treatment effect of a fixed
population with finite samples neglecting the dynamic aspect of the problem [19, 20]. A large body
of this literature is concerned with the strategies to estimate the treatment effect from observational
data [21]. In contrast, our simplified model of observations hides the complexity in learning from
observational data and allows us to directly study the often overlooked aspect of timing in making
predictions and allocations.

Historically, policy planning has relied on aggregate data; however, the promise of improved resource
allocation, reduced costs, and more preventative interventions has led to the widespread adoption
of algorithmic systems on an individual basis in governments [22, 23]. Our work contributes to this
discussion, as our insights have direct implications for policy planning in evolving social contexts.
While causal inference can inform policy-making, it is not always necessary, as discussed by Kleinberg
et al. [2]. Our framework falls under the category of prediction policy problems where accurate
predictions and ranking of individuals are sufficient for effective allocation policies. Related to this
topic, Wang et al. [24] raise concerns about the legitimacy of decision-making based on predictive
optimization.

The debate surrounding risk assessment tools has largely centered around their inherently predictive
nature. However, as emphasized by Barabas et al. [25] in the context of the criminal justice system,
the focus of risk assessment should be on guiding interventions rather than merely making predictions.
Our research aligns with this perspective by studying prediction not as an isolated task but as an
integral part of the resource allocation process.

In our framework, we assume observation noise and the number of observations are fixed, so the
planner’s estimate can only improve with further observations over time. However, in a broader
framework, observation frequency and accuracy might change with further investment. Perdomo [15]
asks what the relative value of investing in improving the predictor is compared to expanding access
to resources.

The Moving to Opportunity (MTO) experiment, sponsored by the U.S. Department of Housing
and Urban Development, exemplifies an early intervention aimed at improving life outcomes by
providing low-income families with children living in disadvantaged urban public housing the
opportunity to relocate to less distressed private-market housing communities[26–30]. The mixed
findings of the MTO experiment across different age groups and the contrast between interim and
long-term analyses highlight the crucial role that timing and the considered time horizon play in
determining the intervention’s effect. The differential impact of the MTO experiment by gender
reveals a heterogeneity of effect not captured by our model. Although for some age groups, this
intervention can be considered very early, the positive outcomes on certain aspects demonstrate the
long-lasting influence that early interventions and environmental factors can have over time. In our
model, we consider the extreme case of this when individuals subject to intervention are no longer
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vulnerable at any future time point. Hardt and Kim [31] discuss how these long-lasting effects inform
future predictions.

Another discussion relevant to our setting is the significant role an individual’s initial conditions
play compared to what they can earn over time. These initial conditions may include wealth, family
members, environment, or more abstractly, the probability of failure, as in our model. Shapiro
[32] argues that these initial differences, rather than wage disparities, are the primary drivers of
persistent inequality in the United States. Consistently, Derenoncourt [33] show that while moving to
areas with better economic opportunities theoretically provided improved prospects, local responses
counteracted many of the potential benefits. Such observations are compatible with our simplified
model of population dynamics that abstracts the complexity of an individual’s initial conditions into a
fixed probability of failure, allowing us to isolate the effect of timing on prediction and allocation.
While this abstraction helps us focus on specific aspects, we acknowledge that it does not capture the
full range of dynamics in the real world.

Our discussion is related to decision-focused learning [34–37] in the Operations Research community,
where predictions are informed by their downstream applications. In our work, we employ a simplified
observation model that allows us to consistently obtain a posterior distribution over hidden variables.
This approach circumvents the challenges that could arise from inaccurate or biased predictions
and allows us to shift our focus on the prediction dynamic in the problem. There is also a direct
connection between our Algorithm 1 and decision-focused learning. If we consider prediction as
the ranking of individuals at all time points, then this algorithm effectively identifies the optimal
prediction tailored for the subsequent allocation step.

Our over-time allocation is also related to multi-armed bandit problems with resource constraints
in addition to reward (or utility) generation [38, 39]. Unlike the standard bandit problems, in our
problem observations are available from all individuals and not only those treated. The explo-
ration/exploitation tradeoff then lies in waiting for further information or treating those already
estimated to be vulnerable.
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C Supplementary algorithms

Algorithm 2 Simulate trajectory
1: inputs:
2: t0 : starting time of simulation
3: {N t0

k }
t0
k=0 : number of individuals with yt0 = k for k = 0, . . . , t0

4: q : [T ]→ {0, 1, . . . , T}: a valid non-decreasing sequence according to Theorem 5.1
5: output:
6: {N t

q(t)}
T
t=t0 : number of individuals reaching yt = q(t) for t > t0

7: function SIMULATETRAJ(t0, {N t0
k }

t0
k=0, q(·))

8: for t = t0 + 1 to T do
9: for k = 0 to t do

Find the remaining number of individuals from the previous step:
10: N

t−1

k ← N t−1
k · 1{q(t− 1) > k}, N

t−1

k−1 ← N t−1
k−1 · 1{q(t− 1) > k − 1}

Backup formula:

11:
N t

k ← N
t−1

k Ep∼Pt−1(·|yt−1=k)

[
(1− p)(1− p̃)

]
+N

t−1

k−1 Ep∼Pt−1(·|yt−1=k−1)

[
(1− p) p̃

]
12: end for
13: end for
14: return {N t

q(t)}
T
t=t0

15: end function
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Figure 2: Optimal over-time allocation for three sizes of the budget and a fixed prior. The orange
curve depicts the optimal q(·) and the filled circle corresponds to t = t̂
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E Supplementary statements

E.1 General statements

Lemma E.1 (Bayes optimal ranking). Consider a statistical model P = {pθ : θ ∈ Θ = [a, b]}
that induces a family of continuous probability distributions over a sample space X . Assume
P has a univariant sufficient statistics T : X → R. Consider samples drawn independently
from two probability distributions with distinct parameters: X1 ∼ pθ1 , X2 ∼ pθ2 . For a ranking
function δ : X × X → {−1, 1}, define the ranking loss as

loss((θ1, θ2); δ(x1, x2)) := 1{δ(x1, x2)(θ2 − θ1) < 0} .

Consider Θ1 and Θ2 independently drawn from a prior P over Θ. If for any θ2 ≥ θ1,

T (x2) ≥ T (x1) ⇐⇒ pθ1(x1) pθ2(x2) ≥ pθ1(x2) pθ2(x1) , a.e. , (13)

then for any choice of P that has no point mass, the Bayes optimal ranking rule is δ∗(x1, x2) =
χ{T (x2) ≥ T (x1)}.

Proof. For Θ1 and Θ2 independently drawn from P , the Bayes risk of ranking is

R(P⊗2; δ) = EΘ1∼P
Θ2∼P

[
EX1∼pΘ1
X2∼pΘ2

[
loss((Θ1,Θ2); δ(X1, X2))

]]
.

The independence also allows us to decompose the posterior over Θ1 and Θ2 given X1 = x1

and X2 = x2 as P(Θ1 | x1)P(Θ2 | x2). It is well-known that the minimizer of the Bayes risk is

δ∗(x1, x2) = argmin
δ(·,·)

R(P⊗2; δ) ∈ argmin
δ∈{−1,1}

EΘ1∼P(·|x1)
Θ2∼P(·|x2)

[
loss((Θ1,Θ2); δ) | X1 = x1, X2 = x2

]
.

Plugging the ranking loss into this, we can further simplify the conditional expectation and obtain

δ∗(x1, x2) ∈ argmin
δ∈{−1,1}

EΘ1∼P(·|x1)
Θ2∼P(·|x2)

[
loss((Θ1,Θ2); δ) | x1, x2

]
= argmin

δ∈{−1,1}

1 + δ

2
Pr(Θ1 > Θ2 | x1, x2) +

1− δ

2
Pr(Θ1 ≤ Θ2 | x1, x2)

= argmin
δ∈{−1,1}

δ
[
Pr(Θ1 > Θ2 | x1, x2)− Pr(Θ1 ≤ Θ2 | x1, x2)

]
= sign

(
Pr(Θ1 ≤ Θ2 | x1, x2)− Pr(Θ1 > Θ2 | x1, x2)

)
.

Now, using a change of variable trick and the Bayes’ rule, we have

Pr(Θ1 ≤ Θ2 | x1, x2)− Pr(Θ1 > Θ2 | x1, x2)

=

∫ b

a

∫ θ2

a

P(θ1 | x1)P(θ2 | x2) dθ1 dθ2 −
∫ b

a

∫ θ1

a

P(θ1 | x1)P(θ2 | x2) dθ2 dθ1

=

∫ b

a

∫ θ2

a

[
P(θ1 | x1)P(θ2 | x2)− P(θ2 | x1)P(θ1 | x2)

]
dθ1 dθ2

=

∫ b

a

∫ θ2

a

P(θ1)P(θ2)
Z(x1, x2)

[
pθ1(x1) pθ2(x2)− pθ1(x2) pθ2(x1)

]
dθ1 dθ2 ,

where Z(x1, x2) is the partition function. The integral bound enforces θ2 ≥ θ1. Then if the condition
of Eq. (13) holds, we can conclude

sign
(
Pr(Θ1 ≤ Θ2 | x1, x2)− Pr(Θ1 > Θ2 | x1, x2)

)
= sign(T (x2)− T (x1)) .

Lemma E.2. If

1. for every t and k ≤ t, Prt(yt=k+1|p)
Prt(yt=k|p) is a non-decreasing continuous function of p, and

2. for every t, the utility ut(p) is a non-decreasing function of p,
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then Ep∼Pt(·|yt=k+1)[u
t(p)] ≥ Ep∼Pt(·|yt=k)[u

t(p)].

Proof. Using the Bayes’ rule of Pt(p | yt = k) = Pt(p) Prt(yt = k | p)/Prt(yt = k), we can
write Pt(p | yt = k + 1) as an update to Pt(p | yt = k):

Pt(p | yt = k + 1) = Pt(p | yt = k)
Prt(yt = k + 1 | p)
Prt(yt = k | p)

Prt(yt = k)

Prt(yt = k + 1)
.

Define σ(p) := Pt(p | yt = k + 1)/Pt(p | yt = k). The above update and a non-decreasing
Prt(yt=k+1|p)
Prt(yt=k|p) imply σ(p) is a non-decreasing continuous function. Since

∫ 1

0
Pt(p | yt = k) dp =∫ 1

0
Pt(p | yt = k)σ(p) dp = 1, and σ is continuous, there should exist a critical value p∗ such

that σ(p) ≥ 1 for p ≥ p∗, and σ(p) ≤ 1 for p < p∗. Using this critical value to decompose the
expectations and the fact that ut(·) is increasing, we obtain

Ep∼Pt(·|yt=k+1)[u
t(p)]− Ep∼Pt(·|yt=k)[u

t(p)]

=

∫ 1

0

ut(p)Pt(p | yt = k) (σ(p)− 1) dp

=

∫ 1

p∗
ut(p)Pt(p | yt = k) (σ(p)− 1) dp−

∫ p∗

0

ut(p)Pt(p | yt = k) (1− σ(p)) dp

≥ ut(p∗)

∫ 1

p∗
Pt(p | yt = k) (σ(p)− 1) dp− ut(p∗)

∫ p∗

0

Pt(p | yt = k) (1− σ(p)) dp = 0 .

Lemma E.3. Consider two non-increasing functions a : R → [0, 1] and b : R → [0, 1]. If∫∞
−∞ b(x) dx is finite and non-zero, the following inequality always holds:(∫ ∞

−∞
b(x)2 dx

)
·
(∫ ∞

−∞
a(x) b(x) dx

)
≥

(∫ ∞

−∞
a(x)2 b(x)2 dx

)
·
(∫ ∞

−∞
b(x) dx

)
. (14)

Proof. Define the difference between the left-hand side and the right-hand side of the inequality
given in Eq. (14) as ∆. For simplicity, consider integrals as a discrete sum with a step size of δ.
Increasing the value of a(x′) would change the value of ∆ by

1

δ

d∆

da(x′)
= b(x′) ·

∫ ∞

−∞
b(x)2 dx− 2a(x′) b(x′)2 ·

∫ ∞

−∞
b(x) dx .

This implies that for any x′ such that b(x′) > 0, increasing a(x′) will decrease ∆ if and only if

a(x′) b(x′) >
1

2

∫∞
−∞ b(x)2 dx∫∞
−∞ b(x) dx

.

Since both a and b are non-increasing non-negative functions, their multiplication is also a non-
increasing non-negative function. Therefore, increasing a(x′) will decrease ∆ if and only if x′ is
larger than a critical value x∗. The non-increasing constraint on a then implies that for a fixed b, the
minimum value of ∆ corresponds to a constant function a(x) = a0. In this case,

∆ =
(
a0 − a20

)
·
(∫ ∞

−∞
b(x)2 dx

)
·
(∫ ∞

−∞
b(x) dx

)
For a0 ∈ [0, 1], the above equation is always greater than or equal to zero, which completes the
proof.

E.2 Statements specific to the observation model in Eq. (1)

Proposition E.4. Under the observation model in Eq. (1), for any prior P over p that has no point
mass, ranking individuals based on their yt is Bayes optimal.
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Proof. At any time t, define the statistical model P =
{
pθ = (Ber(f(θ))⊕ Ber(ϵ))⊗t : θ ∈ [0, 1]

}
where we can think of the model parameter θ as the failure probability p. All the observations from
individual i until t can be interpreted as a sample from a model in P : X = [o1, . . . , ot] ∼ pθ.

Recall that Ber(f(θ))⊕Ber(ϵ) is itself a Bernoulli random variable with effective parameter θ̃ = p̃(θ).
So, it is straightforward to see yt =

∑
t′∈[t] o

t is a sufficient statistic for P and pθ(x) = θ̃y
t

(1−θ̃)t−yt

.

The strictly increasing property of p̃ also implies that θ2 ≥ θ1 ⇐⇒ θ̃2 ≥ θ̃1.

For θ2 ≥ θ1, plugging pθ into the condition of Eq. (13) gives

pθ1(x1) pθ2(x2) ≥ pθ1(x2) pθ2(x1) ⇐⇒
( θ̃2
θ̃1

1− θ̃1

1− θ̃2

)yt
2−yt

1

≥ 1 , a.e.

Since for 1 > θ̃2 ≥ θ̃1 > 0, we have θ̃2
θ̃1

1−θ̃1
1−θ̃2

≥ 1, we can conclude

pθ1(x1) pθ2(x2) ≥ pθ1(x2) pθ2(x1) ⇐⇒ yt2 ≥ yt1 , a.e.

Therefore, P meets the sufficient condition given in Eq. (13) of Lemma E.1, and ranking based on its
sufficient statistic yt is Bayes optimal.

Proposition E.5. Under the observation model in Eq. (1), for any utility function that is non-
decreasing in p, we have

Ep∼Pt(·|yt=k+1)[u
t(p)] ≥ Ep∼Pt(·|yt=k)[u

t(p)] .

Proof. Recall that Ber(f(p))⊕Ber(ϵ) is itself a Bernoulli random variable with effective parameter p̃.
Under this parameterization, the likelihood Prt(yt = k | p) has a closed-form of

(
t
k

)
p̃k(1− p̃)t−k.

Plugging this into the likelihood ratio, we obtain

Prt(yt = k + 1 | p)
Prt(yt = k | p)

=
p̃

1− p̃

( t− k

k + 1

)
.

This is a non-decreasing function of p̃ and, consequently, of p, for every k ≤ t. Using Lemma E.2,
this non-decreasing continuous likelihood ratio along with the non-decreasing utility function is
sufficient to complete the proof .

Proposition E.6. Under the observation model of Eq. (1), suppose the probability density function
of p̃ at time t is non-increasing and Prt(p̃ > 0) > 0. Denote the Gini index of p̃ at time t by G̃t. In
the limit of many individuals, we have

G̃t+1 ≥ G̃t .

Proof. Denote the cumulative distribution function of p and p̃ at time t by F t and F̃ t, respectively.
Using the update rule of Pt from Eq. (3), we can write an update rule for F t:

1−F t+1(p′) =

∫ 1

p′

( 1− p

1− µt

)
Pt(p) dp = (1−F t(p′)) · 1− Et[p | p > p′]

1− µt
.

Define a(p′) := 1−Et[p|p>p′]
1−µt . Note that a(p′) is a non-increasing function, implying that (1−γF (p′))

decreases at a higher rate for larger values of p′.

Since p̃(·) is an increasing function, its inverse is well-defined, and ã := a ◦ p̃−1 is also a non-
increasing function. It also allows us to write F̃ t(p̃′) = F t(p̃−1(p̃′)). Then by plugging p′ = p̃−1(p̃′)

into the update rule of F t, we obtain an update for F̃ t:

1− F̃ t+1(p̃′) = (1− F̃ t(p̃′)) · ã(p̃′) .

The Gini coefficient of p̃ at t can be calculated by

G̃t = 1−
∫ 1

0
(1− F̃ t(p̃))2 dp̃∫ 1

0
(1− F̃ t(p̃)) dp̃

.
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Note that Prt(p̃ > 0) > 0 implies G̃t is well-defined. Moreover, a non-increasing density function
for p̃ implies µt < 1, so ã and consequently G̃t+1 are well-defined. Using the update rule of F̃ t, the
change of G̃t over time is

G̃t+1−G̃t =

∫ 1

0
(1− F̃ t(p̃)) · ã(p̃) dp̃ ·

∫ 1

0
(1− F̃ t(p̃))2 dp̃−

∫ 1

0
(1− F̃ t(p̃)) dp̃ ·

∫ 1

0
(1− F̃ t(p̃))2 · ã(p̃)2 dp̃∫ 1

0
(1− F̃ t(p̃)) dp̃ ·

∫ 1

0
(1− F̃ t(p̃)) · ã(p̃) dp̃

.

Since ã(p̃) and (1− F̃ t(p̃)) are both non-increasing functions of p̃, Lemma E.3 implies G̃t+1 ≥ G̃t.

F Missing proofs

Proof of Proposition 3.1. Using the step function approximation, the exponential multiplier in Eq. (4)
is only non-zero if

|p̃2 − p̃1|
σ̃12

≤
√

2 ln(1/α)

t
.

This implies the following lower bound on ∆Rt:

∆Rt ≥

√
t

2 ln(1/α)
· Et

1,2

[ (1− p1)(1− p2)

(1− µt)2
− 1 | |p̃2 − p̃1|

σ̃12
≤

√
2 ln(1/α)

t

]
−

√
ln(1/α)

4πt
.

Suppose f−1 is L−1-Lipschitz continuous. Using this and σ̃2
12 ≤ 1/2, we can further bound ∆Rt by

∆Rt ≥

√
t

2 ln(1/α)
· Et

[ (1− p)(1− p− L−1

1−2ϵ

√
2 ln(1/α)

t )

(1− µt)2
− 1

]
−

√
ln(1/α)

4πt

=

√
t

2 ln(1/α)
·
Vart[p]− (1− µt) L−1

1−2ϵ

√
2 ln(1/α)

t

(1− µt)2
−
√

ln(1/α)

4πt
.

Proof of Proposition 4.3. Denote the cumulative distribution function of p̃ at time t by F̃ (we drop
dependency on t for brevity). A non-increasing density function requires a concave F̃ . The Gini
coefficient of p̃ at t can be calculated by

G̃t = 1−
∫ 1

0
(1− F̃(p̃))2 dp̃∫ 1

0
(1− F̃(p̃)) dp̃

.

In order to upper bound b̃t, we set an upper bound on ERt and use this upper bound in the definition
of b̃t (Eq. (9)). Consider the following upper bound on ERt:

ERt(k) = N t Prt(yt ≥ k) ≤ N t Et
[yt
k

]
= N t t

k
· Et[p̃] .

To further find a distribution-agnostic bound on ERt(k), regardless of k, we solve

max
F̃

Et[p̃] =

∫ 1

0

(1− F̃(p̃)) dp̃

s.t. cG(F̃) := 1−
∫ 1

0
(1− F̃(p̃))2 dp̃∫ 1

0
(1− F̃(p̃)) dp̃

≥ G̃t , (Relaxed Gini index constraint)

F̃ is concave .
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Next, we show that the optimal solution to this problem follows a specific form. Suppose F̃∗ is the
maximizer of the above problem. Consider integrals in the objective and the definition of cG as the
limit of a discrete sum with step size δ → 0. If there exist 1 > p̃2 > p̃1 > 0 such that

F̃∗(p̃2) > (F̃∗(p̃2 + δ) + F̃∗(p̃2 − δ))/2 ,

F̃∗(p̃1) > (F̃∗(p̃1 + δ) + F̃∗(p̃1 − δ))/2 ,

then define a new solution

F̃(p̃) :=


F̃∗(p̃)− h , p̃ = p̃2 ,

F̃∗(p̃) + h , p̃ = p̃1 ,

F̃∗(p̃) o.w.

where h→+ 0. This solution preserves concavity while maintaining a similar value for the objective.
Moreover, it only improves the relaxed Gini index constraint:

dcG
dh

= 2δ
F̃∗(p̃2)− F̃∗(p̃1)∫ 1

0
(1− F̃∗(p̃)) dp̃

≥ 0 .

Therefore, if F̃∗ was optimal, F̃ should also be optimal. By repetitively applying this operation, we
get an optimal solution that follows

F̃∗(p̃) = F̃∗(0) + (1− F̃∗(0)) · p̃ .

The objective value for the optimal solution is 1
2 (1 − F̃

∗(0))2. The relaxed Gini index constraint
also requires

cG(F̃∗) = 1− 2

3
(1− F̃∗(0)) ≥ G̃t .

Hence, for G̃t ≥ 1/3, the objective is bounded by 9
8 (1− G̃t)2. This gives the following upper bound

on ERt:
ERt(k) ≤ 9

8
N t · t

k
· (1− G̃t)2 .

So, for a budget of B we can conclude

b̃t ≤ 1

t
·min

{
k | 9

8
N t · t

k
· (1− G̃t)2 ≤ B

}
=

1

t
·
⌈9
8
t · N

t

B
· (1− G̃t)2

⌉
.

Proof of Lemma 4.4. Recall that the observation distribution in Eq. (1) is itself a Bernoulli distribution
with an effective parameter p̃. So, for an individual with a failure probability of p, we have yt ∼
Binomial(t, p̃). We approximate this distribution using the central limit theorem (CLT): yt

t ∼
N
(
p̃, σ̃2

t

)
, where σ̃2 := p̃ · (1− p̃). Using this approximation, Eq. (10) can be written as

U t = N t Et[1{p ≥ ct}] · Et[1{yt ≥ t · b̃t} | p ≥ ct]

= N t Et
[
1{p ≥ ct} · 1{yt ≥ t · b̃t}

]
≈ N t Et

[
1{p ≥ ct} ·G

( p̃− b̃t

σ̃

√
t
)]

.

Note that both p̃ and σ̃ depend implicitly on p. We also revisit ERt and b̃t using the CLT approxima-
tion:

ERt(k) ≈ N t Et
[
G
( p̃− k/t

σ̃

√
t
)]

,

b̃t ≈ 1

t
(ERt)−1(B) .

Next, we calculate dUt

dt and bound it from above.
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Deriving dUt

dt . Calculating dUt

dt requires taking the derivative with respect to t for N t, Et, ct, and
b̃t. In particular, taking the derivative of Et requires the derivative of Pt with respect to t, where we
use the approximation of Eq. (3):

dPt

dt
≈

(µt − p

1− µt

)
Pt(p) .

This dynamic is valid since the intervention takes place at a single time point, and no prior intervention
has altered the distribution Pt. A similar approximation gives dNt

dt ≈ N t+1 −N t = −N t µt. To
calculate db̃t

dt we use the property

dERt(t · b̃t)
dt

= 0 = −µt ERt(t · b̃t)

+N t Et
[(µt − p

1− µt

)
·G

( p̃− b̃t

σ̃

√
t
)]

+
1

2
√
t
N t Et

[( p̃− b̃t

σ̃

)
· g

( p̃− b̃t

σ̃

√
t
)]

− db̃t

dt
N t Et

[√t
σ̃
· g

( p̃− b̃t

σ̃

√
t
)]

,

and solve for db̃t

dt , which we omit for brevity. The derivative of ct is also straightforward to calculate
from Eq. (6):

dct

dt
= − ln(1− u∗)

1

(T − t)2
(1− u∗)1/(T−t) .

With all the necessary elements now available, we can proceed to calculate dUt

dt . Defining

δ :=
Et

[
1{p ≥ ct} · 1σ̃ g

(
p̃−b̃t

σ̃

√
t
)]

Et
[
1
σ̃ g

(
p̃−b̃t

σ̃

√
t
)] , (15)

a straightforward calculation shows that we can decompose dUt

dt as

dU t

dt
=

(dU t

dt

)+ − (dU t

dt

)−
,

where

1

N t

(dU t

dt

)−
:= Et

[
1{p ≥ ct} ·

(p− (µt)2

1− µt

)
·G

( p̃− b̃t

σ̃

√
t
)]
− δ · Et

[(p− (µt)2

1− µt

)
·G

( p̃− b̃t

σ̃

√
t
)]

+ Pt(ct) ·G
( c̃t − b̃t

σ̃(ct)

√
t
)
· dc

t

dt
, (16)

1

N t

(dU t

dt

)+
:=

1

2
√
t
Et

[
1{p ≥ ct} ·

( p̃− b̃t

σ̃

)
· g

( p̃− b̃t

σ̃

√
t
)]
− δ

2
√
t
· Et

[( p̃− b̃t

σ̃

)
· g

( p̃− b̃t

σ̃

√
t
)]

.

(17)

Next, we derive an upper bound for
(
dUt

dt

)+
and a lower bound for

(
dUt

dt

)−
in order to obtain an

upper bound for dUt

dt .

Lower bound
(
dUt

dt

)−. Let us define the relative efficiency of budget allocation as U t/B. Given
that the targeting intervenes on individuals with higher expected utility, the relative efficiency is a
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non-increasing function of B. This results in a lower bound on δ:

d

dB

(U t

B

)
=

d

dB

(N t

B
Et

[
1{p ≥ ct} ·G

( p̃− (ERt)−1(B)/t

σ̃

√
t
)])

=
N t

B
Et

[
1{p ≥ ct} · 1

σ̃
√
t
· g

( p̃− b̃t

σ̃

√
t
)]
·
(
N t Et

[ 1

σ̃
√
t
· g

( p̃− b̃t

σ̃

√
t
)])−1

− N t

B2
Et

[
1{p ≥ ct} ·G

( p̃− b̃t

σ̃

√
t
)]

=
N t

B

(
δ −

Et
[
1{p ≥ ct} ·G

(
p̃−b̃t

σ̃

√
t
)]

Et
[
G
(
p̃−b̃t

σ̃

√
t
)] )

≤ 0

⇐⇒ δ ≤
Et

[
1{p ≥ ct} ·G

(
p̃−b̃t

σ̃

√
t
)]

Et
[
G
(
p̃−b̃t

σ̃

√
t
)] .

Plugging this bound into Eq. (16), we obtain

1

N t

(dU t

dt

)− ≥ Et
[
1{p ≥ ct} ·

(p− (µt)2

1− µt

)
·G

( p̃− b̃t

σ̃

√
t
)]

(18)

− Et
[
1{p ≥ ct} ·G

( p̃− b̃t

σ̃

√
t
)]
·
Et

[(p−(µt)2

1−µt

)
·G

(
p̃−b̃t

σ̃

√
t
)]

Et
[
G
(
p̃−b̃t

σ̃

√
t
)] (19)

+ Pt(ct) ·G
( c̃t − b̃t

σ̃(ct)

√
t
)
· dc

t

dt
. (20)

Next, we will further lower bound each of the three terms in the above bound.

• First of all, the (µt)2 terms cancel out. When p̃ ≥ c̃∗, we have p̃ ≥ 1/2 and p̃ ≥ b̃t. These are
sufficient to argue G

(
p̃−b̃t

σ̃

√
t
)

is non-decreasing in p̃ when p̃ ≥ c̃∗:

d

dp̃
G
( p̃− b̃t

σ̃

√
t
)
=
√
t g

( p̃− b̃t

σ̃

√
t
)
·
σ̃ − (p̃− b̃t) 1−2p̃

2σ̃

σ̃2
≥ 0 .

Now since p̃ is also an increasing function of p, one can verify that G
(
p̃−b̃t

σ̃

√
t
)

is also a non-
decreasing function of p when p ≥ c∗. This is particularly true for p ≥ ct and t ≥ t∗ as ct is
increasing in time. Chebyshev’s sum inequality then allows us to bound the inner product of two
non-decreasing functions and derive a lower bound on the first term:

Prt(p ≥ ct) ·
(Et[p | p ≥ ct]− (µt)2

1− µt

)
· Et

[
G
( p̃− b̃t

σ̃

√
t
)
| p ≥ ct

]
.

• In order to lower bound the second term (Eq. (19)), one can verify

Et
[
p ·G

(
p̃−b̃t

σ̃

√
τ
)]

Et
[
G
(
p̃−b̃t

σ̃

√
τ
)]

is non-decreasing in τ . This ratio intuitively represents the expected probability of failure of
those found eligible when the eligibility cutoff is fixed and τ controls the amount of available
information. As τ increases, allowing for more information, we expect the treatment allocation to
become more efficient. Using this, we can write

Et
[
p ·G

(
p̃−b̃t

σ̃

√
t
)]

Et
[
G
(
p̃−b̃t

σ̃

√
t
)] ≤ Et[p | p̃ ≥ b̃t] .

• Using the update rule of Eq. (3) and the fact that ct is increasing, it is straightforward to conclude
that if Pt(p) is non-increasing at t = t∗ for p ≥ c∗, then Pt(p) is also non-increasing in p
for p ≥ ct and t ≥ t∗. This allows us to lower bound Pt(ct) in the third term (Eq. (20)) by
Prt(p ≥ ct).
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Putting these all together, we can further lower bound
(
dUt

dt

)−
by

1

N t

(dU t

dt

)− ≥ Prt(p ≥ ct) ·G
( c̃t − b̃t

σ̃(ct)

√
t
)
·
[
Et[p | p ≥ ct]− Et[p | p ≥ bt] +

dct

dt

]
.

For a distribution Pt(p) non-increasing in p, the difference Et[p | p ≥ ct]−Et[p | p ≥ bt] is bounded
by (ct − bt)/2 from above. Since 1) we showed G

(
p̃−b̃t

σ̃

√
t
)

is non-decreasing in p̃ when p̃ ≥ c̃∗, 2)
ct is increasing over time, and 3) b̃t is decreasing, we can further lower bound G

(
c̃t−b̃t

σ̃(ct)

√
t
)

by its
value at t∗. This gives

1

N t

(dU t

dt

)− ≥ Prt(p ≥ ct) ·G
(√

t/t∗
)
·
[ct − bt

2
+

dct

dt

]
.

Upper bound
(
dUt

dt

)+. Plugging δ from Eq. (15) into Eq. (17) and performing a straightforward

calculation shows that the b̃t

σ̃ · g
(
p̃−b̃t

σ̃

√
t
)

terms will cancel out, so one can verify

1

N t

(dU t

dt

)+ ≤ 1

2
√
t
Prt(p ≥ ct) · Et

[ p̃
σ̃
· g

( p̃− b̃t

σ̃

√
t
)
| p̃ ≥ c̃t

]
.

Observe that for p̃ ≥ b̃t,

d

dp̃

( p̃

σ̃
· g

( p̃− b̃t

σ̃

√
t
))

=
( p̃

2σ̃3
− p̃ (p̃− b̃t) (p̃+ b̃t − 2b̃tp̃)

2σ̃5
t
)
· g

( p̃− b̃t

σ̃

√
t
)

≤ t
p̃

2σ̃5
·
( σ̃2

t
− (p̃− b̃t)2

)
· g

( p̃− b̃t

σ̃

√
t
)
. (21)

Therefore, for any p̃ ≥ b̃t + σ̃/
√
t, this derivative is non-positive. It is straightforward to verify that

if this condition holds for any p̃1 ≥ 0.5, it will also hold for p̃2 ≥ p̃1. Now, since 1) this condition
holds at t = t∗ for p̃ = c̃∗, and 2) c̃∗ ≥ 0.5, the derivative in Eq. (21) is non-positive for any p̃ ≥ c̃∗.
In particular, since ct is increasing and b̃t is decreasing over time, we have

1

N t

(dU t

dt

)+ ≤ 1

2
√
t
Prt(p ≥ ct) · c̃t

σ̃(ct)
· g

( c̃t − b̃t

σ̃(ct)

√
t
)

≤ Prt(p ≥ ct) · c̃∗

2σ̃∗ ·
1√
t
g
(√

t/t∗
)
.

Proof of Theorem 4.1. The condition of broad targeting at t∗ implies that at any time t ≥ t∗, we have
c̃t − b̃t ≥ σ̃t/

√
t. Then, for an L-Lipschitz f we obtain

σ̃t

√
t
≤ c̃t − b̃t = p̃(ct)− p̃(bt) ≤ L (1− 2ϵ) · (ct − bt) .

Since ct is increasing and bt is decreasing in time, for every t ≥ t∗, we can further lower bound
ct − bt by 1

L (1−2ϵ) ·
σ̃∗
√
t∗

. Plugging this into Eq. (12), for every t ≥ t∗, we have

sign
(dU t

dt

)
≤ sign

( c̃∗

2σ̃∗
√
t∗

[ 1√
2π

exp(− t

2t∗
)− 1

L
G(1)

1− c̃∗

1− 2ϵ

])
.

So, for a Lipschitz constant L ≤
√
2πG(1)
1−2ϵ , one can verify dUt

dt ≤ 0 for t ≥ t∗.

Proof of Theorem 5.1. Consider N individuals initially at time t = 1. Denote the subset of At

with yt = k byAt
k. Define nt

k := |At
k|/N . Denote the set of individuals treated at t by It. Excluding

It from At
k, denote the remaining by Āt

k := At \ It, and define n̄t
k := |Āt

k|/N . In the limit of
N →∞, we can treat nt

k and n̄t
k as continuous variables taking any value in [0, 1].

Step 1. The following property of the problem dynamics allows us to infer whether At
k is empty,

depending on the previous step.
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Lemma F.1. Defining n̄t
−1 = 0, at any time t and for any k, we have

nt+1
k > 0 ⇐⇒ n̄t

k > 0 or n̄t
k−1 > 0 .

See proof on page 24.
Step 2. Consider two active individuals i and j at time t. If yti > ytj , for our observation model
in Eq. (1) and any utility function non-decreasing in p, Proposition E.5 implies treating i yields
more utility than j in expectation. Therefore, the optimal allocation at any point should not target
individuals with lower yt while there are active individuals with a higher yt.
Step 3. We show that, except for the first time step, at each time t on the optimal path, the treated
individuals at t should have similar values of yt.

Lemma F.2. For At ̸= ∅ and t ≥ 2 on the optimal path, for any i, j ∈ It, we should have yti = ytj =

max{i′ | i′ ∈ At}.

See proof on page 24.
Step 4. When an individual i with yti = k ≥ 1 is treated at t, not only is At

k non-empty, but At
k−1 is

also non-empty.

Lemma F.3. For k ≥ 1, if there exists i ∈ It on the optimal path such that yti = k, then nt
k−1 > 0.

See proof on page 25.
Step 5. Using the structure imposed on the optimal solution in the previous steps, we next restrict
It+1 based on It.

Lemma F.4. Suppose At ̸= ∅ and let k = max{yti | i ∈ At}. On the optimal path,

• If It = At
k, either It+1 ⊆ At+1

k or It+1 = At+1
k+1 = ∅.

• If It ⊂ At
k, either It+1 ⊆ At+1

k+1 or It+1 = At+1
k+2 = ∅.

See proof on page 25.
Step 6. Except for one time step, at every t on the optimal path, either It = or It treats everyone
with yt ≥ k for some k. If there were two time steps t and t′ violating this, because of the linearity
of the expected utility in |It| and |It′ |, optimally, one would become zero or treat everyone above a
cutoff. This and Lemma F.4 complete the proof.

Proof of Lemma F.1. For k ≥ 1, At+1
k will consist of those in Āt

k who survive and have ot+1 = 0,
or those in Āt

k−1 who survive and have ot+1 = 1:

nt+1
k = n̄t

k Ep∼Pt(·|yt=k)

[
(1− p)(1− p̃)

]
+ n̄t

k−1 Ep∼Pt(·|yt=k−1)

[
(1− p) p̃

]
.

Here, we implicitly used the fact that the targeting cannot distinguish people with the same yt. The
same update rule works for k = 0 if we set n̄t

−1 = 0. One can also verify that since the prior over p
has no point mass, the expectations above are non-zero. This completes the proof.

Proof of Lemma F.2. The proof is by contradiction with optimality and has multiple steps:

• Let k = max{yti | i ∈ At}. Since nt
k+1 = 0, Lemma F.1 requires n̄t−1

k+1 = n̄t−1
k = 0. On the

other hand, when nt
k > 0, Lemma F.1 requires either n̄t−1

k or n̄t−1
k−1 to be non-zero. Since we just

argued n̄t−1
k = 0, it is required to have n̄t−1

k−1 > 0.

• Since n̄t−1
k−1 > 0, Lemma F.1 implies nt

k−1 > 0. Then Step 2 requires that if It contains
individuals with different yt, there should be two individuals i, j ∈ It such that yti = k and
ytj = k − 1.
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• Consider the following tie-breaking when treating individuals with a similar yt: Assign a random
priority value z0i ∈ [0, 1) to each individual i in the initial pool. At time t, update the priority
value by zti = zt−1

i + oti 2
t−1. If any two individuals are at a tie to receive the treatment, choose

the one with the lowest priority value. This tie-breaking does not change the optimality of an
allocation rule.

• So far we showed n̄t−1
k−1 > 0, i.e., there exist some individuals in At−1

k−1 left untreated at t− 1, but
there exists j ∈ At

k−1 who is treated at t. We argue this is suboptimal as the budget to treat j
could have been spent earlier to treat those in At−1

k−1, yielding higher utility. To see this, consider a
counterfactual allocation rule that treats one more individual from At−1

k−1 at t− 1, to be referred
to as individual j′. This individual has either failed or made it to t. If failed, the counterfactual
treatment could be maximally effective in preventing a failure. If j′ is active at t, she will either
have ytj′ = k or ytj′ = k − 1. If ytj′ = k, then she is treated with others in At

k. If ytj′ = k − 1,
still j′ is treated. This is because j′ maintains the lowest priority value among At

k−1 by the
construction of the priority values. Since j′ is treated in any case if she makes it to t, she could
be treated earlier at t− 1. This could yield a higher or similar utility as ut is non-increasing in t.
This contradiction shows yti = ytj . Then Step 2 implies yti = ytj = max{i′ | i′ ∈ At}.

Proof of Lemma F.3. The proof is obvious for t = 1 since k can only be 1 and unless the budget is
excessively large to treat everyone, we have n1

0 > 0. For t ≥ 2, Lemma F.2 requires nt
k > 0 and

nt
k+1 = 0. Then Lemma F.1 implies n̄t−1

k = 0 and n̄t−1
k−1 > 0, so nt

k−1 > 0.

Proof of Lemma F.4. We first prove the first part the lemma. If It = At
k, there are two possibilities

for k. If k = 0, then Āt
k = ∅ and Step 2 implies no one is left untreated at t. So, It+1 = At+1

k+1 =

At+1 = ∅. If k ≥ 1, then Lemma F.3 implies nt
k−1 > 0. Then Itk = At

k implies n̄t
k−1 > 0 and

n̄t
k = 0. Applying Lemma F.1 gives nt+1

k > 0 and nt+1
k+1 = 0. Therefore, using Lemma F.2, treated

individuals at t+ 1 should be among At+1
k or no one will be treated.

We next prove the second part of the lemma. If It ⊂ At
k, we have n̄t

k > 0 and nt
k+1 = n̄t

k+1 > 0.
Then Lemma F.1 implies nt+1

k+1 > 0 and nt+1
k+2 = 0. Therefore, using Lemma F.2, treated individuals

at t+ 1 should be among At+1
k+1 or no one will be treated.
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