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Abstract

A citizens’ assembly is a group of people who are randomly selected to represent a
larger population in a deliberation. While this approach has successfully strength-
ened democracy, it has certain limitations that suggest the need for assemblies to
form and associate more organically. In response, we propose federated assem-
blies, where assemblies are interconnected, and each parent assembly is selected
from members of its child assemblies. The main technical challenge is to develop
random selection algorithms that meet new representation constraints inherent in
this hierarchical structure. We design and analyze several algorithms that provide
different representation guarantees under various assumptions on the structure of
the underlying graph.

1 Introduction

Citizens’ assemblies are a popular mechanism for democratic decision making [25, 26, 9, 16].
In the last decade, this paradigm has vastly grown in recognition and influence. In Europe, for
example, governments have sponsored citizens’ assemblies to inform national policy on constitutional
questions (Ireland), climate change (France), and even nutrition (Germany). Technology companies
like Meta [7] are also piloting (enormous) citizens’ assemblies as a way of obtaining democratic
inputs for AI governance and alignment.

While different assemblies may take somewhat different approaches, they all share two distinctive
features. First, members of a citizen’s assembly are randomly selected among volunteers. Sec-
ond, members of the assembly engage in a long and substantial deliberation before reaching any
conclusions.

The former feature is of great technical interest, as it is challenging to design a good random selection
process. The goal is to achieve descriptive representation, in the sense that the assembly should
reflect the composition of the population along multiple dimensions like gender, age, ethnicity and
level of education; this is seen as a source of legitimacy for citizens’ assemblies. However, since
the pool of volunteers is typically skewed due to self-selection bias, uniform random selection will
not yield descriptive representation and more sophisticated algorithmic solutions are required. Such
algorithms, which are designed to achieve descriptive representation while optimizing fairness to
volunteers, have been broadly deployed [19].

Our proposal: Federated assemblies. To our knowledge, the hundreds of citizens’ assemblies
convened around the world have all been independent of each other: in collaboration with practitioners,
different countries, regions and municipalities have organized their own assemblies from the ground
up.

By contrast, we propose a novel form of citizens’ assemblies: federated assemblies. The most basic
building block of a federated assembly is two assemblies (say, each representing the residents of a
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city) that decide to federate, forming a new parent assembly (which represents the residents of both
cities and discusses policy questions of mutual interest); crucially, the members of the parent assembly
are selected from the child assemblies. More generally, a parent assembly can have more than two
children, a child assembly can have more than one parent, and the parent assemblies themselves
can federate. Overall, a federated assembly is represented by a directed acyclic graph, where nodes
correspond to assemblies and an edge from x to y means that x federated with other assemblies
to form the parent assembly y. The lowest level (non-federated) assemblies are leaf assemblies,
which allow people to directly sign up as constituents. Even leaf assemblies need not represent only
geographical entities, they can also correspond to issues (such as climate change) or identity groups
(such as ethnic groups). Furthermore, people can sign up for multiple leaf assemblies — any that
intersect their multi-faceted interests.

In our view, federated assemblies have several advantages over the current practice of citizens’
assemblies. First, the process of forming a new assembly does not have to start from the very
beginning, as its members are selected from child assemblies; therefore, the lengthy and costly process
of recruiting volunteers can be avoided altogether and the bar for forming an assembly is significantly
lowered. Second, in standard citizens’ assemblies, the determination of which features to stratify
over, and which values to assign to these features — which is made by the organizers — is sometimes
controversial and gives rise to manipulation opportunities. By contrast, in federated assemblies,
these “features” — which are induced by the structure of the graph — are self-determined. Third, in
the spirit of associative democracy — “a model of democracy where power is highly decentralized
and responsibility for civic well-being resides with like-minded civic associations” [15] — federated
assemblies allow citizens to exercise power by forming organizations that are immediately integrated
into a broader framework of governance. We believe that federated assemblies may be especially
pertinent in the context of a global citizens’ assembly — the holy grail of practitioners of deliberative
democracy — as such an assembly could form organically as a federation of assemblies representing
different countries, regions, and global issues.

Technical challenge and our results. Our proposal is undoubtedly radical and we acknowledge
that the devil is in the details; we discuss some limitations in Section 6. Our goal in this paper is
to address a key, technically challenging question that arises as we consider the implementation of
federated assemblies: how should they be selected?

In the context of federated assemblies, we think of an assembly as satisfying descriptive representation
if it reflects both its child assemblies and its constituents. Specifically, we wish to design a random
selection process, where the members of each assembly are selected from its child assemblies, so that
the following constraints are satisfied:

• Individual Representation: Let the assembly’s population be the union of all (possibly
overlapping) populations of its descendant leaf assemblies. Each member of this population
should have an equal probability of being represented on the assembly. This constraint can
be interpreted as realizing an equality of power ideal.

• Ex ante representation of child assemblies: The expected number of seats allocated to each
child assembly should be proportional to the child assembly’s population.1

• Ex post representation of child assemblies: The number of seats allocated to each child
assembly should be proportional to the child assembly’s population, rounded down, ex
post. This ex post guarantee prevents situations where an unlucky draw leads to significant
under-representation; it mirrors ex post quotas imposed on different features in the selection
of standard citizens’ assemblies.

Our results are primarily positive, showing that achieving various properties together is indeed
tractable.

We begin by considering only the first two properties, individual representation and ex ante represen-
tation of child assemblies (Section 3). We design a simple algorithm (Algorithm 1) that is able to
achieve both of these properties under some minor regularity conditions.

1When calculating a child’s proportional share, if some populations overlap, we first split the weight of
members in the intersection equally across their populations, e.g., if a member is in three child populations, they
only contribute 1/3 to each.
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Next, we throw ex post child representation into the mix (Section 4). This makes the problem much
more challenging, so we focus on instances with additional structure. We begin with a very natural
class, which we call laminar instances, where the assembly graph is a tree, and members are signed
up for only one leaf assembly. This captures instances where assemblies represent hierarchical
regions, e.g., city-level which feed into state-level which feed into national-level. For such instances,
we give an algorithm (Algorithm 2) that achieves all of our desired properties. Next, we generalize
laminar instances to a larger class, semi-laminar. These are rooted in a laminar instance, with multiple
assemblies at each node that federate together, allowing constituents to, for example, organize both
geographically and according to shared interests. It turns out that even this level of generality
already adds quite a bit of complexity to the problem. We nonetheless devise a surprisingly intricate
algorithm (Algorithm 3), that again, under mild regularity conditions, is able to achieve individual
representation, ex ante representation of child assemblies, and approximate ex post representation of
child assemblies up to an additive error of one.

Finally, in Section 5, we implement an algorithm based on column generation for convex pro-
gramming, which, given any instance of our problem, computes a distribution satisfying the three
properties. In addition to measuring the running time of the algorithm, our empirical results suggest
that all of our properties can be achieved simultaneously in the general case, at least in practice.

Related work. There is a growing body of work on algorithms for randomly selecting citizens’
assemblies, starting with the paper by Flanigan et al. [11]; there is significant interest in this topic
in AI conferences, especially NeurIPS [10, 12, 8, 13]. The key challenge these papers address
arises because of quotas imposed on multiple, overlapping features. By contrast, our community
representation constraint amounts to stratified sampling with respect to a partition of the population,
which is simple in the case of standard citizens’ assemblies [3]. The difficulty of our problem stems
from its graph structure and the need to also represent child assemblies, leading to technical questions
that are quite different from prior work. We do note that the mathematical programming approach
used by Flanigan et al. [11] to implement their (widely used) algorithm also works well in our case.

Conceptually, federated assemblies are somewhat related to pyramidal democracy [18]. In this
scheme, citizens self-organize into small groups at the bottom of the pyramid, with each group
nominating a delegate. In the next level, those delegates form groups, each again nominates a
delegate, and so on. Our proposal differs in several significant ways, but most importantly, the
selection of delegates is not random in pyramidal democracy — rather, it is up to each group to decide
how to select its delegate — and there are no representation requirements; by contrast, the whole
point of our work is to design a random selection process that satisfies representation constraints.

Our technical contribution fits more broadly within the literature on dependent rounding [14]. Ar-
guably the closest in flavor is randomized rounding for flows [21], which has constraints similar to
our inheritance ones. Furthermore, rounding the number of seats given to each child assembly (a
step in several of our algorithms) is reminiscent of randomized apportionment [2, 20]. However, our
inheritance and ex post child constraints do not fit neatly within existing frameworks and make it
challenging to use off-the-shelf techniques directly. Instead, many of our results repeatedly invoke
existing schemes, such as variations of the Birkhoff Von-Neumonn Theorem [4, 6], in nontrivial ways.
We discuss these techniques in more detail when we use them.

2 Model

Let N be a finite set of people and G be a directed acyclic graph. Abusing notation slightly, we write
v ∈ G if v is a node in G.

For a node v ∈ G, let CHILDREN(v) = {v′ : v → v′ in G} be the set of nodes v′ with a directed
edge from v to v′. Let LEAVES(G) = {v : |CHILDREN(v)| = 0} be the leaf nodes of G. Each
person i ∈ N will be signed up for a nonempty set Li ⊆ LEAVES(G) of leaf nodes. For a set
L ⊆ LEAVES(G), we will also use CL = {i : Li = L} for the set of people signed up for exactly
the leaf nodes L. We refer to each CL as an equivalence class, which collectively form a partition of
N . For a leaf node ℓ ∈ G, its population Nℓ = {i : ℓ ∈ Li} is the set of all people signed up for it.

Let FEDS(G) = {v : |CHILDREN(v)| > 0} be the internal nodes of G, which we refer to as
federations. For a federation f ∈ FEDS(G), let DESCENDANTS(f) ⊆ LEAVES(G) be the set of
all leaf nodes reachable from f in G. For a federation f ∈ FEDS(G), its population is defined as

3



Nf :=
⋃

ℓ∈DESCENDANTS(f) Nℓ. Note that this can equivalently be defined in terms of equivalence
classes as Nf =

⋃
L:L∩DESCENDANTS(f )̸=∅ C

L.

An instance is a tuple I = ⟨G, (Nv)v∈G⟩ of the graph and the membership relationships. Given an
instance I and a target assembly size n, our goal is to choose an assembly Av ⊆ Nv of size n for each
node v. We will assume, in general, that each |Nv| ≥ n so that this is always possible. Furthermore,
we require that each federation’s assembly be drawn from its child assemblies, i.e., for f ∈ FEDS(G),
Af ⊆

⋃
c∈CHILDREN(f) Ac. We call this the inheritance property. A vector A = (Av)v∈G satisfying

these requirements an assembly assignment (or simply an assignment). Our algorithm for selecting
assembly assignments will be random, and thus, their outputs will be distributions over assembly
assignments, A. We will call such a distribution a randomized assembly assignment and use Av to
refer to the marginal distribution for the assembly at node v.

We would like our randomized assembly assignments to satisfy various properties. Some are ex post
and should hold for all assignments in the support. Others will be ex ante and are simply properties
of the distribution that hold in expectation.

Desired Properties. Arguably, the most important requirement is individual representation. A
randomized assignment A satisfies individual representation if for each node v and i ∈ Nv, Pr[i ∈
Av] = n/|Nf |, that is, each person has an equal chance of being selected to the assembly.

The other flavor of requirements we have on solutions are with respect to child assemblies. For
a federation f ∈ FEDS(G) and child c ∈ CHILDREN(f), we think of |Af ∩ Ac| as the number of
seats child c is allocated, and we would like this allocation to be at least as large as c “deserves.”
The question, however, is how to set these bounds. If the child populations Nc of a federationf are
all pairwise disjoint, then a natural choice is that each c should be allocated an |Nc|/|Nf | fraction
of the n seats in Af . For non-disjoint child populations, we generalize this by splitting a person’s
weight equally among all child populations they are a part of. More formally, for a federation f and
member i ∈ Nf , define the multiplicity of i at f to be m(i, f) = |{c ∈ CHILDREN(f) : i ∈ Nc}|,
the number of child nodes they are a member of. The weighted population size wc,f of a child
federation c ∈ CHILDREN(f) is defined by wc,f =

∑
i∈Nc

1
m(i,f) . Note that the definition implies

that |Nf | =
∑

c∈CHILDREN(f) wc,f . Hence, we would say that node c deserves a wc,f/|Nf | fraction of
the seats in Af . Define qc,f := wc,f/|Nf | to be this fraction.

However, n · qc,f need not be an integer. Hence, we consider two notions of fair child representation.
First, we say that a randomized assignment A satisfies ex ante child representation if, for each
federation f ∈ FEDS(G) and child c ∈ CHILDREN(f), E[|Af ∩ Ac|] ≥ n · qc,f . Similarly, we will
say that a randomized assignment satisfies ex post child representation if for each assignment A in
the support and each federation f ∈ FEDS(G) and child c ∈ CHILDREN(f), |Af ∩Ac| ≥ ⌊n · qc,f⌋.
In other words, even if it is impossible to guarantee exact child representation, we can ensure that all
children get at least the number of seats they deserve rounded down.

3 Ex Ante Child Representation

We begin our study with an algorithm that samples from a distribution satisfying inheritance, in-
dividual representation, and ex ante child representation under mild conditions, proving that these
three properties are compatible. To gain intuition, we first informally present a simpler version
of the algorithm tailored to the special case of assemblies of size n = 1. It works by selecting a
single random order of all of N uniformly at random; the representative for node v is simply the
highest-ranked member of Nv . Note that this allows for strikingly simple arguments for the various
properties. Indeed:

• Inheritance: If Af = {i} for a federation f then i ∈ Nc for some c ∈ CHILDREN(f). Since
Nc ⊆ Nf , i will be maximal among Nc, and hence, Ac = {i}.

• Individual Representation: Each i ∈ Nv is equally likely to be the maximally ranked person
among Nv , so they are a member of Av with probability 1/|Nv|.

• Ex ante child representation: A similar argument to inheritance implies that Ac = Af with
probability |Nc|/|Nf | ≥ wc,f .
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Algorithm 1 Selection algorithm with ex ante child representation guarantees
Input Graph G, populations (Nv)v∈G, and assembly size n
Output Assembly assignment (Av)v∈G

1: Choose n linear orders over N , ≻1, . . . ,≻n independently uniformly at random
2: Select an additional linear order ≻equiv over N uniformly at random.
3: for v ∈ G do
4: Let imax

v,1 , . . . , imax
v,n be the maximally ranked people in ≻1, . . . ,≻n when restricted to Nv

5: for L ⊆ LEAVES(G) do
6: rLv ← |{j : imax

j,v ∈ CL}|, i.e., the number of imax
j,v members in equivalence class CL

7: Let BL
v be the rLv highest ranked members of CL in ≻equiv

8: Av ←
⋃

L BL
v

9: return (Av)v∈G

The challenge is to extend the foregoing algorithm to n ≥ 1. One straightforward idea is to run the
same algorithm n independent times, which would produce n singleton assemblies A1

v, . . . , A
n
v for

each node v, and subsequently set Av =
⋃

j A
j
v. At first glance, this seemingly maintains all of the

properties of the n = 1 algorithm. However, this idea, unfortunately, does not quite compile; with
some positive probability, we will have j ̸= j′ with Aj

v = Aj′

v so we do not end up with a size-n
assembly. We can, nevertheless, remedy this by replacing selected members with distinct people
from their equivalence class. This fix does impose an additional requirement that each nonempty
equivalence class contains at least n people. However, this is a relatively mild condition since we
view n as a reasonably small constant and populations as potentially very large. Later, we discuss
how even this mild assumption can be relaxed while only slightly degrading the guarantees.

Theorem 1. Assume that each nonempty equivalence class CL satisfies |CL| ≥ n. Then, Algorithm 1
satisfies individual representation and ex ante child representation.

Proof. Note that each rLv ≤ n and rLv > 0 only if CL is nonempty. The requirement that each CL

be of size at least n ensures that line 7 is able to run, and we can always pick the bLv highest ranked
members. Without this, line 7 may fail.

Since equivalence classes are disjoint and
∑

L rLv = n (each imax
v,j will contribute to exactly one), we

have that each |Av| = n. Furthermore, if i ∈ Av, there was another i′ ∈ Nv such that both i and i′

are in the same equivalence class. Hence, i ∈ Nv and the chosen assemblies are also valid.

We next show that each of the properties holds. For each L ⊆ LEAVES(G), node v, and j ≤ n, let
ILv,j = I[imax

v,j ∈ CL] be the indicator variable that imax
v,j is signed up for the set of leaves L. As long

as i ∈ Nv , we have that E[ILv,j ] = |CL|/|Nv| (over the randomness of the selected orders).

We begin with individual representation. Fix a node v and a person i ∈ Nv . Suppose we condition on
a specific value of rLv , then (abusing notation slightly) over the randomness of ≻equiv, we have that
Pr[i ∈ Av : rLv ] = rLv /|CL| because each person i ∈ CL is equally likely to be in any of the |CL|
positions. Next, note that rLv =

∑
j I

L
v,j . Hence, E[rLv ] = n|CL|/|Nv|. Putting these together, we

have that Pr[i ∈ Av] = n/|Nv|, as needed.

Next, we show inheritance. Fix a federation f ∈ FEDS(G) and an equivalence class CL such that
CL ⊆ Nf . Note that there must be some child c ∈ CHILDREN(f) such that CL ⊆ Nf . We will
show that for this choice of c, BL

f ⊆ BL
c ⊆ Ac, ex post. As this holds for every L, it follows that

Af =
⋃

L BL
f ⊆

⋃
c∈CHILDREN(f) Ac, ex post. To that end, it is sufficient to show that rLf ≤ rLc , which

implies that BL
f ⊆ BL

c . For this, we can simply show that for each j, ILv,f ≤ ILv,c, ex post. Indeed, if
the maximal selected member of ≻j when restricted to Nv is a member of CL, then the same person
will be maximal when restricted to Nc because CL ⊆ Nc.

Finally, we show ex ante child representation. The key observation is that for a child c ∈
CHILDREN(f), |Ac ∩ Af | =

∑
L:CL⊆Nc

rLf because, as shown above, rLf ≤ rLc , so the top rLf
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Algorithm 2 Selection algorithm for laminar instances with ex post child representation guarantees
Input Graph G, populations (Nv)v∈G, and assembly size n
Output Assembly assignment (Av)v∈G

1: for leaf ℓ ∈ LEAVES(G) do
2: Choose Aℓ ⊆ Nℓ uniformly at random
3: for federation f ∈ FEDS(G) in a topological sort do
4: Round (n · qc,f )c∈CHILDREN(f) to an integral vector (sc,f )c∈CHILDREN(f) such that

each sc,f ≥ ⌊wc,f⌋, E[sc] = n · wc,f , and
∑

c sc,f = n
5: Select Bc,f ⊆ Ac with |Bc,f | = sc,f uniformly at random.
6: Let Af ←

⋃
c Bc,f .

7: return (Av)v∈G

people from CL are contained in both Ac and Af . It follows that

E[Ac ∩ Af ] =
∑

L:CL⊆Nc

E[rLf ] =
∑

L:CL⊆Nc

|CL| · n
|Nf |

=
|N c| · n
|Nf |

≥ qc,f · n,

as needed.

We now discuss ways to implement a modification of Algorithm 1 that works even when |CL| < n.
The key idea is that Algorithm 1 will only fail to run if there is a node v such that rLv > |CL|. In such
cases, we can simply “reject” and restart the algorithm. Note that ex post guarantees will still be
satisfied as long as the algorithm is able to terminate. For ex ante guarantees, as long as the probability
of failure is at most some value p, the properties only degrade as a function of p. Specifically, each
i ∈ Nv will be selected in Av with probability at least n/|Nv|−p, and for a child c ∈ CHILDREN(f),
their expected intersection will be at least n(wc,f − p). As long as p ≪ 1/|Nv|, this will be a
negligible loss. We show that, under mild conditions on the populations being reasonably large and
equivalence classes being at least of size 3, this is indeed the case; see Appendix A for more details.

4 Ex Post Child Representation

In this section, we add ex post child representation to our list of requirements, albeit at a cost to the
generality of our results.

4.1 Laminar Instances

We begin with a more restricted structure that captures many practical potential implementations of
federated assemblies. The assumption is that G is a tree and that each i ∈ N is signed up for exactly
one leaf node, i.e., |Li| = 1. This captures settings such as where the assemblies represent regions
that form a hierarchy, i.e., city-level assemblies, which feed into state-level assemblies, which feed
into national-level assemblies, and possibly beyond. Following set-theoretic terminology, we call
instances satisfying these restrictions laminar.

Algorithm 2 works by going through the federations, allocating an integral number of seats to each
child, and filling these seats directly from the child’s assembly. The rounding (Line 4) can be done in
a variety of ways using tools from the dependent rounding literature. Brewer and Hanif [5] provide
a number of classical statistical methods for this; canonical examples from randomized algorithm
design include pipage rounding [1] and variations of the Birkhoff-von Neumann Theorem [4, 6].

Theorem 2. Algorithm 2 satisfies individual representation, ex ante child representation, and ex post
child representation on laminar instances.

While the proof is relegated to Appendix B, we give some intuition by discussing the naturalness of
Algorithm 2, which allows for its relatively simple analysis. Specifically, we enforce ex ante and ex
post child representation by first allocating the “correct” number of seats to each child. We then go
through the tree iteratively, selecting members from their (already determined) child assemblies. We
may hope that such ideas could be generalized to non-laminar instances, first allocating seats and
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Algorithm 3 Algorithm for semi-laminar instances
Input Semi-laminar instance with graph G, populations (Nv)v∈G, and assembly size n
Output Assembly assignment (Av)v∈G

1: for (r, t) ∈ R× T do
2: sr,t ← ROUND(n · wr,t

|Nr,t| )

3: for r ∈ LEAVES(R) do
4: (BSEL

r,t , B
UNS
r,t )t∈T ← SAMPLELEAVES((C{r}×T )T⊆T , (sr,t)t∈T , n)

5: for r ∈ FEDS(R) in a topological sort do
6: for t ∈ T do
7: BSEL

r,t , B
SEL
r,t ← SAMPLEFROMCHILDREN(sr,t, (BSEL

c,t , B
UNS
c,t , wc,t, |Nc,t|)c∈CHILDREN(r))

8: for r ∈ R do
9: for t ∈ T do

10: A(r,t) ← BSEL
r,t ∪BUNS

r,t

11: A(r,∗) ← ROUNDANDSAMPLE(n, (BSEL
r,t , wr,t)t∈T )

12: return (Av)v∈G

then iteratively selecting members from the child assemblies, perhaps not uniformly at random, to
account for people being in potentially different numbers of children. However, we give an example
where this is not the case — relaxing either of the laminar assumptions (that G is a tree or that each
|Li| = 1) can lead to instances where satisfying all the properties is impossible using such algorithms.
Instead, it is necessary to induce some other forms of correlation or relax the iterativeness, a challenge
that leads to more complicated algorithms. We discuss this more formally in Appendix C.

4.2 Semi-Laminar Instances

We now turn to a generalization of laminar instances with a structure we view as quite practical for
real-world implementation, as it allows people to organize both geographically and according to
shared interests. Conceptually, there is an underlying laminar instance with graph R. In addition,
there is a set T representing a set of topics. These may be various causes that people care about, say
climate change or animal rights, or region-specific policy questions, such as budget allocation.

More specifically, the graph G has |R| · (|T |+ 1) nodes. |R| · |T | of these are identified by members
of R× T , i.e., there is a node (r, t) for each combination of region and topic. For each t ∈ T , the set
of nodes R× {t} is connected to form a copy of R. In addition, there is a set of nodes denoted (r, ∗)
for each r ∈ R. Each is a federation whose children are {r} × T . In other words, at each region, we
have an assembly that represents all people with respect to all topics of that region.

In this graph, the leaves are nodes in LEAVES(R)× T . People can be signed up for any number of
topics, but, as the underlying instance is laminar, we assume that each is a member of nodes in one
region. Hence, we assume that each Li ⊆ {r} × T for some r ∈ LEAVES(R).

Abusing notation slightly, we will write Nr = {i | Li ⊆ {r} × T } for all people in this region
(technically Nr = N(r,∗)). Furthermore, a node (r, t) will have at most two parents in G: it will
always have (r, ∗) and possibly another node (r′, t) if r has a parent (r′) in R. Note that if (r′, t)
exists, the weighted population w(r,t),(r′,t) = N(r,t), the trivial weighting, because the children of
(r′, t) have disjoint populations. On the other hand, w(r,t),(r,∗) =

∑
i∈N(r,t)

1
|Li| . For brevity, we will

use wr,t to denote only the nontrivial weight of the node (r, t). Finally, note that, for r ∈ LEAVES(R)

and T ⊆ T , we can write C{r}×T for the equivalence class of people in leaf r signed up for topics T .
Everybody must fall in exactly one of these equivalence classes.

We refer to an instance taking on the above structure as a semi-laminar instance. For such instances,
we have the following algorithm shown in Algorithm 3, with additional helper functions formally
defined in Algorithm 4 in Appendix D. The structure is essentially an extension of the algorithm for
laminar instances. Ideally, for each topic, we could independently run Algorithm 2, and when we
needed to select an assembly (r, ∗), we could select the “correct” number of members from each
A(r,t). However, this does not quite work because if people are signed up for more topics, this will
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lead to them ending up in A(r,∗) more frequently. To account for this, we essentially partition each
A(r,t) into two pieces, BSEL

r,t of (sel)ectable people and BUNS
(r,t) of (uns)electable people, and run a

separate laminar-like algorithm for each of these. The key idea is that when selecting members of
A(r,t) for A(r,∗), we will only select from members in BSEL

r,t . While each i ∈ N(r,t) will have an equal
chance of being in A(r,t), the more topics they are signed up for, the less likely they will be in BSEL

r,t ,
so that, in aggregate, this will not increase their chances of being in A(r,∗).

It should be said that the real complexity of this algorithm is hidden in the dependent rounding
schemes of the helper functions. It requires careful balance and specific constraints to ensure the
probabilities are exact and not subject to strange correlations that naïve implementations can impart.
Furthermore, we need to avoid scenarios where the same person is selected twice for A(r,∗) from
two separate topics, which would not appear to have an easy solution. All of these schemes are
implemented using variations of the Birkhoff-von Neumann algorithm. Budish et al. [6] give a class
of constraints that are always possible to guarantee when rounding; we ensure that all of our rounding
procedures take this form.

Finally, note that all of these extra complexities mean that we impose some additional mild regularity
conditions and achieve slightly degraded guarantees, at least for ex post child representation. The
regularity conditions require that no weighted population is too close to zero or the entire population
and that no child population is too dominant within its parent.
Theorem 3. Fix a semi-laminar instance and assembly size n. Suppose there exist ε, δ > 0 such that
(i) for all r, t ∈ R× T , ε · |Nr,t| ≤ wr,t ≤ (1− ε) · |Nr,t|, (ii) for all federations f ∈ FEDS(G) and
c ∈ CHILDREN(f), |Nc|/|Nf | ≤ 1−δ, and (iii) n ≥ 2

ε·δ . Furthermore, suppose each |Nv| ≥ 4n and
for all nonempty equivalence classes CL, |CL| ≥ 2. Then, Algorithm 3 run on this instance satisfies
individual representation, ex ante child representation, and approximate ex post child representation
in that |Af ∩Ac| ≥ ⌊n · qc,f⌋ − 1 for all f ∈ FEDS(G) and c ∈ CHILDREN(f).

The proof is relegated to Appendix E.

5 Experiments

While we have given efficient algorithms for finding randomized solutions satisfying various proper-
ties in special cases, we focus now on how easy it is in practice to find randomized assignments in
generality. To this end, we sample several thousand instances and use a brute force algorithm to try to
find a randomized assignment satisfying all of our ex post and ex ante guarantees.

Algorithm. The computation of randomized assignments satisfying our guarantees is quite challeng-
ing. Our algorithm for this task uses convex optimization and integer linear programming (ILP) as
subroutines. It is inspired by a related algorithm used for standalone citizens’ assemblies, which is
an extension of column generation to convex programming [11]. At a high level, we convert our
problem to a smoother optimization problem by defining a convex loss over randomized assignments
measuring how far a distribution is from satisfying all ex ante guarantees. The algorithm maintains a
set of (deterministic) assembly assignments that all satisfy ex post guarantees. It alternates between
two steps. First, it finds the distribution over just this set of assignments that minimizes the squared
error. If this distribution achieves zero error (or, more accurately, some small additive error of .1%
to avoid numerical issues), then every ex ante guarantee is satisfied; in that case, we have found a
solution and subsequently return it. On the other hand, if it does not, the algorithm runs an ILP to
find an assignment satisfying ex post guarantees that maximizes the loss gradient the current best
possible point. We iterate these two steps until a solution is found.

Experimental Setup. We draw instances as follows. First, we fix a number of equivalence classes (2,
5, 10, or 20) and then sample their relative sizes from an exponential distribution. Next, we iterate
through a number of federations (2, 5, 10, or 20). Each federation has a randomly selected set of
already defined federations or equivalence classes as children.2 This method allows for arbitrary
DAGs to be sampled. We then test these instances with various assembly sizes n (2, 5, 10, or 20).

For each combination of parameters, we sampled and ran 100 instances. All optimizations were
solved using Gurobi on an Amazon Web Services (AWS) instance with 128 vCPUs of a 3rd Gen

2This means that we allow federations to have direct members and child assemblies. However, this generality
only makes the problem harder.
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Figure 1: Scatter plots showing the time taken and number of panels in the support for each of the
instances we ran on. Sub-plots show the same plot, colored by a parameter.

AMD EPYC running at 3.6GHz equipped with 1TB of RAM. We were able to run 64 instances in
parallel, giving each thread two processors. Depending on the size of the instance, computation took
anywhere from under a tenth of a second to multiple hours.

Results. Of the 6400 instances, on all but 15, the algorithm terminated, returning an optimal solution.
These 15 had only the largest number of equivalence classes and federations (20 each). With better
optimization, in practice, the problem of finding a randomized assignment satisfying all of our
guarantees appears to be both feasible and tractable.

For the >99.7% of instances that did terminate, we use two metrics to measure the complexity of
finding the distributions: the elapsed time and the number of panels added to the support. A scatter
plot showing the relationship between these parameters is given in Figure 1. Each subfigure shows
the same points but colors them depending on a different parameter so that we may see its effect.
Overall, we see that both of these complexity measures are quite similar. Furthermore, increasing
the number of equivalence classes and federations strongly correlates with increased complexity.
Assembly size, on the other hand, appears to be relatively unimportant.

6 Discussion

The democratic governance of large-scale digital communities is an open problem. Key challenges
include, first, the penetration of fake and duplicate digital identities (a.k.a. sybils), and second, the
perils of large-scale online voting, which is considered to be untenable by some leading experts [17].
Federated assemblies can be viewed as a step in an effort to address these challenges. Our approach
may address sybils by having the laminar core built from small local communities in which members
know each other to be genuine and from communities that federate only if they trust each other to be
genuine, for example by having sufficient intersection or actual relationships among them to base this
trust on. Large-scale online voting is a nonissue as every federation, no matter how large, is governed
by an assembly that engages in “small-scale” democracy.

Our approach also has some limitations. First and foremost, an obvious barrier to federated assemblies
is the question of who would set up such assemblies, manage the infrastructure, and provide funding?
One way to address this challenge is to use the conceptual framework and architecture of grassroots
systems [22, 24] and to construct the application of grassroots federated assemblies as a grassroots
platform [23], operated on peoples’ smartphones without relying on any global resources other than
the network itself.

Second, we modeled the problem as a static and single-shot: we simply needed to sample a single
assignment fairly. In practice, however, these assemblies are dynamic and must be periodically
updated. This is not an inherent limitation, however. Indeed, one solution is to resample fresh
assemblies every fixed amount of time. However, this may get more challenging if the system is more
malleable with members coming and going. We may hope for more “ex-post over time” properties to
ensure no group is consistently receiving the short end of the stick. Furthermore, we may hope to
allow for local changes to occur without completely refreshing all assemblies simultaneously, say
rotating people in and out one at a time, and doing so with minimal changes to assemblies on the

9



opposite side of the graph. Modeling this well and defining useful “over-time” fairness properties
seems to be challenging yet potentially impactful future work.

Finally, although we analytically solve well-motivated special cases, we leave open whether a
randomized assignment satisfying all of our desiderata exists in the general case. In our extensive
experiments, we have not found any infeasible instances, and we are therefore optimistic that existence
can be guaranteed.
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A Extending Algorithm 1 to Smaller Equivalence Classes

We will analyze here the probability of Algorithm 1 needing more than |CL| people from each
equivalence class CL. It is sufficient to ensure this does not occur in the leaves, as in the proof of
Theorem 1 internal nodes select fewer people from |CL| than their children.

Fix an equivalence class CL and a leaf node ℓ ∈ L. We can directly analyze the probability that
more than |CL| people are selected from CL for this assembly. Namely, for each of the n draws, the
probability that it was a member from CL is |CL|/|Nℓ|. We are doing n draws of this. Hence, we
wish to analyze the probability of Pr[

∑n
i=1 Xi > |CL|], where each Xi is drawn from an independent

Bernoulli with Pr[Xi = 1] = |CL|/|Nℓ|. By Chernoff bound says that for all X which is the sum of
independent variables with µ = E[X] and δ ≥ 0,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

≤
(

e

1 + δ

)(1+δ)µ

.

For our purposes, µ = n|CL|/|Nℓ|, and we wish to set δ such that µ(1 + δ) = |CL|, so 1 + δ =
N |ell|/n. This implies that the probability of failure is at most(

e · n
|Nℓ|

)|CL|

.

Suppose additionally that populations are not too small in the sense that |Nℓ| ≥ q|N | for some value
q. Then, this is at most (

e · n
q · |N |

)|CL|

.

Finally, to ensure this happens for no leaves or equivalence classes, we need to union bound over the
at most |G| leaf nodes and |N | equivalence classes, leading to a total probability of failure of at most

|N ||G| ·
(
e · n
q|N |

)|Cℓ|

.

Now, suppose each |Cℓ| is of size at most 3. Furthermore, assume that |N | ≫ n, 1/q, |G|, which
we would expect for reasonable instances. Thus, it makes sense to interpret this asymptotically as
|N | grows large compared to the rest of the terms. This leads to a bound of failure of O(1/|N |2),
essentially negligible compared to all ex-ante guarantees (which are Θ(1/|N |)).

B Proof of Theorem 2

Showing inheritance, ex ante child representation, and ex post child representation follow immediately
from the definition of the algorithm.

It remains to establish individual representation. Fix a person i, and let ℓ ∈ LEAVES(G) be the
leaf node they are signed up for. Note that Aℓ is simply a random sample of n people from Nℓ, so
clearly Pr[i ∈ Aℓ] = n/|Nℓ| . Next, fix a federation f∗ ∈ FEDS(G) such that i ∈ Nf∗ . Consider
running the algorithm in a different order, sampling all vectors (sc,f )c∈CHILDRENf at the beginning
before starting the algorithm, and then running according to these samples. Note that this leads to an
equivalent process because each (sc,f )c∈CHILDRENf is sampled independently of everything else in the
algorithm. Condition on a specific sample of these vectors. Let ℓ = v0, v1, . . . , vk = f be the path in
G that leads from ℓ to f . Note that we can now directly compute the probability i ∈ Af∗ because the
only way to do so is if i ∈ Aℓ and i ∈ Bvj−1,vj for each j ≥ 1. Hence, this probability is exactly

n

|Nℓ|
·

k∏
j=1

svj−1,vj

n
.

To get the unconditional probability, we can simply take the expectation over all s values, i.e.,

E

 n

|Nℓ|
·

k∏
j=1

s
vj
vj−1

n

 .
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Since each sc,f and sc′,f ′ is sampled independently for f ̸= f ′, we can push the expectation in to get
equality to

n

|Nℓ|
·

k∏
j=1

E [svj−1,vj ]

n
=

n

|Nℓ|
·

k∏
j=1

n · qvj−1,vj

n
=

n

|Nℓ|

k∏
j=1

|Nvj−1
|

|Nvj |
=

n

|Nf∗ |
,

as needed.

C Impossibility for Iterative Algorithms

To formalize this impossibility result, we call an algorithm topologically iterative if it has the same
structure as Algorithm 2, except line 2 and 5 are replaced with potentially different sampling schemes.
Proposition 1. For all assembly sizes n, there exist instances both with G being a tree (but people
signed up for multiple leaves) or people signed up for a single leaf (but G not being a tree) where no
topologically iterative algorithm can simultaneously satisfy individual representation and ex ante
child representation.

Proof. We begin with an instance where G is a tree, but some people are signed up for multiple
leaves. Fix an assembly size n. There will be a single federation f with 2n children c1, . . . , c2n
which are all leaves. We will define populations by equivalence classes. There will be 2n sets of
people C{cj} of equal size that each are only signed up for cj , i.e., |C{cj}| = k for some arbitrary
integer k. In addition, there will be a set C{c1,...,c2n} of people signed up for all children assemblies.
This will be 2n− 1 times as large as each individual group, so |C{c1,...,c2n}| = (2n− 1)k. Note that,
by symmetry, qcj ,f = 1/(2n) for each j.

Suppose our strategy now is to (1) sample (Ac1 , . . . , Ac2n) (from some distribution satisfying individ-
ual representation) (2) independently, sample an integral vector (s1, . . . , s2n) such that

∑
j sj = n

and E[sj ] = n/(2n) = 1/2, and then (3) choose Af by selecting sj people from Acj . We now
claim that we cannot select Af such that it satisfies individual representation. Indeed fix an arbi-
trary i ∈ C{c1}. A necessary condition for i ∈ Af is that both i ∈ Ac1 and s1 ≥ 1. Note that
Pr[i ∈ Ac1 ] =

n
|Cc1 |+|C{c1,...,c2n}| =

1
2k . Furthermore, Pr[s1 ≥ 1] ≤ 1/2 by Markov’s inequality.

Since these are selected independently, the probability they both occur is at most 1
4k . However,

individual representation ensures that Pr[i ∈ Af ] =
n

|C{c1,...,c2n}|+
∑

j |C{cj}|
= n

(4n−1)k > 1
4k .

To convert this to an instance where G is not a tree, we can have an additional node for each
equivalence class, and have these nodes point to the set of leaf assemblies that class was signed up
for. Then, each person can sign up for this single corresponding leaf node rather than a larger set of
nodes, and the same argument goes through.

D Algorithm 3 Helper Functions

Here, we formalize the helper functions used in Algorithm 3, presented as Algorithm 4. All of the
randomized rounding can be done using a variation of the Birkhoff Von-Neumonn Theorem. Namely,
Budish et al. [6] give an algorithm to handle the following randomized rounding instances. Say we
are given a set of values p1, . . . , pk and a set of constraints represented as a family of sets I where
each I ⊆ I has I ⊆ {1, . . . , k}. Our goal is to round these values to x1, . . . , xk such that E[xi] = pi.
Furthermore, we will do this such that for all I ∈ I, ⌊

∑
i∈I pi⌋ ≤

∑
i∈I xi ≤ ⌈

∑
i∈I pi⌉. Budish

et al. [6] show that if I is a bihierarchy, then this is possible and can be done with a polynomial time
algorithm. I is said to be a bihierarchy of there exists a partition I = I1 ∪ I2 such that for all pairs
I, I ′ ∈ Ij of either partition, either I ⊆ I ′, I ′ ⊆ I , or I ∩ I ′ = ∅. One can check that all randomized
roundings we do in the helper functions take this form.

E Proof of Theorem 3

There are a variety of conditions we must check, namely, that Algorithm 3 can successfully run to
completion, it returns a valid assembly assignment, and that the returned assignment satisfies our ex
ante and ex post guranteess
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Algorithm 4 Helper functions

1: function ROUND(x)
2: return ⌈x⌉ with probability x− ⌊x⌋ and ⌊x⌋ otherwise.
3: function SAMPLELEAVES((CT )T⊆T , (st)t∈T , n)

4: pTt ←
|CT |/|T |∑

T ′:t∈T ′ |CT ′ |/|T ′| · st for all T ⊆ T with nonempty CT and t ∈ T .

5: Round all (pTt )t,T to (αT
t )t,T such that E[αT

t ] = pTt , αT
t ≤ ⌈pTt ⌉,∀t,

∑
T :t∈T αT

t = st,
and ∀T,

∑
t∈T αT

t ≤ ⌈
∑

t∈T pTt ⌉.
6: for T ⊆ T do
7: Choose (DT

t )t∈T of sizes (αT
t )t∈T randomly from CT such they are each disjoint

8: for t ∈ T do
9: BSEL

t ←
⋃

T :t∈T DT
t

10: for t ∈ T do
11: qTt ←

|CT |(1−1/|T |)∑
T ′:t∈T ′ |CT ′ |(1−1/|T ′|) · (n− st) for all T ⊆ T with nonempty CT and t ∈ T

12: Round (qTt )T to (βT
t ) such that each βT

t ≤ ⌈qTt ⌉,
∑

T βT
t = n− st, and E[βT

t ] = qTt .
13: for T : t ∈ T do
14: Choose ET

t be a random sample of βT
t members of CT \ {DT

t }.
15: BUNS

t ←
⋃

T :t∈T ET
t .

16: return (BSEL
t , BUNS

t )t∈T
17: function SAMPLEFROMCHILDREN(s, n, (BSEL

c , BUNS
c , wc, |Nc|)c)

18: Let xSEL
c = s · wc∑

c′ wc′
and xUNS

c = (n− s) |Nc|−wc∑
c′ |Nc′ |−wc′

for all c.
19: Round each xj

c for j ∈ {SEL, UNS} and child c to γj
c such that E[γSEL

c ] = xSEL
c , γSEL

c ≥ ⌊xSEL
c ⌋,

for
∑

c γ
SEL
c = s,

∑
c γ

UNS
c = n− s, and for all c, γSEL

c + γUNS
c ≥ ⌊xSEL

c + xUNS
c ⌋.

20: for all c do
21: Let DSEL

c be a random sample of size γSEL
c from BSEL

c
22: Let DUNS

c be a random sample of size γUNS
c from BUNS

c .
23: BSEL

c ←
⋃

c D
SEL
c

24: BUNS
c ←

⋃
c D

UNS
c

25: return BSEL
c , BUNS

c

26: function ROUNDANDSAMPLE(SIZE, ((S1, x1), . . . (Sk), (xk))
27: Let (y1, . . . , yk) = SIZE · ( x1∑

j xj
, . . . , xk∑

j xj
)

28: Round (x1, . . . , xk) to (γ1, . . . , γk) such that E[γi] = xi and ⌊xi⌋ ≤ γi ≤ ⌈xi⌉ and∑
i γi = SIZE.

29: for i = 1, . . . , k do
30: Let Di ⊆ Bi be a random sample of size γi
31: return

⋃
i Di

Fix an arbitrary rounding sr,t for r ∈ R and t ∈ T from line 2. We will take for now that these are
fixed constants satisfying ⌊n · wr,t

|Nr,t|⌋ ≤ sr,t ≤ ⌈n · wr,t

|Nr,t|⌉, only considering randomness from other
sampling. In the end, we will deal with the randomness over these sr,t values as well to prove some
ex ante guarantees.

We will show for all (r, t) ∈ R× T , the following properties hold:

1. Each BSEL
r,t , B

UNS
r,t ⊆ N(r,t).

2. Each |BSEL
r,t | = sr,t, |BUNS

r,t | = n− sr,t.

3. Each pair BSEL
r,t and BUNS

r,t are disjoint.

4. All of (BSEL
r,t )t∈T are pairwise disjoint.

5. For i ∈ N(r,t), Pr[i ∈ BSEL
r,t ] =

sr,t
|Li|·wr,t

and Pr[i ∈ BUNS
r,t ] =

(n−sr,t)(1−1/|Li|)
|Nr,t|−wr,t

.
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Fix a topic t ∈ T . We will show these properties for all r by structural induction on the graph R. We
begin by proving it is the case for leaf nodes r ∈ LEAVES(R). Fix such an r.

For such an r, we simply need to analyze the SAMPLELEAVES function, showing that it can run
successfully and produces an output satisfying the desired properties.

Properties 1– 4 are immediate from the algorithm assuming it can run to completion. However, we
must show that the random choices made on lines 7 and 14 are feasible, in the sense that the set we
are selecting from has enough people. To that end, fix a set T ⊆ T , and consider the execution of
line 7. Note that this is successful as long as

∑
t α

T
t ≤ |CT |. Indeed, we have

∑
t α

T
t ≤ ⌈

∑
t∈T pTt ⌉

by assumption of the rounding. Expanding this, for each t,

pTt =
|CT |/|T |

wr,t
· st ≤

|CT |/|T |
wr,t

·
⌈
n · wr,t

|Nr,t|

⌉
.

Let λ = wr,t/|Nr,t|. We have that |Nr,t| ≥ 4n, so this is at most

|CT |/|T |
4λn

· ⌈λn⌉.

Now, since λ ≥ ε, λn ≥ 2λ
εδ ≥ 1. Thus ⌈λn⌉

2λn ≤ 1, and we have pTt ≤ |CT |/|T |. Summing up over t,
we get that

∑
t∈T pTt ≤ |CT |. Thus, |CT | ≥ ⌈|CT |⌉ = ⌈

∑
t∈T pTt ⌉ since |CT | is an integer.

Next, fix r, t ∈ T , and T with t ∈ T , and consider the run of line 14 with these parameters. Note
that this sample will be successful as long as |CT | ≥ αT

t + βT
t . We additionally have αT ≤ ⌈pTt ⌉

and βT
t ≤ ⌈qTt ⌉. Therefore, we have

αT
t + βT

t

≤ ⌈pTt + qTt ⌉+ 1

≤
⌈
|CT |/|T |

wr,t

⌈
n · wr,t

|Nr,t|

⌉
+
|CT |(1− 1/|T |)
|Nr,t| − wr,t

⌈
n · (|Nr,t| − wr,t)

|Nr,t|

⌉⌉
+ 1

=

⌈
|CT |

(
(1/|T |) ·

(
1

wr,t
·
⌈
n · wr,t

|Nr,t|

⌉)

+ (1− 1/|T |)
(

1

|Nr,t| − wr,t

)⌈
n · (|Nr,t| − wr,t)

|Nr,t|

⌉)⌉
+ 1.

Now, since (1/|T |) + (1− 1/|T |) = 1, this is a convex combination between two terms. Thus, we
may upper bound it by the maxmium of the two as

≤
⌈
|CT |max

(
1

wr,t
·
⌈
n · wr,t

|Nr,t|

⌉
,

(
1

|Nr,t| − wr,t

)⌈
n · (|Nr,t| − wr,t)

|Nr,t|

⌉)⌉
+ 1.

Again, let λ = wr,t/|Nr,t| ≤ wr,t/4n, we can expand

1

wr,t
·
⌈
n · wr,t

|Nr,t|

⌉
≤ ⌈λn⌉

4nλ
.

Since nλ ≥ ε · 2
εδ ≥ 2, we have that ⌈λn⌉

4nλ ≤ 1/2. The same argument applies for the second term
swapping λ with 1− λ, since we also know 1− λ ≥ ε. Thus, since we have also assumed |CT | ≥ 2,
this simplifies to ⌈|CT |/2⌉+ 1 ≤ |CT |, as needed.

Finally, we handle property 5. Fix i ∈ N(r,t) with Li = {r} × T , and note that t ∈ T . Now, by
symmetry, each member of CT is equally likely to be in each of BSEL

r,t and BUNS
r,t . Thus, the probability

is simply the expected number of seats going to CT divided by |CT |. This is precisely pTt /|CT | and
qTt /|CT |, which expand to our desired values.

Next, we proceed to the inductive step. Fix an internal node r ∈ FEDS(R) and topic t ∈ T . Suppose
all of the properties hold BSEL

c,t and BUNS
c,t for c ∈ CHILDREN(r). To show they hold for this r and t,

we must consider the SAMPLEFROMCHILDREN step. We will show it successfully runs, producing
BSEL

r,t and BUNS
r,t satisfying all of the properties.
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The two places SAMPLEFROMCHILDREN may fail are on lines 21 and 22 if we wish to sample more
people than are available. Line 21 can run successfully as long as γSEL

c ≤ |BSEL
c,t | = sc,t for each

c ∈ CHILDREN(r). Fix such a child c. Note that by the rounding, we have that γSEL
c ≤ ⌈s · wc,t∑

c′ wc′,t
⌉

Note that the denominator
∑

c′ wc′,t = wr,t since children are disjoint. Furthermore, we have that
sr,t ≤ ⌈n · wr,t

|Nr,t|⌉ and sr,t ≥ ⌊n · wc,t

|Nc,t|⌋. Therefore, it is sufficient to show⌈⌈
n · wr,t

|Nr,t|

⌉
· wc,t

wr,t

⌉
≤
⌊
n · wc,t

|Nc,t|

⌋
.

This is implied by ⌈
n · wr,t

|Nr,t|

⌉
· wc,t

wr,t
+ 1 ≤ n · wc,t

|Nc,t|
,

which itself is implied by

(n · wr,t

|Nr,t|
+ 1) · wc,t

wr,t
+ 1 ≤ n · wc,t

|Nc,t|
.

Finally, note that (
n · wr,t

|Nr,t|
+ 1

)
· wc,t

wr,t
+ 1 ≤ n · wr,t

|Nr,t|
+ 2,

so this entire inequality follows from

n · wr,t

|Nc,t|
− n · wr,t

|Nr,t|
≥ 2.

Now, we have that

n · wr,t

|Nc,t|
− n · wr,t

|Nr,t|
= n · wr,t

|Nc,t|
(1− |Nc,t|

|Nr,t|
) ≥ n · ε · δ ≥ 2,

by assumption on n.

A similar argument works for line 22. Fix c ∈ CHILDREN(r). We need to show that⌈
(n− sr,t) ·

|Nc,t| − wc,t∑
c′ |Nc′,t| − wc′,t

⌉
≤ n− sc,t

for all c ∈ CHILDREN(r). Expanding definitions, this is implied by⌈⌈
n

(
|Nr,t| − wr,t

|Nr,t|

)⌉
|Nc,t| − wc,t

|Nr,t| − wr,t

⌉
≤
⌊
n · |Nc,t| − wc,t

|Nc,t|

⌋
.

Doing the same expansion on the ceilings, this inequality is implied by

n · |Nc,t| − wc,t

|Nr,t|
+ 2 ≤ n · |Nc,t| − wc,t

|Nc,t|
.

Finally, we have that

n · |Nc,t| − wc,t

|Nc,t|
− n · |Nc,t| − wc,t

|Nr,t|
= n · |Nc,t| − wc,t

|Nc,t|
·
(
1− |Nc,t|
|Nr,t

)
≥ n · ε · δ ≥ 2.

Now that we have proved the function runs successfully, we prove the properties. We have that
BSEL

r,t ⊆
⋃

c∈CHILDREN(r) B
SEL
c,t ⊆

⋃
c∈CHILDREN(r) N(c,t) = N(r,t), and a symmetric argument holds

for BSEL
r,t . The size holds because the sets BSEL

c,t are pairwise disjoint, so we never select the same
person twice, and end up with sr,t distinct people. Again, a symmetric argument works for BUNS

r,t .
The disjointness holds trivially because it held for the children sets, along with distinct child regions
having disjoint populations. Finally, fix i ∈ N(r,t), and suppose c ∈ CHILDREN(r) is the unique
child such that i ∈ Nc. Then the only way i can be in BSEL

(r,t) is if i was selected to BSEL
(c,t), and is then

subsequently in the subset selected to join BSEL
(r,t). The probability of being in BSEL

(c,t) is sc,t
|Li|·wc,t

by
induction. Furthermore, we sample γSEL

c with E[γSEL
c ] =

sr,t
wc,t

wr,t and selected γSEL
c out of the sc,t
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people uniformly at random from BSEL
(c,t). Thus conditioned on i ∈ BSEL

(c,t), the probability i is in BSEL
(s,t)

is sr,t
wc,t

wr,t. Hence, the overall probability i ∈ BSEL
(s,t) is

sc,t
|Li| · wc,t

·
sr,t
wc,t

wr,t

sc,t
=

sr,t
|Li| · wr,t

,

as needed. A symmetric argument holds for BUNS
(r,t).

Finally, there is one more place where the algorithm can potentially fail, which is in the ROUNDAND-
SAMPLE call on line 30. To ensure that this line can run, we need to make sure that for each region r
and topic t, |BSEL

r,t | = sr,t ≤ ⌈n · wr,t

|N(r,t)|
⌉ is sufficiently large to be able to sample from. Note that we

will take at most ⌈n · wr,t∑
t′ wr,t′

⌉ people. Furthermore, this denominator is |Nr|. So, we simply need
to show ⌈

n · wr,t

|Nr|

⌉
≤
⌊
n · wr,t

|Nr,t|

⌋
.

Note that since
⌊
n · wr,t

|Nr,t|

⌋
is an integer, this is implied by

n · wr,t

|Nr|
≤
⌊
n · wr,t

|Nr,t|

⌋
.

Again, let λ =
wr,t

|Nr,t| . We then have

n · wr,t

|Nr|
= n · λ · |Nr,t|

|Nr|
≤ n · λ · (1− δ)

= nλ− nλδ.

Now, since λ ≥ ε, nλδ ≥ 2. Therefore, this is at most

nλ− 2 ≤ ⌊nλ⌋ =
⌊
n · wr,t

|Nr,t|

⌋
,

as needed.

We have now shown that Algorithm 3 can execute to completion. In what we remains we show all
of the properties that it satisfies. First, note that each assembly in the final assignment is of size n
because it is composed of a disjoint union of sets whose sizes add up to n.

Next, we show that approximate ex post child representation holds. Fix a region r. We first consider
(r, ∗). Note that for each t, we select at least ⌊n · wr,t

|Nr|⌋ members from BSEL
(r,t) ⊆ A(r,t). Thus,

A(r,t) ∩ A(r,∗) ≥ ⌊n ·
wr,t

|Nr|⌋, the exact child representation guarantees. Now fix an internal region
r ∈ FEDS(R), a child c ∈ CHILDREN(R) and a topic t ∈ T . We show that |A(c,t) ∩ A(r,t)| ≥
⌊n · N(c,t)

N(r,t)
⌋ − 1. Indeed, |A(c,t) ∩ A(r,t)| = |BSEL

c,t ∩ BSEL
(r,t)|+ |B

UNS
c,t ∩ BUNS

(r,t)|. These two sizes are
randomly selected on line 19 of SELECTFROMCHILDREN, and their sum will be γSEL

c + γUNS
c . There

is a constraint that

γSEL
c + γUNS

c ≥ ⌊xSEL
c + xUNS

c ⌋ =
⌊
sr,t ·

wc,t

wr,t
+ (n− sr,t) ·

|N(c,t)| − wc,t

|N(r,t)| − wr,t

⌋
.

We will show that

sr,t ·
wc,t

wr,t
+ (n− sr,t) ·

|N(c,t)| − wc,t

|N(r,t)| − wr,t
≤
|N(c,t)|
|N(r,t)|

− 1. (1)

which implies the ex post guarantees. Note that if s(r,t) were equal to its expectation n · wr,t

|N(r,t)|
, then

the sum simplifies to exactly |N(c,t)|
|N(r,t)|

. Note that by rounding s(r,t) to a neighboring integer, one of
s(r,t) and (n− sr,t) is larger than its expectation, and the other is smaller. However, this different is

at most one. Furthermore, they are multipled by either wc,t

wr,t
or |N(c,t)|−wc,t

|N(r,t)|−wr,t
, terms which are at most
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1. Hence, even after this rounding, the sum inside can differ from the expectation by at most one, and
we get the lower bound of |N(c,t)|

|N(r,t)|
− 1, as needed.

Next, we consider ex ante child representation. For a node (r, ∗), this is straightforward, as we directly
round to get in expectation n · w(r,t)

|Nr| selected from BSEL
r,t ⊆ A(r,t). For an internal r ∈ FEDS(R),

child c ∈ CHILDREN(r), and topic t ∈ T , the overlap of |A(r,t) ∩A(c,t)| is precisely the number of
people selected from BSEL

c,t for BSEL
r,t plus the number of people selected from BUNS

c,t for BUNS
r,t , as these

sets are disjoint. The expected number of each is s(r,t) ·
wc,t

wr,t
and (n− s(r,t)) ·

|N(c,t)|−wc,t

|N(r,t)|−wr,t
. If we

take expectation over s(r,t) as well, by linearity, we have that the expected overlap is

n · wr,t

|N(r,t)|
· wc,t

wr,t
+

(
n− n · wr,t

|N(r,t)|

)
·
|N(c,t)| − wc,t

|N(r,t)| − wr,t
= n ·

|N(c,t)|
|N(r,t)|

,

as needed.

Finally, we show individual representation. First, fix a node (r, ∗) and a person i ∈ Nr signed up
for leaf nodes {r′} × T . For each t ∈ T , we have that i ∈ BSEL

(r,t) with probability s(r,t)
|T |·w(r,t)

. In

expectation, n · w(r,t)

|Nr| will be selected from BSEL
(r,t) to be in A(r,∗). hence, conditioned on i ∈ BSEL

(r,t), i

will be selected with probability
n·

w(r,t)
|Nr|
sr,t

. This means the total probability of i being in both BSEL
(r,t)

and A(r,∗) is n
|T |·|Nr| . Note that i being in each of BSEL

(r,t) cannot happen simultaneously, because these
sets are disjoint. Therefore, the total probability i is in A(r,∗) is the sum of the probabilities of all of
these events, and therefore n

|Nr| .

Finally, consider a node (r, t), and a member i ∈ N(r,t). We have that the probability of i ∈ BSEL
(r,t) is

sr,t
|Li|·wr,t

and the probability of i ∈ BUNS
(r,t) is (n−sr,t)(1−1/|Li|)

|N(r,t)|−wr,t
. Note that these are mutually exclusive

events because the sets are disjoint. Hence, the total probability of i ∈ A(r,t) is the sum

sr,t
|Li| · wr,t

+
(n− sr,t)(1− 1/|Li|)
|N(r,t)| − wr,t

.

By lienarity of expectation over the sampling of sr,t, we have that the complete probability is

n · wr,t

|N(r,t)|

|Li| · wr,t
+

(n− n · wr,t

|N(r,t)|
)(1− 1/|Li|)

|N(r,t)| − wr,t
=

n

|Li|
|N(r,t)|+

n · (1− 1/|Li|)
|N(r,t)|

=
n

|N(r,t)|
,

showing individual representation.
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