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Abstract
Is it possible to understand or imitate a policy
maker’s rationale by looking at past decisions
they made? We formalize this question as the
problem of learning social welfare functions be-
longing to the well-studied family of power mean
functions. We focus on two learning tasks; in
the first, the input is vectors of utilities of an ac-
tion (decision or policy) for individuals in a group
and their associated social welfare as judged by
a policy maker, whereas in the second, the input
is pairwise comparisons between the welfares as-
sociated with a given pair of utility vectors. We
show that power mean functions are learnable
with polynomial sample complexity in both cases,
even if the comparisons are noisy. Finally, we
design practical algorithms for these tasks and
evaluate their performance on simulated data.

1. Introduction
Consider a standard decision making setting that includes
a set of possible actions (decisions or policies), and a set
of individuals who assign utilities to the actions. A social
welfare function aggregates the utilities into a single num-
ber, providing a measure for the evaluation of actions with
respect to the entire group. Utilitarian social welfare, for
example, is the sum of utilities, whereas egalitarian social
welfare is the minimum utility. Given two actions that in-
duce the utility vectors (3, 0) and (1, 1) for two individuals,
the former is preferred when measured by utilitarian so-
cial welfare, whereas the latter is preferred according to
egalitarian social welfare.

When competent decision makers adopt policies that af-
fect groups or even entire societies, they may have a social
welfare function in mind, but it is typically implicit. Our
goal is to learn a social welfare function that is consistent
with the decision maker’s rationale. This learned social
welfare function has at least two compelling applications:
first, understanding the decision maker’s priorities and ideas
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of fairness, and second, potentially imitating a successful
decision maker’s policy choices in future dilemmas or in
other domains.

As a motivating example, consider the thousands of deci-
sions made by public health officials in the United States
during the Covid pandemic: opening and closing schools,
restaurants, and gyms, requirements for masking and social
distancing, lockdown recommendations, and so on. Each
decision induces utilities for individuals in the population;
closing schools, for instance, provides higher utility to med-
ically vulnerable individuals compared to opening them, but
arguably has much lower utility for students and parents.
Assuming that healthcare officials were acting in the public
interest and (approximately) optimizing a social welfare
function, which one did they have in mind? Our goal is to
answer such questions by learning from example decisions.

In order to formalize this problem, there are two issues we
need to address. First, to facilitate sample-efficient learn-
ability, we need to make some structural assumptions on the
class of social welfare functions. We focus on the class of
weighted power mean functions, which includes the most
prominent social welfare functions: the aforementioned
utilitarian and egalitarian welfare, as well as Nash welfare
(the product of utilities). This class is a natural choice, as
it is characterized by a set of reasonable social choice ax-
ioms such as monotonicity, symmetry, and scale invariance
(Roberts, 1980; Cousins, 2023).

Second, we need to specify the input to our learning prob-
lem. There are two natural options, and we explore both:
utility vectors coupled with their values under a target social
welfare function, or pairwise comparisons between utility
vectors. We demonstrate sample complexity bounds for both
types of inputs, where the social welfare value or compar-
isons can be noiseless or corrupted by noise. A limitation of
our approach is that estimating the utility vector associated
with any particular decision or policy may be challenging;
see Section 7 for additional discussion of this point.

Our contributions. Learning weighted power mean func-
tions is a non-standard regression or classification problem
since the function has a complex, highly nonlinear depen-
dence on the power, which is the parameter of interest.
While one can invoke standard hyperparameter selection
approaches such as cross-validation to select p from a grid
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Table 1. A summary of our results regarding the sample complexity of various tasks. Here, κ = log(umax/umin), with all d individual
utilities assumed to be in the range [umin, umax]. ρ ∈ [0, 1/2) is the probability of mislabeling for the iid noise model, and τmax is the
maximum temperature of the logistic noise model

SOCIAL WELFARE INFORMATION LOSS KNOWN WEIGHTS UNKNOWN WEIGHTS

CARDINAL VALUES ℓ2 LOSS O(κ4) O(κ4d log d)
PAIRWISE COMPARISONS 0-1 LOSS O(log d) O(d log d)
PAIRWISE COMPARISON WITH IID NOISE 0-1 LOSS O

(
log d/(1− 2ρ)2

)
O

(
d log d/(1− 2ρ)2

)
PAIRWISE COMPARISONS WITH LOGISTIC NOISE ES-
TIMATION

LOGISTIC LOSS O(τ2
maxκ

2) O(τ2
maxκ

2d log d)

of values, the infinite domain of p does not allow demonstra-
tion of a polynomial sample complexity without deriving an
appropriate cover. We derive statistical complexity measures
such as pseudo-dimension, covering number, VC dimension
and Rademacher complexity for this function class, under
both cardinal and ordinal observations of the social welfare
function. Our sample complexity bounds are summarized in
Table 1. These results may be of interest for other problems
where weighted power mean functions are used, such as
fairness in federated learning (Li et al., 2020).

Below, we highlight some key contributions of this paper.

• We establish the statistical learnability of popular social
welfare functions belonging to the weighted power
mean functions family. We derive a polynomial sample
complexity of O(1) for learning using cardinal social
welfare values under ℓ2 loss, and O(log d) (where d
denotes the number of individuals) for learning using
comparisons under 0−1 loss in the unweighted/known
weight setting. The upper bounds are a consequence
of the monotonicity of the target functions with p in
the cardinal case, and analysis which reveals that the
target functions have O(d) roots in the ordinal case.
As expected, the ℓ2 loss is also sensitive to the range
of utility values κ.

• We establish a polynomial sample complexity of
O(d log d) for both cardinal and ordinal tasks in the
setting when the individual weights are unknown. This
result is intuitive, as learning an additional d weight
parameters incurs a proportional increase in the sample
requirement.

• We also analyze the sample complexity for the more
practical ordinal task under different noise models (in-
dependent and identically distributed aka iid, and logis-
tic noise) and characterize the dependence of sample
complexity on the amount of noise. For the iid setting,
the sample complexity increases with large noise (large
ρ) and reduces to that of noiseless setting when ρ = 0.
Unlike the iid setting where ρ is known, for the logistic
noise, we also consider estimation of the noise level
τmax and evaluate the likelihood with respect to the
noisy distribution. Since the noise is harder to estimate

with increasing τ , the sample complexity increases
with τ . Also, the likehood is sensitive to the range of
utilities κ.

• Despite the non-convexity of the problem, we
demonstrate simple, practical algorithms for learning
weighted power means functions on the above tasks
using simulated data, and observe good performance
over a range of d. Additionally, we verify the theo-
retically derived scaling of sample complexity with d
using our simulations.

Related work. Conceptually, our work is related to that
of Procaccia et al. (2009). They also study the learnability
of decision rules that aggregate individual preferences, but
in their case, the individual preferences are represented
as rankings over a set of alternatives (rather than cardinal
preferences, as in our problem), and the rule to be learned
is a voting rule mapping the input rankings to a winning
alternative. They provide sample complexity results with
respect to two families of voting rules, namely positional
scoring rules and voting trees.

Basu & Echenique (2020) derive bounds on VC dimension
for additive, Choquet, and max-min expected utility for
decision-making under uncertainty, bounding the number of
pairwise comparisons needed to falsify a candidate decision
rule and estabilishing learnability or non-learnability for
these classes. Note that here the decision rule operates on
probability distributions instead of utility vectors, and their
results are very different from ours on a technical level; for
instance, max-min is not learnable in their setting (infinite
VC dimension), whereas it is easily learnable in ours.

Kalai (2001) studies the learnability of choice functions,
establishing PAC guaranteees for this class of problems.
Choice functions are defined with respect to a fixed and
finite set of alternatives X , with each sample being a subset
from X and the choice over this subset. By contrast, our
work involves learning the behavior of a function on an
infinite number of actions parameterized by their feature
vectors, which requires analysis that is very different from
the finite case.

Pellegrini et al. (2021) conduct experiments on learning
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aggregation functions which are assumed to be a composi-
tion of Lp means, observing that they perform favorably in
various tasks such as scalar aggregation, set expansion and
graph tasks. Our analysis is of a more theoretical nature,
establishing the sample-efficient learnability of weighted
power mean aggregation functions.

Melnikov & Hüllermeier (2019) consider learning from ac-
tions with feature vectors and their global scores, with local
scores for each individual not being available for learning.
The goal is to learn both local and global score functions,
and consider the ordered weighted averaging operator for
aggregating local scores. While we assume that each individ-
ual’s local score is given, the aggregation function belongs
to a different function family motivated by social choice
theory, and we provide statistical guarantees for learning
from this family.

2. Problem Setup
2.1. Basic Terminology

We assume that the decision-making process concerns d
individuals. The decision-making setting we consider has
each action associated with a positive utility vector u ∈
[umin, umax]

d ⊂ Rd
+, which describes the utilities derived

by the d individuals.

We encode the impact of each individual i ∈ [d] on the
decision-making process through a weight value wi ≥ 0

such that
∑d

i=1 wi = 1. These weight values together form
a weight vector w ∈ ∆d−1. The weight vector might be a
known or unknown quantity. A common instance in which
the weight vector is known is when all agents are assumed to
have an equal say, in which case w = 1d/d. For all settings
considered in this work, we provide PAC guarantees for
both known weights and unknown weights.

We assume that the decision-making process provides a
cardinal social welfare value to each action. However, this
social welfare value can be latent and need not be available
to us as data. For the first task concerned with cardinal
decision values, the social welfare values are available and
can be used for learning. For the second task, both actions
in the pair have a latent social welfare which is not available
to us; however, the preferred action in the pair is known
to us. We consider learning bounds with the empirical risk
minimization (ERM) algorithm for all the losses in this
work, with p̂ being learned when the weights are known,
and (ŵ, p̂) being learned when the weights are unknown.

2.2. Power Mean

The (weighted) power mean is defined on p ∈ R ∪ {±∞},
and for u ∈ Rd

+,w ∈ ∆d−1, it is

M(u;w, p) =

{
(
∑n

i=1 wiu
p
i )

1/p
, p ̸= 0∏d

i=1 u
wi
i , p = 0

It is more convenient to use the (natural) log power mean
than the power mean, which is defined as:

logM(u;w, p) =

{
log(

∑d
i=1 wiu

p
i )

p , p ̸= 0∑d
i=1 wi log ui, p = 0

Since
∑d

i=1 wi = 1, in effect we have d variables,
w1, . . . , wd−1 and p. We refer to the log power mean family
with known weight w as Mw,d = {logM(·;w, p)|p ∈ R}.
If the weight is unknown, the log power mean family is
denoted by Md = {log(·;w, p)|p ∈ R,w ∈ ∆d−1}.

The power mean family is a natural representation for so-
cial welfare functions. Cousins (2023; 2021) puts forward
a set of axioms under which the set of possible welfare
functions is precisely the weighted power mean family. An
unweighted version of these functions results in the family
of constant elasticity of substitution (CES) welfare functions
(Goel et al., 2019), which are widely studied in economet-
rics.

The power mean family has some useful properties. An
obvious one is that logM(u,w, p) ∈ [log u(1), log u(d)],
where u(1) and u(d) denote the first and d-th order statistics
of u = (u1, . . . , un). log u(1) is attained at p = −∞, and
log u(d) is attained at p = ∞. A more general observation
is the following:

Lemma 2.1. (a) logM(u;w, p) is nondecreasing w.r.t. p
for all u ∈ [umin, umax]

d, w ∈ ∆d−1.

(b) logM(u;w, p) is monotonic w.r.t. wi, i ∈ [d− 1] for
all u ∈ [umin, umax]

d, p ∈ R.

A proof for the above lemma is provided in Appendix A.1.
This monotonicity of the power mean in w and p was also
noted by Qi et al. (2000).

To show the generality of this family of functions, we de-
scribe a few illustrative cases:

• M(u;w, p = −∞) = mini∈d ui, which corresponds
to egalitarian social welfare.

• M(u;w, p = 0) =
∏d

i=1 u
wi
i , which corresponds to a

weighted version of Nash social welfare.

• M(u;w, p = 1) =
∑

i=1 wiui, which corresponds to
weighted utilitarian welfare.
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• M(u;w, p = ∞) = maxi∈d ui, which corresponds to
egalitarian social malfare.

We note that for p = ±∞, the decision utility is independent
of w. With wi = 1/d for all i ∈ [d], we get the conventional
interpretations of the welfare notions mentioned above.

3. Cardinal Social Welfare
We first consider the case where we know the cardinal value
of the social choice associated with each action. Learning
in this setting thus corresponds to regression. Formally,
we assume an underlying distribution D : [umin, umax]

d ×
[umin, umax] over the utilities and social welfare values. We
receive iid samples {(ui, yi)}ni=1 ∼ D, ui being the utility
vector and yi ∈ [ui(1), ui(d)] being the social welfare value
associated with action i.

We consider ℓ2 loss over logM(ui;w, p) and log yi. The
true risk in this case is

R(w, p) = E(u,y)∼D

[
(logM(u;w, p)− log y)

2
]
.

To analyze the PAC learnability of this setting, we first
provide bounds on the pseudo-dimensions of Mw,d and
Md. To achieve this, we use an important property: the
log power mean can be expressed using another log power
mean with individual utilities in a fixed range

Lemma 3.1. Let q = p log
(
u(d)/u(1)

)
, and r ∈ [1, e]d

such that

ri = exp

(
log(ui/u(1))

log(u(d)/u(1))

)
Then,

logM(u;w, p) = log u(1) + log

(
u(d)

u(1)

)
logM(r;w, q)

We prove Lemma 3.1 in Appendix A.2. We note that since
ri ∈ [1, e] for any i ∈ [d], logM(r;w, q) ∈ [0, 1].
We now define the function classes Sw,d =
{f(u;w, p) = logM(r;w, q)|(w, p) ∈ ∆d−1 × R}
and Sd = {f(u;w, q) = logM(r;w, p)|p ∈ R}, with r
and q defined according to the above lemma. We have the
following bounds on pseudo-dimensions of Sw,d and Sd:

Lemma 3.2. (a) If w is known, then Pdim(Sw,d) = 1.

(b) If w is not known, then Pdim(Sd) < 8d(log2 d+ 1).

A detailed proof is provided in Appendix A.4. We highlight
the fact that p and w are the parameters of the log power
mean function family, which calls for the novel bounds pro-
vided in this work. These bounds on the pseudo-dimensions
can now be used to obtain Rademacher complexity bounds.

Lemma 3.3. Let κ = log(umax/umin).

(a) If w is known, then

R̂(Mw,d) ≤ κ

(√
2 log 2 + 2 log n

n
+

c√
n

)

(b) If w is unknown, then

R̂(Mw,d)

≤ κ

(√
2 log 2 + 16(2 log2 d+ 1) log n

n
+

c√
n

)
,

where c > 0 is a constant.

Proof Sketch. Mw,d and Md consist of functions which
are shifted and scaled versions of functions in Sw,d and Sd.
We can make use of the pseudo-dimensions from Lemma
3.2 and scale them appropriately to obtain the above bounds.
A more detailed proof is provided in Appendix A.5.

We observe that the above lemma provides O(
√
log(n)/n)

and O(
√
d log(d) log(n)/n) bounds on the Rademacher

complexity for unknown and known weights respectively.
An important aspect of the above bounds is their dependence
on log (umax/umin). Intuitively, this means that the richness
of the function class increases as the range over utilities
increases. An illustrative case is when umin = umax = u,
in which case all individiuals have identical utilities, and
logM(u;w, p) = u for any w ∈ ∆d−1, p ∈ R. The power
mean family is not very expressive in this case, and the
bound on the Rademacher complexity reducing to zero also
supports this conclusion.

We can now provide PAC bounds for this setting.

Theorem 3.4. Given a set of samples {(ui, yi)}ni=1 drawn
from a distribution D, for any δ > 0, the following holds
with probability at least 1 − δ with respect to the ℓ2 loss
function:

(a) If w is known, then

R(w, p̂)− inf
p∈R

R(w, p)

≤ 16κ2

(√
2 log 2 + 2 log n

n
+

c√
n

)
+ 6

√
log(4/δ)

2n

(b) If w is unknown, then

R(ŵ, p̂)− inf
(w,p)∈∆d−1×R

R(w, p)

≤ 16κ2

(√
2 log 2 + 16(d log2 d+ 1) log n

n
+

c√
n

)

+ 6

√
log(4/δ)

2n

where κ = log(umax/umin).

Proof Sketch. Since M(ui;w, p) ∈ [umin, umax] and yi ∈
[umin, umax], the ℓ2 loss function in this case has domain
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[− log(umax/umin), log(umax/umin)] = [−κ, κ]. It is Lip-
schitz continuous in this domain with Lipschitz constant
2κ Using lemma 3.3 and Talagrand’s contraction lemma,
we obtain the bounds R̂(ℓ ◦ Mw,d) ≤ 2κR̂(Mw,d) and
R̂(ℓ ◦Md) ≤ 2κR̂(Md). These Rademacher complexity
bounds are then used to obtain the uniform convergence
bounds stated above. A detailed proof is provided in Ap-
pendix A.6.

These bounds are distribution-free, with the only assump-
tion being that all utilities and social welfare values are
in the range [umin, umax]. They also imply an O(1) and
O(d log d) dependence of sample complexity on d for
known and unknown weights respectively. Moreover, we
observe the extensive dependence of the upper bound on κ
for the ℓ2 loss. Since κ is scale invariant, scaling all utility
vectors and social welfare values has no impact on the PAC
guarantees achievable in this setting.

Computationally, logM(u;w, p) is non-convex in w and
p, which means that the ℓ2 loss is also non-convex. This
makes ERM challenging in this setting. Conventional meth-
ods such as gradient descent might end up stuck in local
optima or saddle points. However, as we observe in our
experiments, sufficient random sampling before conducting
gradient descent can result in reasonable empirical perfor-
mance up to moderately high d.

Another shortcoming of this setting is that decision-makers
are required to provide a social welfare value for each action.
A more natural setting might be when decision-makers only
provide their preferences between actions — potentially just
their revealed preferences, i.e., the choices they have made
in the past — and we address this case next.

4. Pairwise Preference Between Actions
We assume an underlying distribution

D : [umin, umax]
d × [umin, umax]

d × {±1} .

We obtain i.i.d. samples {((ui,vi), yi)}ni=1 ∼ D, where
(ui,vi) are the utilities for the i-th pair of actions, and yi
is a comparison between their (latent) social choice values.
We encode the comparison function as C : [umin, umax]

d ×
[umin, umax]

d → {±1}, with

C((u,v);w, p) = sign (logM(u;w, p)− logM(v;w, p)) .

We denote the family of above functions by Cw,d =
{C((u,v);w, p) : p ∈ R} when the weights are known,
and Cd = {C((u,v);w, p) : p ∈ R,w ∈ ∆d−1} when the
weights are unknown. We consider learning with 0− 1 loss
over C((ui,vi);w, p) and yi. The true risk in this case is

R(w, p) = E((u,v),y)∼D

[
(1 + y · C((u,v);w, p))

2

]
.

To provide convergence guarantees for the above setting, we
bound the VC dimension of the comparison-based function
classes mentioned above

Lemma 4.1. (a) If w is known, then VC(Cw,d) <
2(log2 d+ 1).

(b) If w is unknown, then VC(Cd) < 8(d log2 d+ 1).
(c) If w is unknown, then VC(Cd) ≥ log2 d+ 1.

The above lemma is proved in Appendix A.3. Note that
the lower bound in Part (c) is relatively weak; we expect
the true lower bound to be at least VC(Cd) = Ω(d), and
improving it is an open problem.

The finiteness of VC dimension guarantees PAC learnabil-
ity, and we get uniform convergence bounds using the VC
theorem.

Theorem 4.2. Given samples {((ui,vi), yi)}ni=1 ∼ D and
for 0-1 loss and any δ > 0, with probability at least 1− δ,

(a) If w is known, then
R(w, p̂)− inf

p∈R
R(w, p)

≤ 16

√
2(log2 d+ 1) log(n+ 1) + log(8/δ)

n

(b) If w is unknown, then
R(ŵ, p̂)− inf

(w,p)∈∆d−1×R
R(w, p)

≤ 16

√
8(d log2 d+ 1) log(n+ 1) + log(8/δ)

n

We note that unlike the bounds on ℓ2 loss of Theorem 3.4,
these bounds on 0/1 loss are independent of the range of utili-
ties κ, and only depend on d. They provide sample complex-
ity bounds which depend on d as O(log d) and O(d log d)
for known and unknown weights respectively. Despite these
PAC guarantees, empirical risk minimization can be partic-
ularly difficult in this case, since the loss function as well
as the function class logM(u;w, p)− logM(v;w, p) can
be non-convex. To illustrate this non-convexity, we plot the
value of the above function for two pairs of utility vectors
with respect to p in Figure 1, with d = 6 and w = 1d/d.
We observe that gradient-based methods can potentially get
stuck in local optima which do not label all the samples cor-
rectly. However, as we show in the experiments, adequate
random sampling before using gradient-based methods can
lead to good performance for this setting too.

4.1. Convergence Bounds Under IID Noise

Decision making can be especially challenging if two ac-
tions are difficult to compare, and the preference data we
obtain can potentially be noisy. We first consider each com-
parison to be mislabeled in an i.i.d. manner with probability
ρ ∈ [0, 1/2). We make use of the framework developed
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Figure 1. An example showing the non-convexity of
logM(u,w, p) − logM(v,w, p). We see that the func-
tion has five roots for (u,v), but is translated downwards for
(u,v′) and has only three roots in this case. If the correct label
is 1 for both pairs, then p should be greater than 6; however,
gradient-based optimization can stop between 3 and 4, which is a
local optimum and does not give correct labels to both points.

by Natarajan et al. (2013), and we consider convergence
guarantees under 0-1 loss.

Specifically, the unbiased estimator of ℓ0−1 is

ℓ̃0−1(t, y) = ((1− ρ)ℓ0−1(t, y)− ρℓ0−1(t,−y))/(1− 2ρ).

We conduct ERM with respect to ℓ̃0−1 to obtain (ŵ, p̂) ∈
∆d−1 × R (only learning p if weights are known). We
observe that ℓ0−1(t, y) = (1 + ty)/2 is 1/2-Lipschitz in t,
∀t, y ∈ {±1}. Using Theorem 3 of Natarajan et al. (2013),
we get the following convergence bounds:

Theorem 4.3. Given samples {((ui,vi), yi)}ni=1 ∼ D,
∀δ > 0, ∀p ∈ [0, 1/2), with probability at least 1 − δ
with respect to 0-1 loss,

(a) If w is known, then

R(ŵ, p̂)− inf
p∈R

R(w, p)

≤ 8

1− 2ρ

√
(log2 d+ 1) log(n+ 1)

n
+ 2

√
log(1/δ)

2n

(b) If w is unknown, then

R(ŵ, p̂)− inf
(w,p)∈∆d−1×R

R(w, p)

≤ 16

1− 2ρ

√
(d log2 d+ 1) log(n+ 1)

n
+ 2

√
log(1/δ)

2n

A detailed proof of the above theorem is provided in Ap-
pendix A.7. We note that although ERM is conducted with
respect to ℓ̃0−1 on the noisy distribution, the risks are de-
fined on the underlying noiseless distribution. This gives

O(log d/(1− 2ρ)2) and O(d log d/(1− 2ρ)2) sample com-
plexities for the known and unknown weights cases respec-
tively. We note that when ρ = 0, the above bounds reduce to
the bounds in Theorem 4.2. Since the noise level ρ is usually
not known to us, it can be estimated using cross-validation
as suggested by Natarajan et al. (2013).

However, conducting ERM on ℓ̃0−1 might be prohibitively
difficult due to the non-convex nature of the function. An iid
noise model might also be inappropriate in certain settings;
we next consider a more natural noise model.

5. Pairwise Preference With Logistic Noise
Intuitively, we expect that two actions would be harder to
compare if their social welfare values are closer to each
other. We formalize this intuition in the form of a noise
model inspired by the BTL noise model (Bradley & Terry,
1952; Luce, 2005). Let w∗ and p∗ be the true power mean
parameters, and let τ∗ ∈ [0, τmax] be a temperature parame-
ter. For an action pair (u,v), we assume that the probability
of u being preferred to v is

P (y = 1|(u,v);w∗, p∗, τ∗)

=
1

1 + exp (−τ∗ (logM(u;w∗, p∗)− logM(v;w∗, p∗))
(1)

We see that a larger difference between the log power
means of u and v translates to a higher probability of
u being preferred. If u and v lie on the same level set
of logM(·;w∗, p∗), the probability becomes 0.5, which
matches the intuition of both actions being equally pre-
ferred. We also note the dependence of the probability on
τ∗: a higher τ∗ corresponds to more confidence in the pref-
erences, with τ∗ = 0 meaning indifference for all pairs
of actions. The mislabeling probability is also invariant to
scaling u and v.

Our learning task now becomes estimating w, p and τ
given data. We denote the function family in this case by
Tw,d = {τ (logM(·;w, p)− logM(·;w, p)) |τ, p}
when the weights are known, and Td =
{τ (logM(·;w, p)− logM(·;w, p)) |τ,w, p} when
the weights are unknown. A natural loss function to
consider in this case is negative log likelihood, and
we consider PAC learnability with this loss. Using the
framework developed in Section 3, we obtain the following
PAC bounds:

Theorem 5.1. Given samples {((ui,vi), yi)}ni=1 ∼ D and
for negative log likelihood loss, for all δ > 0, with probabil-
ity at least 1− δ,

(a) If w is known, then

6
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R(w, p̂)− inf
p∈R

R(w, p)

≤ 16τmaxκ

(√
2 log 2 + 2 log n

n
+

c√
n

)

+ 6

√
log(4/δ)

2n

(b) If w is unknown, then
R(ŵ, p̂)− inf

(w,p)∈∆d−1×R
R(w, p)

≤ 16τmaxκ

√
2 log 2 + 16(d log2 d+ 1) log n

n

+ 16τmaxκ
2c√
n
+ 3

√
log(4/δ)

2n

where κ = log(umax/umin).

Proof Sketch. Since the negative log likelihood function
ℓlog(x) = log(1 + exp(−x)) is 1-Lipschitz, we can use
Talagrand’s contraction lemma to get R̂(ℓlog ◦ T ) ≤ R̂(T ).
We then observe that R̂(T ) ≤ 2τmaxR̂(M), and the bound
on Rademacher complexity of ℓlog◦T can be obtained using
Lemma 3.3. The Rademacher bound can then be used to get
the uniform bounds stated above. We derive this result in
detail in Appendix A.8.

This gives us sample complexity bounds of O(1) and
O(d log d) with respect to d for the known and unknown
weights cases respectively, thus establishing PAC learnabil-
ity. An important distinction between the above theorem
and Theorem 4.3 is that the former bounds risk on the noisy
distribution with respect to logistic loss, whereas the latter
bounds risk on the noiseless distribution with respect to 0-1
loss.

As with the previous cases, non-convexity in this setting
also makes global optimization with respect to w and p
(and hence ERM) difficult. Nevertheless, random sampling
followed by gradient descent is empirically observed to
somewhat overcome this obstacle.

6. Simulations
All of the learning tasks we consider in this work can be
computationally hard, since convexity is not guaranteed for
any of them. However, we observe through our simulations
that weighted power mean functions can still be learned to
great accuracy for a modest number of dimensions.

We conduct simulations on cardinal and ordinal data with
logistic noise. For each d and n, we construct a dataset in a
pre-specified range [umin, umax]

d = [1, 1000]d. Each indi-
vidual i is assumed to have a scaled and translated beta dis-
tribution over [umin, umax] with the parameters (αi, βi) of

the beta distribution being different for each i. The utilities
for each action are drawn independently for each individual
to construct a utility vector. The underlying weight vector
is sampled uniformly from ∆d−1.

To learn p (and w if needed), we first assume p to be in a
fixed range, which in this case is [−10, 10]. We first conduct
a random sampling stage, in which Nrandom instances of p
(and w) are uniformly randomly sampled. At the end of
this stage, we pick the set of parameters giving the lowest
training loss, and then conduct gradient descent for Ngrad
steps. We observe that this simple two-stage method is
able to provide good results for the range of values of d we
consider. Each setting is run thrice to obtain error bounds
on the empirical results.

For the unknown weights case, we observe that we are sam-
pling in d dimensions. As d becomes larger, we increasingly
suffer from the curse of dimensionality —Nrandom would
have to grow exponentially with d to ensure that we are
sampling at the same density across different d. This makes
sampling at the same density prohibitively expensive for
larger dimensions. As a compromise, we increase Nrandom
linearly with d.

6.1. Cardinal Values

For cardinal values, we further add Gaussian noise to each
yi with standard deviation (u(d) − u(1))/10 and clamp the
values between [u(1), u(d)]. We conduct experiments for
both known and unknown weights by setting p = −2. Fig-
ure 2a (known weights) and Figure 2b (unknown weights)
show the estimated test loss on noiseless test data generated
using the true parameters.

We observe that there is relatively little change in the dif-
ference of test losses for the case of known weights as n
increases. On the other hand, there is greater decrease with
increasing n for higher d when the weights are also being
learned. The estimated test loss also increases with d, with
the trend being stronger for the case of unknown weights.

6.2. Logistic Noise

For logistic noise, we generate pairs of utility vectors with
p = 0.9 and a w obtained through random sampling, and
then mislabel each instance according to Equation (1) with
τ∗ = 10. Since we also have to learn τ , we set τmax = 50,
a sufficiently high value, and uniformly randomly sample it
along with p (and w). Figure 2a (known weights) and Figure
2b (unknown weights) show the accuracy on noiseless test
data of the learned parameters. Across the different settings,
the proportion of correctly labeled samples in the training
dataset has mean 71.4%, with a maximum value of 86.5%.

For known weights, we observe that accuracy increases with
n, and mean accuracy stays high (> 93%) across d. There is
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(a) Cardinal social welfare values, known weights
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(b) Cardinal social welfare values, unknown weights
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(c) Pairwise comparisons with logistic noise, known
weights
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(d) Pairwise comparisons with logistic noise, unknown
weights
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Figure 2. Results for synthetic data on cardinal and ordinal logistic tasks with known and unknown weights.

limited distinction between the curves corresponding to dif-
ferent values of d, with all of them approaching near-perfect
accuracy as n becomes very high. This suggests that the
error bounds in this case should be independent of d. For
unknown weights, there is a clear trend of decreasing perfor-
mance with an increase in d, which is expected because of
the O(

√
d log d) dependence of logistic loss error bounds.

Nevertheless, all settings achieve very high accuracy as n
increases. Thus, we observe that up to moderately high d,
the logistic noise model finds highly accurate parameters
using this simple algorithm, despite the training data having
significant mislabeling. We provide empirical verification
of our theoretical O(d log d) dependence of risk on sample
complexity by re-scaling our plots in Appendix B.

7. Discussion
Our work has (at least) several limitations, which can in-
spire future work. First, as mentioned in Section 1, gaining
access to utility vectors — which are needed as input to our
problem — can be a challenge. We do not know of existing
datasets that include this information. However, utilities are
routinely estimated for other economically-motivated algo-
rithms — say, Stackelberg security games (Tambe, 2012) —

and there is no fundamental obstacle to estimating them for
our purposes. It is an interesting direction of future work
to extend our results to the setting where the utility vectors
need to be estimated, either by an outside expert, or using
input from the individuals themselves (e.g., in the form of
pairwise comparisons or rankings of example policies).

Another limitation is that while the performance of our algo-
rithm for small groups of individuals (small d) is very good
(more than 90% accuracy for small sample size), scaling up
to a national scale — d = 108, say — is a major challenge
for future work. However, this assumes fine-grained utility
vectors that assign a utility to each individual. Even at the
national scale, a typical scenario plausibly involves “individ-
uals” that are representatives of different sub-populations
such as different racial, ethnic, gender or income groups,
and are weighted by the size of these groups; this scenario
is captured by our framework and leads to relatively small d
that is within the range handled by our existing algorithm.

Finally, our work only applies to weighted power mean
functions. While we have argued that this family is both
expressive and natural, it would be exciting to obtain results
for even broader, potentially non-parametric families of
social welfare functions.
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Impact statement
The ability to learn social welfare functions can enable us to
understand a decision maker’s priorties and ideas of fairness,
based on past decisions they have made. This has direct so-
cietal impact as these notions can be used to both understand
biases and inform the design of improved fairness metrics.
A second potential application is to imitate a successful
decision maker’s policy choices in future dilemmas or in
other domains. This may pose some ethical questions if
the learning model is misspecified; however, the restriction
of the function class to weighted power means, which is
inspired by natural social choice theory axioms, mitigates
this risk.
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A. Additional Proofs
A.1. Proof of Lemma 2.1

Proof of Lemma 2.1 Part (a). Let p > 0. Define ti = ui

umax
for all i ∈ [n]. Since ti ≤ 1 for all i ∈ [n] and given that∑n

i=1 wi = 1, it follows that
∑n

i=1 wit
p
i ≤

∑n
i=1 wi = 1. Therefore, log(wit

p
i ) ≤ 0 for each i. Given p > q > 0, we

obtain

0 ≤ log

(
d∑

i=1

wit
p
i

)(
q−1 − p−1

)
= q−1 log

(
d∑

i=1

wit
p
i

)
− p−1 log

(
d∑

i=1

wit
p
i

)

≤ q−1 log

(
d∑

i=1

wit
q
i

)
− p−1 log

(
d∑

i=1

wit
p
i

)

=

(
umax + q−1 log

d∑
i=1

wit
q
i

)
−

(
umax + p−1 log

d∑
i=1

wit
p
i

)
= logM(u;w, p)− logM(u;w, q),

This derivation similarly holds for the case 0 > p > q, demonstrating the monotonicity of logM(u;w, p) with respect to p.
The continuity of logM(u;w, p) with respect to p at p = 0 ensures the monotonicity for all p ∈ R.

Proof of Lemma 2.1 Part (a). Since
∑d

i=1 wi = 1, we express wd = 1−
∑d−1

i=1 wi and consider d− 1 variables. For p ̸= 0,
we have

logM(u;w, p) = p−1 log

(
d−1∑
i=1

wiu
p
i + up

d

(
1−

d−1∑
i=1

wi

))

=⇒ d logM(u;w, p)

dwi
= p−1

 up
i − up

d∑d−1
i=1 wiu

p
i + up

d

(
1−

∑d−1
i=1 wi

)


=

(
up
i − up

d∑d
i=1 wiu

p
i

)
p−1

The first term in the derivative is always positive due to the positive sum of weighted utilities. If ui > ud and p > 0, then
up
i − up

d > 0, making the second term positive. Conversely, if p < 0, then up
i − up

d < 0, but since p−1 is also negative, the
product remains positive. Thus, if ui > ud, the log-norm increases with wi. A similar argument shows that the log-norm
decreases if ui < ud.

For p = 0, we have

d logM(u;w, 0)

dwi
=

d

dwi

(
d−1∑
i=1

wi log ui +

(
1−

d−1∑
i=1

wi

)
log ud

)

= log

(
ui

ud

)
= lim

p→0

d logM(u;w, p)

dwi

This indicates that for ui > ud, the derivative is positive, implying an increase, and negative for ui < ud, implying a
decrease. Thus, the function is monotonic for all wi ∈ [n− 1].
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A.2. Proof of Lemma 3.1

logM(u;w, p) =
log
(∑d

i=1 wiu
p
i

)
p

=
log
(
up
(1)

(∑d
i=1 wi

(
ui

u(1)

)p))
p

= log u(1) +
log
(∑d

i=1 wi exp
(
p log

(
ui

u(1)

)))
p

= log u(1) +
1

p
log

(
d∑

i=1

wi exp

(
p log

(
u(d)/u(1)

) log
(
ui/u(1)

)
log
(
u(d)/u(1)

)))

Let r ∈ [0, 1]d such that

ri = exp

(
log(ui/u(1))

log(u(d)/u(1))

)
and q = p log(u(d)/u(1)). We then have

logM(u;w, p) = log u(1) +
1

p
log

(
d∑

i=1

wir
(p log(u(d)/u(1)))
i

)

logM(u;w, p) = log u(1) + log

(
u(d)

u(1)

)
1

q
log

(
d∑

i=1

wir
q
i

)

A.3. Proof of Lemma 4.1

First, we state a lemma from Jameson (2006):

Lemma A.1 (Jameson (2006), Theorem 4.6). Let f : R → R be defined as f(x) =
∑n

i=1 ai exp(pix), where p1 > p2 >

. . . > pn and
∑n

i=1 ai = 0. Define Aj :=
∑j

i=1 ai and denote by S(Aj) the number of sign changes in the sequence
{Ai}ji=1. Then, the number of unique zeros of f is at most S(Aj) + 1.

Consider the function f(p) =
∑d

i=1 wiu
p
i −

∑d
i=1 wiv

p
i for u,v ∈ Rd with disjoint entries:

f(p) =

d∑
i=1

wiu
p
i −

d∑
i=1

wiv
p
i =

d∑
i=1

wi exp(p log ui)−
d∑

i=1

wi exp(p log vi)

Applying Lemma A.1, if wi = w for all i, the sequence {Aj}, consisting of sums of w or −w, can have at most d− 1 sign
changes. A sign change at index k implies Ak−1 = 0, and the next sign change cannot occur before index k + 2. Therefore,
f(p) has at most d zeros in this case. In the general case, where wi ̸= wj for some i ̸= j, a sign change in {Aj} can occur
at any index except the first and the last. Thus, f(p) can have at most 2d − 1 roots, as sign changes are possible at all
intermediate indices. We conclude that Mp(u;w, p)−Mp(v;w, p), defined over R∪{±∞}, can change sign as a function
of p at most d− 1 times if wi =

1
d , and up to 2d− 1 times in the general case.

Lemma A.2 (Jameson (2006), Theorem 3.4). For any k < d and p1 < . . . < pk ∈ R, there exist u,v ∈ Rd
+ and w ∈ ∆d−1

such that Mp(u;w, pi) = Mp(v;w, pi) for each i ≤ k. Furthermore, the difference Mp(u;w, pi) −Mp(v;w, pi) does
not change sign within any interval (pi, pi+1).
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We now proceed to the proof of Lemma 4.1, which bounds the VC dimensions of the function classes Cw,d and Cd.

Proof of Lemma 4.1 Part (a). As there are at most 2d− 1 roots to f(p), there can be at most 2d− 1 sign changes as p varies
from −∞ to ∞. Consequently, the hypothesis class defined by all p (denoted as Mw,d) is a subset of the hypothesis class
that consists of at most 2d− 1 sign changes on the real line. This larger hypothesis class is denoted by Hd, and we have
VC(Mw,d) ≤ VC(Hd).

Let us consider m samples {ui,vi}mi=1. For each sample, sign changes occur at most 2d − 1 times, and hence the total
number of changes in labeling over the entire real line is bounded by (2d − 1)m (as p changes, each change in labeling
corresponds to a change in sign for at least one of the samples). This implies that the total number of possible labelings is
(2d− 1)m+ 1.

If the set of m samples is shattered, the upper bound derived above should be at least as large as the total number of labelings
possible. We thus have:

(2d− 1)m+ 1 ≥ 2m

We can show that m = 2(⌈log2 d⌉+ 1) points cannot be shattered. Consider

2m − (2d− 1)m− 1 = 22(⌈log2 d⌉+1) − 2(2d− 1)(⌈log2 d⌉+ 1)− 1

≥ 22(log2 d+1) − 4d⌈log2 d⌉+ 2⌈log2 d⌉ − 4d+ 1

= 4d2 − 4d⌈log2 d⌉+ 2⌈log2 d⌉ − 4d+ 1

= 4d(d− ⌈log2 d⌉)− 4d+ 2⌈log2 d⌉+ 1

≥ 4d− 4d+ 2⌈log2 d⌉+ 1 (d− ⌈log2 d⌉ ≥ 1∀d ∈ N)
= ⌈2 log2 d⌉+ 1 > 0

Thus, m > 2(log2 d+ 1) points cannot be shattered, meaning that V C(Hd) < 2(log2 d+ 1).

We now bound the VC dimension for the unknown weight case. Consider p ̸= 0. In this case, a hypothesis C((u,v);w, p)
can be expressed as

sign

 log
(∑d

i=1 wiu
p
i

)
− log

(∑d
i=1 wiv

p
i

)
p

 = sign (p) sign

(
log

(
d∑

i=1

wiu
p
i

)
− log

(
d∑

i=1

wiv
p
i

))

= sign (p) sign

((
d∑

i=1

wiu
p
i

)
−

(
d∑

i=1

wiv
p
i

))
(log is increasing)

= sign (p) sign (⟨w,up − vp⟩) = sign (⟨w, sign (p) (up − vp)⟩)

where up =
(
up
1 · · · up

d

)T
. Thus, for a fixed p, the set of viable w’s spans a halfspace. We note that each component of

sign (p) (up − bfvp) is continuous, which means that ⟨w, sign (p) (up − vp)⟩ is a continuous function in w and p.

For n > d samples {((ui,vi), yi}ni=1, we define hi(p) = sign (p) (up − vp) , i ∈ [n], p ̸= 0. For a fixed p, we note that the
set of possible labelings for w ∈ ∆d−1 is a subset of the set of possible labelings for w ∈ Rd, which in turn is the set of
labelings generated by n hyperplanes. Since this problem has VC dimension d, the number of possible labelings for a fixed
p is upper bounded by (n+ 1)d. Let B(p) denote the set of possible labelings for hyperplanes defined by {hi(p)}ni=1 for a
particular p.

Lemma A.3. Let p1 and p2 have the same sign, with a labeling ℓ ∈ {±1}n such that ℓ ̸∈ B(p1) but ℓ ∈ B(p2). Then, there
is a p ∈ [p1, p2] such that there is a set of d linearly dependent vectors h(1)(p), . . . ,h(d)(p).

Proof. Let ℓ be the labeling which is in B(p2) but not in B(p1). Since this labeling is not in B(p1), for each w, there
is some hyperplane hi(p1) such that ℓi ⟨w,hi(p1)⟩ < 0. Since this labeling is in B(p2), there is some w such that
ℓi ⟨w,hi(p2)⟩ ≥ 0∀i ∈ [n].
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Let B ⊂ Rd denote the unit hypersphere around the origin. Since the labelings are invariant to the scale of w, the set of
possible labelings for w ∈ Rd is exactly the set of possible labelings for w ∈ B

Consider the quantity m(p) = maxw∈B mini ℓi ⟨w,hi(p)⟩. We observe that if m(p) < 0, for each w there is some
i ∈ [n] such that ℓi ⟨w,hi(p)⟩ < 0, i.e., the labeling is not attained at any point. On the other hand, if m(p) ≥ 0, there
is some w such that the labeling is attained at w. Since ℓi ⟨w,hi(p)⟩ is a continuous function in w and p for all i ∈ [n],
mini ℓi ⟨w,hi(p)⟩ is also a continuous function in w and p. Thus, m(p) is also a continuous function in p.

Using this fact and the intermediate value theorem, there should be some p ∈ [p1, p2] such that m(p) = 0. Let w∗ ∈ B
be a vector at which m(p) = 0 is attained. We now show that at this p, at least d of the n vectors {hi(p)}ni=1 are linearly
dependent.

Suppose this were not the case, i.e., any set of d vectors in the set is linearly independent. This means that at most d− 1 of
the vectors lie on the hyperplane {x : ⟨w,x⟩ = 0}. Let h(1)(p), . . . ,h(k)(p) denote these vectors, with k ≤ d− 1. Since
m(p) = 0, there should be at least one such vector. Let H ∈ Rk×d be the matrix with these vectors as the rows.

If these k vectors are linearly dependent, we can add any of the remaining n − k vectors to get a set of d linearly
dependent vectors. Let us consider the case where they are not linearly dependent. Consider {x : Hx = 1k}. This is an
underdetermined set of linear equations, and the set should be non-empty (because of linear independence of the k vectors).
Let x0 be one of the vectors in this set.

Let t > maxi∈[n] − ⟨w,hi(p)⟩
⟨x0,hi(p)⟩ . We have

⟨w + tx0, hi(p)⟩ = ⟨w, hi(p)⟩+ t ⟨x0, hi(p)⟩

> ⟨w, hi(p)⟩ −max
j∈[n]

⟨w,hj(p)⟩
⟨x0,hj(p)⟩

⟨x0,hi(p)⟩

≥ ⟨w, hi(p)⟩ −
⟨w,hi(p)⟩
⟨x0,hi(p)⟩

⟨x0,hi(p)⟩

= 0

Thus, w+ tx0 is a point such that ⟨w + tx0,hi(p)⟩ > 0 for all i ∈ [n]. This means that m(p) > 0, which is a contradiction.
Intuitively, this means that if any d vectors in {hi(p)}ni=1 are linearly independent, then m(p) > 0. Thus, there should be a
set of d linearly dependent vectors h(1)(p), . . . , h(d)(p).

From the above lemma, we observe that any change in the set of labelings is accompanied by a p which gives d linearly
dependent vectors.

Proof of Lemma 4.1 Part (b). Using the lemma above, to bound the number of possible labelings, we first bound the number
of p’s such that there are d linearly dependent vectors.

Consider a set of d vectors h1(p), . . . , hd(p). As the vectors are linearly dependent, the determinant of the matrix constructed
using these vectors should be zero. We should thus have∣∣∣∣∣∣∣

sign (p) (up
11 − vp11) · · · sign (p) (up

1n − vp1d)
...

. . .
...

sign (p) (up
d1 − vp11) · · · sign (p) (up

1n − vpdd)

∣∣∣∣∣∣∣ = 0

Upon expanding the determinant, we get an equation of the form
∑m

i=1 aiu
p
i which has 2d · d! terms. From an earlier lemma,

we know that this equation should have at most 2d · d! − 1 roots. Upon adding the original configuration, we get 2d · d!
possible configurations. The choice of the d vectors can be made in

(
n
d

)
ways, and hence we have a bound on the possible

changes as 2dd!
(
n
d

)
. In the worst case, we assume that all the labelings are changed, and we thus get an upper bound on the

changes as

(n+ 1)d2dd!

(
n

d

)

13



Learning Social Welfare Functions

In the beginning of the proof, we had carefully set aside p = 0. We now observe that p = 0 is a root of the above system of
equations. Thus, we are implicitly considering any possible changes at p = 0 as well.

We can show that n = 8(⌈d log2 d⌉+ 1) points cannot be shattered.

(n+ 1)d2dd!

(
n

d

)
= (n+ 1)d2d · n(n− 1) . . . (n− d+ 1)

> (n+ 1)2dn2d−1

> 2d−1n2d

We now show that for every d ∈ N, the inequality 2d−1n2d ≤ 2n holds, i.e. n − d − 2d log2 n + 1 > 0 for n =
8(⌈d log2 d⌉ + 1). For d ∈ {1, 2}, this statement can be verified directly. Therefore, it suffices to show that f(x) :=
8(x log2 x+ 1)− 2x log2[8(x log2 x+ 1)]− x+ 1 > 0 for any x ≥ 3.

f(x) > 8x log2 x− 2x log2(16x log2 x)− x+ 9 (x log2 x > 1)

= 6x log2 x− 2x log2(log2 x)− 9x+ 9

> 4x log2 x− 9x+ 9 = g(x)

We note that g(3) = 12 log2 3 − 18 > 1 > 0. Moreover, g′(x) = 4 log2 x + 4/ log 2 − 9, and we note that g′(2) =
4/ log 2− 5 > 0.77 > 0, with g′(x) being an increasing function. Thus, f(x) > g(x) > 0 for all x ≥ 3. This means that
f(x) > 0, which proves our bound. This implies that the VC dimension is bounded above by 8(d log2 d+ 1)

Proof of Lemma 4.1 Part (c). Take m = log2(d)+1. Let σ1, . . . , σ2m ∈ {±1}m be a Gray code ordering of the set {±1}m,
such that two successive values have a Hamming distance of 1, and that the number of changes in different bit positions is at
most 2m

2 ≤ d (for the existence of such an ordering, see (Bhat & Savage, 1996)). For i < 2m, denote by si ∈ [m] the bit
position in which σi and σi+1 differ. By using Lemma A.2 d times, there exists a sample {ui,vi}mi=1 and p1 < . . . < p2m−1 ,
where pi satisfies ∥uj∥pi

= ∥vj∥pi
if si = j. Furthermore, define p0 = −∞, and note that each interval (pi, pi+1) for

0 ≤ i < 2m corresponds to a unique combination of labels over {ui,vi}mi=1.

A.4. Proof of Lemma 3.2

We differentiate between two representations of Rademacher complexity:

R̂(F) =
1

n
Eϵ

[
sup
f∈F

n∑
i=1

ϵif(xi)

]

R̂abs(F) =
1

n
Eϵ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

ϵif(xi)

∣∣∣∣∣
]

It is clear that R̂(F) ≤ R̂abs(F). We now list a few results related to Pollard’s pseudo-dimension.

Definition A.4. (Pseudo-shattering) Let H be a set of real valued functions from input space X . We say C = (x1, . . . , xm)
is pseudo-shattered if there exists a vector r = (r1, . . . , rm) such that for all b ∈ {±1}m = (b1, . . . , bm), there exists
hb ∈ H such that sign (hb(xi)− ri) = bi.

Definition A.5. The pseudo-dimension Pdim(H) is the cardinality of the largest set pseudo-shattered by H.

The following lemma connects pseudo-dimensions to VC dimensions:

Lemma A.6.

The following lemma bounds the Rademacher complexity using pseudo-dimension and covering numbers.

14
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Lemma A.7. For F ⊆ [0, 1]X with Pdim(F) ≤ d,

N (ϵ,F , dn) ≤
(c
ϵ

)2d

where dn(f, g) =
(

1
n

∑n
i=1 (f(xi)− g(xi))

2
)1/2

We also have the following covering number bound for Rademacher complexity:

Lemma A.8. For F ⊆ [0, 1]X ,

R̂abs(F) ≤ inf
ϵ>0

(√
2 log 2N (ϵ,F , dn)

n
+ ϵ

)

We now turn to bounding the complexity for the unknown and known weights cases.:

Proof of Lemma 3.2 Part (a). The function class is:

Mw,d = {logM(·;1d/d, p)|p ∈ R}

Moreover, from 2.1, it follows that for a fixed u ∈ Rd, fp(u) is a non-decreasing function with respect to p. Consequently,
there exists a p∗ ∈ R ∪ {±∞} such that for any y ∈ (umin, umax), we have logM(u;w, p) < y for all p < p∗, and
logM(u;w, p) ≥ y for all p ≥ p∗. This implies that BlogM (u, y) = sign(logM(u;w, p) − y) changes its sign exactly
once as p increases.

We note that for BlogM (x, y), one point can be shattered (by choosing p < p∗ and p > p∗). However, for two points u and
v, the number of times a sign change occurs with increasing p for either u or v is at most twice, meaning that only 3 labels
can be achieved. Thus, 2 points cannot be shattered.

Proof of Lemma 3.2 Part (b). The function class is:

Md = {logM(·;w, p)|p ∈ R}

We note that

BlogM (u, y) = sign (logM(u;w, p)− y)

= sign (logM(u;w, p)− logM(y · 1d;w, p))

which, we observe, is exactly the expression in the noiseless comparison-based setup for the unknown weights case. As we
know that the VC dimension for this expression is upper bounded by 8(d log2 d+ 1), our result is proved.

15
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A.5. Proof of Lemma 3.3

Proof. We prove the result for unknown weights - the result for known weights follows by replacing the pseudo-dimension
bound of Sd by that of Sw,d from Lemma 3.2. Let dp denote the pseudo-dimension for the unknown weights case.

R̂(Md) = Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

n∑
i=1

ϵi logM(ui;w, p)

]

= Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

n∑
i=1

ϵi

(
ui(1) + log

(
ui(d)

ui(1)

)
logM(ri;w, q)

)]

= Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

n∑
i=1

ϵi log

(
ui(d)

ui(1)

)
logM(ri;w, q)

]

≤ Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

∣∣∣∣∣
n∑

i=1

ϵi log

(
ui(d)

ui(1)

)
logM(ri;w, q)

∣∣∣∣∣
]

= log

(
ui(d)

ui(1)

)
Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

∣∣∣∣∣
n∑

i=1

ϵi logM(ri;w, q)

∣∣∣∣∣
]

≤ log

(
umax

umin

)
Eϵ

[
1

n
sup

(w,p)∈∆d−1×R

∣∣∣∣∣
n∑

i=1

ϵi logM(ri;w, q)

∣∣∣∣∣
]

= κR̂abs(Sd)

From Lemmas A.7 and A.8, and since logM(r;w, q) ∈ [0, 1], we have

N (ϵ,Sd, dn) ≤
(c
ϵ

)2
dp

=⇒ R̂abs(Sd) ≤ inf
ϵ>0

(√
2 log 2 + 4dp log(c/ϵ)

n
+ ϵ

)

≤
√

2 log 2 + 2dp log n

n
+

c√
n

(setting ϵ = c/
√
n)

We thus have

R̂(Md) = κ

(√
2 log 2 + 2dp log n

n
+

c√
n

)

Replacing dp = 8(d log2 d+ 1) gives us the required bound

A.6. Proof for Theorem 3.4

Proof. We prove the result for the unknown weights case - the result for known weights follows a similar process. For ℓ2
loss, our function class is

L2 =
{
ℓ2(logM(u;w, p), y) = (log y − logM(u;w, p))2|(w, p) ∈ ∆d−1 × R

}
As logM(u;w, p), yi ∈ [ui(1), ui(d)] ⊆ [umin, umax], we have log y − logM(u;w, p) ∈
[− log(umax/umin), log(umax, umin)]. Over a bounded range [−γ, γ], ℓ2(t, y) = (t − y)2 is 2γ Lipschitz continu-
ous w.r.t. t. Thus, using Talagrand’s contraction lemma and Lemma 3.3, we have

R̂(L2) = R̂(ℓ2 ◦Md) ≤ 2 log

(
umax

umin

)
R̂(Md) = 2κR̂(Md)

16
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We then use the uniform convergence bounds for Rademacher complexity to get

sup
(w,p)∈∆d−1×R

∣∣∣R̂n(w, p)−R(w, p)
∣∣∣ ≤ 8κR̂(Md) + 3

√
log(4/δ)

2n
= ϵ

Thus,

R(ŵ, p̂)−R(w, p) =
(
R̂n(ŵ, p̂)− R̂n(w, p)

)
+
(
R̂n(w, p)−R(w, p)

)
+
(
R(ŵ, p̂)− R̂n(ŵ, p̂)

)
≤ 0 + ϵ+ ϵ = 2ϵ

= 16κR̂(Md) + 6

√
log(4/δ)

2n

Replacing R̂(Md) from Lemma 3.3 provides us with the required bounds.

A.7. Proof for Theorem 4.3

Proof. We prove the result for unknown weights, with the known weights result following similar steps. We consider the
function class Cd as in Section 4, with ℓ0−1 loss being ℓ0−1(t, y) = (1 + ty)/2, t, y ∈ {±1}. We observe that ℓ0−1 is 1/2
Lipschitz w.r.t. t. Thus, by applying Theorem 3 of Natarajan et al. (2013), we observe that w.r.t. ℓ0−1 on the noiseless data
distribution,

R(ŵ, p̂)−R(w, p) ≤ 4LρR̂(Cd) + 2

√
log(1/δ)

2n
(2)

where Lρ = (1 + |ρ+1 − ρ−1|)L/(1− ρ+1 − ρ−1). Here, ρ+1 and ρ−1 are defined as the probability of mislabeling true
positive and true negative examples, which in our case are the same value, ρ. Thus, Lρ = 1/(2(1− 2ρ)) in our case. We
obtain R̂(Cd) using the VC bound on Rademacher complexity:

R̂(Cd) ≤
√

16(d log2 d+ 1) log(n+ 1)

n

Substituting it in 2 concludes our proof.

A.8. Proof for Theorem 5.1

Proof. We prove the result for unknown weights, with the case for known weights following similar steps. We first establish
a bound on the Rademacher complexity of Tw,d = {τ (logM(·;w, p)− logM(·;w, p)) |τ, p}. Let logM(ui;w, p) =

17
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log ui(1) + log(ui(d)/ui(1)) logM(ri;w, q), and logM(vi;w, p) = log vi(1) + log(vi(d)/vi(1)) logM(r′i;w, q).

R̂(Td) =
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ (logM(ui;w, p)− logM(vi;w, p))

]

≤ 1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ logM(ui;w, p)

]
+

1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

(−ϵi)τ logM(vi;w, p)

]

≤ 1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ logM(ui;w, p)

]
+

1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ logM(vi;w, p)

]

≤ 1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ
(
log ui(1) + log(ui(d)/ui(1)) logM(ri;w, q)

)]

+
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ
(
log vi(1) + log(vi(d)/vi(1)) logM(r′i;w, q)

)]

=
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ log(ui(d)/ui(1)) logM(ri;w, q)

]

+
1

n
Eϵ

[
sup
τ,w,p

n∑
i=1

ϵiτ log(vi(d)/vi(1)) logM(r′i;w, q)

]

≤ 1

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ log(ui(d)/ui(1)) logM(ri;w, q)

∣∣∣∣∣
]

+
1

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ log(vi(d)/vi(1)) logM(r′i;w, q)

∣∣∣∣∣
]

=
1

n
log

(
ui(d)

ui(1)

)
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(ri;w, q)

∣∣∣∣∣
]

+
1

n
log

(
vi(d)

vi(1)

)
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(r′i;w, q)

∣∣∣∣∣
]

≤ κ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(ri;w, q)

∣∣∣∣∣
]
+

κ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵiτ logM(r′i;w, q)

∣∣∣∣∣
]

≤ τmaxκ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵi logM(ri;w, q)

∣∣∣∣∣
]
+

τmaxκ

n
Eϵ

[
sup
τ,w,p

∣∣∣∣∣
n∑

i=1

ϵi logM(r′i;w, q)

∣∣∣∣∣
]

= 2τmaxκR̂abs(Sd)

We now use the bound on R̂abs(Sd) from Appendix A.5 to get the following bound on R̂(Td)

R̂(Td) ≤ 2τmaxκ

(√
2 log 2 + 16(d log2 d+ 1) log n

n
+

c√
n

)
We then use the uniform convergence bounds obtained using Rademacher complexity to obtain the following PAC bound:

R(ŵ, p̂)−R(w, p) =
(
R̂n(ŵ, p̂)− R̂n(w, p)

)
+
(
R̂n(w, p)−R(w, p)

)
+
(
R(ŵ, p̂)− R̂n(ŵ, p̂)

)
≤ 0 + ϵ+ ϵ = 2ϵ

= 8κR̂(Td) + 6

√
log(4/δ)

2n
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B. Additional Experiments
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Figure 3. Verification of O(d log d) risk bound for ordinal case with logistic noise, unknown weights

In Figure 3 we re-plot the test accuracy α on noiseless data against η =
√

n/(d log n log d), a differently scaled version of
Figure 2d. Theoretically, α and η are related as 1− α = O(1/η). The alignment of all curves in Figure 3 as compared to
the original curves in Figure 2d provides evidence that our risk and sample complexity bounds indeed scale as d log n log d
for the ordinal case with logistic noise and unknown weights.
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