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Abstract
The proportional veto principle, which captures the
idea that a candidate vetoed by a large group of
voters should not be chosen, has been studied for
ranked ballots. We introduce a version of this prin-
ciple for approval ballots, which we call flexible-
voter representation (FVR). We show that while the
approval voting rule and other natural scoring rules
provide the optimal FVR guarantee only for some
flexibility threshold, there exists a scoring rule that
is FVR-optimal for all thresholds simultaneously.
We also extend our results to multi-winner voting.

1 Introduction
Voting is one of the most prominent approaches to collective
decision-making and has been studied extensively in several
disciplines, not least in social choice theory [Brams and Fish-
burn, 2002; Zwicker, 2016]. Some applications of voting re-
quire selecting a single winner, for example, the president of a
country or the venue for an event. Other applications involve
choosing multiple winners, such as members of a council,
places to visit on a trip, or recipients of a research grant.

In voting scenarios, a natural consideration is that groups
of voters should have the right to veto candidates that they
do not like. This intuition is formalized by the concept of
the proportional veto core, which was proposed by Moulin
[1981] and further studied by a number of authors [Moulin,
1982; Ianovski and Kondratev, 2021; Kizilkaya and Kempe,
2023; Peters, 2023]. The proportional veto core is defined for
single-winner voting when each voter expresses her prefer-
ence over candidates in the form of a strict ranking. Accord-
ing to this principle, a candidate a can be vetoed by a group of
voters T if there exists a sufficiently large set of candidates B
such that every voter in T prefers all candidates in B to a—
the required size of B depends on the size of T . A significant
result by Moulin [1981] states that the proportional veto core
is always non-empty, i.e., there always exists a candidate that
is not vetoed by any group of voters.

While ranked ballots have been examined since the dawn
of social choice theory, an alternative method for eliciting
voter preferences, which has also received substantial atten-
tion in the literature, is via approval ballots [Brams and Fish-
burn, 2007; Laslier and Sanver, 2010]. In an approval ballot,

a voter may either approve or disapprove each candidate. In
addition to their simplicity, approval ballots are relatively ex-
pressive, as voters are allowed to approve as many or as few
candidates as they wish. As Brandl and Peters [2022, pp. 2–
3] discussed, approval ballots arise naturally when prefer-
ences are dichotomous—for example, when they correspond
to whether workers are available during various time slots, or
whether hiring committee members consider candidates to be
capable of performing a clearly defined task.

A tempting approach for applying the proportional veto
principle to approval ballots is to convert the approval bal-
lots into ranked ballots by breaking ties arbitrarily, and ap-
ply the result of Moulin [1981] to obtain a candidate in the
proportional veto core of the ranked ballots. However, this
approach may lead to patently undesirable outcomes. For in-
stance, consider four candidates a, b, c, d and three voters who
approve {b, c}, {b, d}, {c, d}, respectively. One can convert
these approval ballots into the ranked ballots where voter 1
ranks b ≻ c ≻ a ≻ d, voter 2 ranks b ≻ d ≻ a ≻ c, and
voter 3 ranks c ≻ d ≻ a ≻ b. For these approval ballots,
voter 1 vetoes d for being last, and similarly voters 2 and 3
veto c and b, respectively, leaving a as the only candidate in
the proportional veto core. However, the choice of a is clearly
suboptimal with respect to the original approval ballots, as it
is approved by none of the voters.

To formalize the proportional veto principle for approval
ballots, we introduce a novel concept of voter flexibility,
which corresponds to the fraction of candidates that a voter
approves. Intuitively, in single-winner voting, if a group of
voters is sufficiently large and each voter in the group is suffi-
ciently flexible, we would like to ensure that at least one voter
in the group approves the chosen candidate. Put differently, a
sufficiently large and sufficiently flexible group has the power
to veto a candidate that the entire group disapproves. We refer
to our principle as flexible-voter representation (FVR). Note
that FVR is more robust than proportional veto for ranked
ballots. In particular, for a candidate a to be vetoed by a
group T , FVR does not require every voter in T to approve all
candidates in some set B and disapprove a—instead, it only
requires all voters in T to approve sufficiently many (but not
necessarily the same) candidates and disapprove a. We elabo-
rate further on this distinction in Section 1.2, but remark here
that FVR is especially suited to approval ballots, where the
flexibility of voters can be defined in a natural manner.



1.1 Overview of Results
In Section 2, we focus on single-winner voting. For s ∈
(0, 1), we say that a voter is s-flexible if she approves at least
an s-fraction of the candidates. For each voting rule R and
each s, we denote by FVR(R, s) the smallest value of r such
that whenever a group of voters constitutes more than an r-
fraction of the voters and each voter in the group is s-flexible,
at least one voter in the group approves the candidate chosen
by R. The lower FVR(R, s) is, the stronger the guarantee
that the rule R provides for the flexibility threshold s.

We first derive a general lower bound: for any rule R and
any s, it holds that FVR(R, s) ≥ 1 − s. Moreover, this
bound is tight in the sense that for each s, the rule Rs-threshold,
which chooses a candidate with the most approvals among s-
flexible voters, achieves FVR(Rs-threshold, s) = 1 − s. How-
ever, as each rule Rs-threshold is tailored to a specific value of s,
a rule with strong guarantees for all values of s simultane-
ously would be more desirable. We show that the classic ap-
proval voting rule, which chooses a candidate with the most
approvals overall, yields FVR(R, s) = 1

1+s for all s; this
essentially matches the lower bound for s close to 0, but be-
comes further away as s increases. To achieve better guaran-
tees for larger s, we consider placing more weight on voters
with higher flexibility. Specifically, we let the contribution of
a voter to the score of each of her approved candidates be the
voter’s flexibility raised to the p-th power, where p > 0 is a
given parameter. For each p, we determine the exact FVR of
the p-power scoring rule; in particular, we find that it matches
the lower bound at s = p

1+p , but not at other values of s.
From the aforementioned results, one may be tempted to

believe that there is an inevitable trade-off between optimiz-
ing for different thresholds s. Strikingly, we show that this
is not the case: there is in fact a rule ROPT that is FVR-
optimal, meaning that FVR(R, s) = 1 − s for all s simul-
taneously. One may interpret this result as demonstrating that
an approval-ballot analog of the proportional veto core is al-
ways non-empty. Like p-power scoring rules, ROPT can be
described as a scoring rule, with the scores chosen carefully.
We also establish a general theorem that can be used to deter-
mine FVR guarantees of arbitrary scoring rules—this theo-
rem allows us to characterize ROPT as the unique scoring rule
(up to scaling) that satisfies FVR-optimality.

In Section 3, we turn our attention to the more general set-
ting of multi-winner voting, where the goal is to choose a
set of k candidates (called a committee) from the m given
candidates; single-winner voting corresponds to k = 1. For
1 ≤ t ≤ k, we say that a voter t-approves a committee if she
approves at least t candidates in the committee. Unlike in the
single-winner setting, the worst case in the multi-winner set-
ting may not occur as m→∞, so we will state our bounds in
terms of m as well. Specifically, we let FVR(R, s, t,m) be
the smallest value of r such that whenever a group of voters
constitutes more than an r-fraction of the voters, each voter is
s-flexible, and there are m candidates, then at least one voter
in the group t-approves the committee chosen by R.

Similarly to single-winner voting, we provide a lower
bound on FVR(R, s, t,m), which can be written in terms
of a hypergeometric random variable; for any s, t,m, k, we

present a rule for which this bound is tight. Moreover, if k
and t are fixed, we show that there exists a rule that yields the
optimal guarantee for all m and s. This rule operates by itera-
tively choosing a candidate using a scoring rule; however, the
weight assigned to each voter in this procedure depends non-
trivially on the voter’s preference and the candidates added
thus far. On the other hand, we prove that if we fix s (and
k,m), it may not be possible to achieve FVR-optimality for
different values of t at the same time. We also demonstrate the
incompatibility between FVR-optimality and other notions of
representation in the multi-winner literature.

1.2 Additional Discussion
As we mentioned earlier, in single-winner voting, FVR can be
viewed as an approval-ballot analog of the proportional veto
core for ranked ballots [Moulin, 1981]. However, in order for
a group of voters to veto a candidate a, FVR does not require
the voters in the group to commonly approve a set of candi-
dates and disapprove a—instead, it is enough that these vot-
ers approve sufficiently many candidates and disapprove a.
To highlight the difference that this distinction makes, we re-
mark that strengthening the proportional veto core along the
lines of our FVR definition may lead to an empty core. In-
deed, if there are two voters with rankings a ≻ b ≻ c and
c ≻ b ≻ a over three candidates, then this more demanding
notion would rule out c (because the first voter ranks it last),
a (because the second voter ranks it last), and b (because both
voters rank it second-last), leaving no viable candidate.1 In
the approval setting, FVR takes advantage of the dichotomous
nature of the preferences to achieve a stronger guarantee.

Another related concept is justified representation (JR)
[Aziz et al., 2017], which has received significant attention
recently in the context of multi-winner (approval) voting. JR
captures the idea that if a group of voters is sufficiently large
and all voters in the group approve a common candidate,
then at least one candidate approved by some voter in the
group should be selected. While FVR bears some similar-
ity to JR, a major difference is that FVR does not require
voters in the group to approve any candidate in common, but
only that these voters be sufficiently flexible. Note that in
single-winner voting, JR does not provide any meaningful
guarantee, and neither do its strengthenings proportional jus-
tified representation (PJR) [Sánchez-Fernández et al., 2017],
extended justified representation (EJR) [Aziz et al., 2017],
fully justified representation (FJR) [Peters et al., 2021], and
EJR+ [Brill and Peters, 2023].

2 Single-Winner Voting
2.1 Preliminaries
For each positive integer t, let [t] := {1, 2, . . . , t}. There is a
set N of n voters and a set M of m candidates. Each voter i
has an approval set Ai ⊆ M . An instance consists of N ,
M , and (Ai)i∈N . For a candidate a ∈ M , let Na := {i ∈
N | a ∈ Ai} be the set of voters who approve it. For a voter
i ∈ N , let fi := |Ai|/m be the fraction of candidates that

1Note that the proportional veto core does not rule out b, since
the two voters do not agree on a candidate that is preferred to b.



i approves. In single-winner voting, a rule chooses a single
candidate from each instance.

For s ∈ (0, 1), we say that a voter i is s-flexible if fi ≥ s.
Given a rule R, we are interested in, for each s ∈ (0, 1), the
smallest r ∈ [0, 1] (as a function of s) such that whenever
a group of strictly more than rn voters (i.e., more than an
r-fraction of the voters) are all s-flexible, at least one voter
in the group approves the candidate chosen by the rule.2 We
refer to this condition as the FVR condition, and denote this
value of r by FVR(R, s). Note that FVR(R, s) is always
well-defined. Indeed, r = 1 satisfies the FVR condition vacu-
ously; if some r satisfies the condition then every r′ ≥ r does
as well; and if for some r it holds that every r′ > r satisfies
the condition, then r also satisfies the condition (because the
condition is phrased as “strictly more than rn voters”). The
smaller the value FVR(R, s), the stronger the FVR guarantee
provided by the rule R for the flexibility threshold s.

2.2 Lower Bound
We first derive a lower bound on the FVR guarantee achiev-
able by any rule.
Theorem 1. For any rule R and any s ∈ (0, 1), we have
FVR(R, s) ≥ 1 − s. Moreover, for each s ∈ (0, 1), there
exists a rule R such that FVR(R, s) = 1− s.

Proof. For the first statement, consider any rule R and any
s ∈ (0, 1), and take any r < 1 − s. It suffices to show
that there exists an instance where a group of at least rn vot-
ers are all s-flexible but do not approve the candidate cho-
sen by R. Consider an instance with sufficiently large n and
m (to be made more precise later). Assume that each of
the n voters approves exactly ⌈sm⌉ candidates (so all vot-
ers are s-flexible), and the voters distribute their approvals as
equally as possible.3 Hence, each candidate receives at most⌈
n·⌈sm⌉

m

⌉
approvals. Observe that⌈

n · ⌈sm⌉
m

⌉
<

n(sm+ 1)

m
+ 1 = n · sm+ 1

m
+ 1.

As m grows, sm+1
m converges to s, so n · sm+1

m +1 converges
to sn + 1. Since s < 1 − r, we have sn + 1 < (1 − r)n for
sufficiently large n. This means that for sufficiently large n
and m, each candidate is approved by at most (1−r)n voters.
Consequently, no matter which candidate R chooses, at least
rn voters disapprove it.

For the second statement, fix s ∈ (0, 1). Consider the rule
Rs-threshold that chooses a candidate a with the highest number
of approvals among s-flexible voters, breaking ties arbitrarily;
in particular, the rule ignores voters who are not s-flexible. It
suffices to show that whenever a group of more than (1− s)n
voters are all s-flexible, at least one voter in the group ap-
proves a. Since each s-flexible voter approves at least an s-
fraction of the candidates, the candidates are approved by at

2If s = 1, the answer is clearly r = 0 regardless of the rule, so
we do not consider this trivial case.

3For example, we can let the voters distribute their approvals one
voter after another. In each voter’s turn, the voter approves ⌈sm⌉
candidates that have received the fewest approvals so far, breaking
ties arbitrarily.

least an s-fraction of the s-flexible voters on average. By defi-
nition of the rule Rs-threshold, the candidate a is approved by at
least an s-fraction of the s-flexible voters, which means that
at most a (1−s)-fraction of the s-flexible voters disapprove a.
Since the number of s-flexible voters is at most n, this implies
that at most (1− s)n voters who are s-flexible disapprove a.
It follows that in any group of more than (1− s)n voters who
are s-flexible, at least one voter in the group approves a.

2.3 Approval Voting Rule
While the rule Rs-threshold in the proof of Theorem 1 achieves
the optimal FVR guarantee for the corresponding flexibil-
ity threshold s, it is tailored to only one threshold s, which
leads to unwanted effects—for instance, the rule completely
ignores voters who are almost s-flexible. As such, it would
be more desirable to have a rule that yields good guarantees
for several thresholds s simultaneously. We next analyze the
classic approval voting rule, which selects a candidate with
the highest number of approvals, breaking ties arbitrarily. For
this rule, we determine the tight FVR guarantee for every s.

Theorem 2. Let Rapproval be the approval voting rule. For
each s ∈ (0, 1), we have FVR(Rapproval, s) =

1
1+s .

Proof. Fix s ∈ (0, 1). We first show that FVR(Rapproval, s) ≤
1

1+s . Take an arbitrary instance, and consider a group B of
more than 1

1+s · n voters, all of whom are s-flexible. The
total number of approvals made by the voters in B is greater
than 1

1+s ·n · sm. Since there are m candidates, there exists a
candidate a approved by more than 1

1+s ·n ·s =
s

1+s ·n voters
in B. On the other hand, a candidate that is not approved by
any voter in B has an approval score of less than (1− 1

1+s )n =
s

1+s · n. In particular, such a candidate is approved by fewer
voters than a. Hence, the candidate chosen by the approval
voting rule must be approved by some voter in B.

Next, we show that FVR(Rapproval, s) ≥ 1
1+s . Take any

r < 1
1+s . It suffices to show that there exists an instance

where a group of at least rn voters are all s-flexible but do
not approve the candidate chosen by the approval voting rule.
Consider an instance with sufficiently large n and m (to be
made more precise later). Let C be a group of ⌈rn⌉ vot-
ers, and assume that all voters in N \ C approve a com-
mon candidate a (and no other candidate). Moreover, as-
sume that each voter in C approves exactly ⌈sm⌉ candidates
in M \ {a}, and these voters distribute their approvals among
these candidates as equally as possible. Note that a receives
n−⌈rn⌉ = ⌊(1−r)n⌋ approvals, while every other candidate
receives at most

⌈
⌈rn⌉·⌈sm⌉

m−1

⌉
approvals. Since r < 1

1+s , we
have 1−r > s

1+s , and so ⌊(1−r)n⌋ > s
1+s ·n when n is suf-

ficiently large. Hence, a receives more than s
1+s ·n approvals

for sufficiently large n. On the other hand, note that⌈
⌈rn⌉ · ⌈sm⌉

m− 1

⌉
<

(rn+ 1)(sm+ 1)

m− 1
+ 1

= (rn+ 1) · sm+ 1

m− 1
+ 1.



As m grows, sm+1
m−1 converges to s, so (rn + 1) · sm+1

m−1 + 1

converges to (rn+1)s+1 = rns+s+1. Since r < 1
1+s , we

have rns+s+1 < 1
1+s ·ns =

s
1+s ·n for sufficiently large n.

This means that for sufficiently large n and m, each candidate
in M \ {a} receives at most s

1+s ·n approvals. Consequently,
the approval voting rule chooses the candidate a, which is
approved by none of the voters in C.

Comparing Theorems 1 and 2, we find that the FVR guar-
antee of the approval voting rule is essentially optimal for s
close to 0, but becomes further from optimal as s increases.

2.4 Power Scoring Rules
To achieve better guarantees for larger s, an enticing idea is to
give more weight to voters with higher flexibility. However,
in contrast to the rule Rs-threshold in the proof of Theorem 1
where this weight is binary (according to whether a voter is
s-flexible or not), we shall use a smoother weighting scheme.

To this end, for each real number p ≥ 0, we define the p-
power approval score of candidate a as SCp(a) :=

∑
i∈Na

fp
i

(recall that Na denotes the set of voters who approve a). We
consider the p-power scoring rule, which chooses a candidate
that maximizes the p-power approval score, breaking ties ar-
bitrarily. Note that if p = 0, then

∑
i∈Na

fp
i = |Na|, so the

rule reduces to the approval voting rule which we already an-
alyzed in Theorem 2. As p increases, the rule places more
importance on voters with high flexibility. For each p, we
derive tight FVR guarantees for the corresponding rule.

Theorem 3. For each p > 0, let Rp-power be the p-power scor-
ing rule. For each s ∈ (0, 1), we have FVR(Rp-power, s) =

1

1+
(s(1+p))1+p

pp

.

The proof of Theorem 3, along with all missing proofs, can
be found in Appendix A. Comparing Theorem 3 with Theo-
rem 1, we find that the FVR guarantee of the p-power scoring
rule is optimal only at s = p

1+p . Indeed, one can verify that

1

1 + (s(1+p))1+p

pp

= 1− s ⇐⇒ sp(1− s) =
pp

(1 + p)1+p
.

Within the range x ∈ [0, 1], basic calculus shows that the
function xp(1−x) is maximized at x = p

1+p , and the resulting

maximum is pp

(1+p)1+p . Hence, the only s for which the FVR
guarantee of the p-power scoring rule is optimal is s = p

1+p ,
and the corresponding guarantee is 1

1+p .
The FVR guarantees of p-power scoring rules for p = 0

(i.e., approval voting rule), 1, and 2, as well as the optimal
guarantees, are illustrated in Figure 1.

2.5 Optimal Scoring Rule
Our discussion thus far raises an obvious question: is there
an inherent trade-off between optimizing for different values
of s, or does there exist a rule that achieves the optimal FVR
guarantee for all s simultaneously (that is, a rule whose guar-
antees perfectly match the thick line in Figure 1)? Perhaps
surprisingly, we show that such a rule in fact exists, and more-
over comes from a simple class, which we call scoring rules.
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Figure 1: FVR guarantees of p-power scoring rules for p ∈
{0, 1, 2}, compared to the optimal guarantees.

To define scoring rules, let a weight function be a func-
tion w : Q ∩ (0, 1) → R≥0 mapping each flexibility to a
weight. From this, we define the w-score of a candidate a to
be SCw(a) =

∑
i∈Na

w(fi).4 We call a weight function w

nontrivial if w(f) > 0 for some f ∈ (0, 1).5 We say that
a rule is parameterized by w if it always picks a candidate
maximizing SCw, and we call it a scoring rule if it is param-
eterized by some nontrivial w.6 Note that all of the rules we
have considered so far are scoring rules: Rs-threshold is param-
eterized by w(f) = I[f ≥ s], Rapproval is parameterized by
w(f) = 1, and Rp-power is parameterized by w(f) = fp.

For our optimal rule, unlike the power rules we have seen,
we will choose the weight function w(f) = 1

1−f . Specifi-
cally, let ROPT be the rule that assigns a score of

∑
i∈Na

1
1−fi

to each candidate a and selects a candidate with the highest
score, breaking ties arbitrarily.7 We say that a rule R is FVR-
optimal if FVR(R, s) = 1− s for all s ∈ (0, 1).

Theorem 4. The rule ROPT is FVR-optimal.

Proof. Observe that an equivalent formulation of ROPT is that
each voter i distributes 1

1−fi
points to each candidate that

the voter disapproves, and ROPT chooses a candidate with
the lowest total points. In this formulation, each voter i dis-
tributes a total of 1

1−fi
·(1−fi)m = m points,8 so at most nm

4We assume without loss of generality that w(1) = 0. If a voter i
has fi = 1, then she approves all candidates, so modifying w(1)
changes the scores of all candidates by a constant.

5If w(f) = 0 for all f , then the w-scores of all candidates will
be equal.

6This differs from the notion of scoring rule in other contexts.
For example, in social choice theory with rankings, a scoring rule
often refers to one where each voter gives a fixed score to candidates
ranked at a certain position. In decision theory, scoring rules are a
class of reward functions given forcasted predictions.

7If a voter approves all candidates, we simply ignore that voter.
8Again, we ignore voters who approve all candidates. Note that



points are distributed overall. This means that the candidate a
chosen by ROPT receives at most n points.

Next, fix any s ∈ (0, 1), and consider a group of s-flexible
voters who all disapprove a. Since each voter in the group
gives at least 1

1−s points to a, the size of the group is at most
(1− s)n. It follows that whenever a group of more than (1−
s)n voters are all s-flexible, at least one voter in the group
approves a.

2.6 General Weight Function Analysis
Theorems 2 to 4 provide analyses for specific scoring rules.
What can we say about scoring rules more broadly? In the
following theorem, we analyze the FVR guarantees of arbi-
trary scoring rules. Given a weight function w, let Rw denote
a scoring rule parameterized by w.

Theorem 5. Let w be a nontrivial weight function. Then,

FVR(Rw, s) =
ρ

ρ+ φs
,

where ρ := supf (1− f) · w(f) and φs := inff≥s f · w(f).9
Further, if w is nondecreasing, then φs = s · w(s) and the
bound simplifies to

FVR(Rw, s) =
ρ

ρ+ s · w(s)
.

Proof. Fix w, Rw, and s ∈ (0, 1). We first bound
FVR(Rw, s) from above. If ρ = ∞ then the bound holds
trivially, so assume that ρ < ∞. Fix an instance and let a∗
be the candidate chosen by Rw. Let B be a set of s-flexible
voters who disapprove a∗, and let B̄ = N \B be the set of re-
maining voters. Note that SCw(a∗) ≤

∑
i∈B̄ w(fi), because

no voter in B can contribute to the score of a∗. Consider now
the average score of all candidates, which is equal to

1

m

∑
a∈M

SCw(a) =
1

m

∑
a∈M

∑
i∈Na

w(fi)

=
1

m

∑
i∈N

|Ai| · w(fi) =
∑
i∈N

fi · w(fi),

where the second equality holds because each voter i con-
tributes w(fi) points to each of exactly |Ai| candidates. Since
a∗ has the largest w-score, it must have w-score at least the
average. This implies that∑
i∈B̄

w(fi)−
∑
i∈N

fi ·w(fi) ≥ SCw(a∗)− 1

m

∑
a∈M

SCw(a) ≥ 0.

On the other hand,∑
i∈B̄

w(fi)−
∑
i∈N

fi · w(fi)

=
∑
i∈B̄

w(fi)−

∑
i∈B

fi · w(fi) +
∑
i∈B̄

fi · w(fi)


voters who approve none of the candidates also distribute points.

9In the case where ρ = ∞, the ratio is defined to be 1.

=
∑
i∈B̄

(1− fi) · w(fi)−
∑
i∈B

fi · w(fi)

≤ (n− |B|)ρ− |B|φs,

where the last inequality holds by the definitions of ρ and φs,
as fi ≥ s for i ∈ B. Finally, observe that

(n− |B|)ρ− |B|φs ≥ 0 ⇐⇒ nρ ≥ |B|(ρ+ φs)

⇐⇒ |B|
n
≤ ρ

ρ+ φs
.

Note that since w is nontrivial, we have ρ > 0, and so ρ +
φs > 0 and the last transition is valid.

Next, we bound FVR(Rw, s) from below. For f, f ′ ∈ Q ∩
(0, 1) such that w(f) > 0, let

g(f, f ′) :=
(1− f) · w(f)

(1− f) · w(f) + f ′ · w(f ′)
.

Note that this expression is well-defined and positive because
(1 − f) · w(f) > 0 and f ′ · w(f ′) ≥ 0. For each pair f, f ′,
we will construct a family of instances such that the fraction
of f ′-flexible voters who disapprove the candidate chosen by
Rw becomes arbitrarily close to g(f, f ′). By definition of ρ
and φs, there are choices of f and f ′ ≥ s that make this ratio
arbitrarily close to ρ

ρ+φs
, which establishes the bound.

Fix such a pair f, f ′. Let m be such that both ℓ := mf and
ℓ′ := mf ′ are integers. We will have a special candidate a∗,
and let B be a set of voters of size ⌊g(f, f ′) · n⌋ −m (with
n sufficiently large that this is nonnegative). We will ensure
that a∗ is the unique candidate with the highest w-score, while
voters in B are f ′-flexible and disapprove a∗. Note that as n
grows large, |B|/n approaches the desired bound of g(f, f ′).

Assume that each voter in B approves ℓ′ candidates from
M \ {a∗}, with the approvals distributed as equally as possi-
ble. Similarly, the voters in B̄ = N \ B approves a∗ along
with ℓ−1 candidates of M \{a∗}, again distributed as equally
as possible (note that ℓ ≥ 1 because f > 0 by assump-
tion). Since the voters in B and B̄ distribute their approvals
as evenly as possible across the candidates in M \ {a∗}, for
any such candidate a, its score is no more than w(f ′)+w(f)
larger than the average. Formally,

SCw(a) ≤ 1

m− 1

∑
c∈M\{a∗}

SCw(c) + (w(f ′) + w(f)).

Hence, it is sufficient to show that

SCw(a∗) >
1

m− 1

∑
c∈M\{a∗}

SCw(c) + (w(f ′) + w(f)).

The remainder of the proof, which demonstrates the above
inequality, can be found in Appendix A.2.

Theorem 5 is a powerful tool that allows us to analyze
arbitrary scoring rules. Indeed, Theorems 2 to 4 could be
proven as consequences (although we keep them separate for
exposition). In addition, we can derive other nontrivial conse-
quences, including the following fact that ROPT is essentially
the unique scoring rule that ensures FVR-optimality.
Theorem 6. Suppose that Rw is FVR-optimal for some non-
trivial weight function w. Then, there exists a positive real
number c such that w(f) = c

1−f for all f .



3 Multi-Winner Voting
3.1 Preliminaries
In this section, we turn to the more general setting of multi-
winner voting. Given an instance, our rules R now choose a
subset of winning candidates of a given size k. We refer to
a subset of k candidates as a k-committee (or just committee
if k is clear from the context) and refer to a rule that selects
a k-committee as a k-committee rule. Assume without loss
of generality that k < m, since if k = m, there is a single
k-committee which also makes all voters maximally happy.

To generalize the FVR condition to the multi-winner set-
ting, we need to generalize the notion of a voter “approving
the chosen candidate” to “approving the chosen committee.”
Two natural generalizations immediately come to mind. Fix
a committee W . A quite lenient notion we could consider is
to say that a voter i approves W if she approves at least one
of the committee members (i.e., W ∩ Ai ̸= ∅), while a much
more stringent requirement is that i approves W only if she
approves all of the committee members (i.e., W ⊆ Ai). We
will generalize both of these notions at once by introducing
an additional (positive integer) parameter t ≤ k, and saying
that a voter t-approves a committee W if she approves at least
t of the committee members (i.e., |W ∩ Ai| ≥ t). If a voter
does not t-approve a committee (i.e., |W ∩ Ai| < t), we will
say that she t-disapproves it. The earlier notions correspond
to the special cases of t = 1 and t = k, respectively.

With this generalization in hand, we can now extend the
notion of FVR to the multi-winner setting. Unlike in the
single-winner setting, it will be more convenient to state
our guarantees including their dependency on m (rather than
in the worst case over all m), although we will primarily
be interested in the behavior of these bounds as m grows
large. This is because in some cases, unlike in the single-
winner setting, as m grows, the worst case may occur for
a fixed finite m rather than in the limit. With this in mind,
for a k-committee rule R, we define FVR(R, s, t,m) as the
largest possible fraction of voters that are all s-flexible, yet
t-disapprove the chosen committee when choosing from m
candidates using R.

3.2 Lower Bound
We begin by deriving a lower bound analogous to Theo-
rem 1 from the single-winner setting. Let h(P,K, ℓ; ·) and
H(P,K, ℓ; ·) be the probability mass function and cumula-
tive distribution function of a hypergeometric random vari-
able with population size P , population success size K, and
draw size ℓ, respectively.10 That is, this is the distribution
over the number of “good” elements sampled when taking a
random subset of size ℓ out of P elements where K of the
elements are good.

Theorem 7. For any k-committee rule R, any s ∈ (0, 1), and
any t ≤ k, we have

FVR(R, s, t,m) ≥ H(m, ⌈sm⌉, k; t− 1).

10Recall that h(P,K, ℓ; t) =
(Kt )(

P−K
ℓ−t )

(Pℓ )
for t ∈ {0, 1, . . . , ℓ},

and H(P,K, ℓ; t) =
∑t

t′=0 h(P,K, ℓ; t′) for the same range of t.

Additionally, there exists a k-committee rule R (tailored to
this (s, t) combination) for which this is tight.

The proof of this theorem (along with other results about
multi-winner voting) relies on the following correspondence
between the number of candidates approved and the number
of k-committees which are t-approved.
Lemma 1. If a voter approves exactly ℓ candidates, then
she t-approves a (1 − H(m, ℓ, k; t − 1))-fraction of all k-
committees.

Proof. This follows from the definition of the hypergeomet-
ric distribution. Define the population to be the m candi-
dates and a “success” to be the ℓ candidates approved by
the voter. Then, if we pick a k-committee uniformly at ran-
dom, the probability that the voter approves at most t − 1
candidates on the committee is H(m, ℓ, k; t − 1). There-
fore, the voter t-approves the committee with probability
1−H(m, ℓ, k; t− 1).

While the bound in Theorem 7 may not be the most natural-
looking, note that as m grows large, the hypergeometric dis-
tribution with parameters m, ⌈sm⌉, k approaches a binomial
Bin(k, s) distribution. Hence, the FVR bound approaches

t−1∑
t′=0

(
k

t′

)
st

′
(1− s)k−t′ .

Although still unwieldy, the binomial limit gives us a pathway
to gain more intuition on this bound. By standard concentra-
tion inequalities, if s≪ t/k, then this bound is exponentially
close to 1, whereas if s ≫ t/k, then it is exponentially close
to 0. Further, we can see that it simplifies in some special
cases. Indeed, when k = 1 (so t = 1), the hypergeometric
bound simplifies to 1 − ⌈sm⌉

m . This is always at most 1 − s
and approaches 1 − s as m grows; hence, it coincides with
the single-winner bound (Theorem 1). When we fix t = 1
but let k be arbitrary, the limiting binomial bound simpli-
fies to (1 − s)k. If we fix t = k, it simplifies to 1 − sk.
For finite m, the hypergeometric distribution is slightly more
concentrated than the binomial distribution—for t≪ sk, the
binomial bound is an overestimate, while for t ≫ sk, it is
an underestimate. Specifically, for t = 1 the hypergeometric
bound is always less than the binomial limit, and for t = k it
is always more. This aligns with the fact that when sampling
without replacement, getting 0 success is less likely than with
replacement. Similarly, getting k (out of k) successes is less
likely without replacement than with replacement.

3.3 Simultaneously-Optimal Rules
We will say that a k-committee rule R is FVR-optimal for
(s, t) if for all m, FVR(R, s, t,m) = H(m, ⌈sm⌉, k; t− 1).
As with the single-winner setting, Theorem 7 implies for any
fixed (s, t), we can find an FVR-optimal rule for this com-
bination. However, what if we wish to attain optimality for
multiple choices of (s, t) simultaneously? We first show that
for a fixed t, we can achieve optimality over all s via a sim-
ple algorithm. Given k and t, we construct what we call a
(k, t)-expanded instance as follows. The candidates in this
expanded instance are all

(
m
k

)
possible committees of size k.



Each voter approves a committee W exactly when she t-
approves W in the original instance. We have the following.

Theorem 8. Fix k and t. Let Rk,t
expanded be the rule that runs

ROPT on the (k, t)-expanded instance and selects the winning
committee. Then, for all s ∈ (0, 1), Rk,t

expanded is FVR-optimal
for (s, t).

This theorem shows that we can directly generalize our
single-winner rule to be optimal (in a certain sense) in the
multi-winner setting. However, a downside of Rk,t

expanded is
that, in its current implementation, it runs in time exponen-
tial in k, as we must construct an instance with

(
m
k

)
candi-

dates. Hence, a natural question is whether we can obtain the
same guarantees with a polynomial-time algorithm. We show
next that this is indeed possible using a greedy algorithm, pre-
sented as Algorithm 1.

Algorithm 1 (k, t) Sequential Algorithm

C ← ∅
for j = 1, . . . , k do

for i = 1, . . . , n such that Ai \ C ̸= ∅ do
wi ← h(m−j−1, |Ai\C|−1, k−j; t−1−|Ai∩C|)

H(m, |Ai|, k; t−1)

Let aj ∈M \C be a candidate maximizing
∑

i∈Na
wi,

breaking ties arbitrarily.
C ← C ∪ {aj}

return C

At each step, the algorithm chooses a candidate that max-
imizes a certain score among the remaining candidates, and
adds it to the committee. However, unlike in our previous
scoring rules, the weight given to each voter i now depends
not only on i’s flexibility, but also on the size of the current
committee and the number of candidates in that committee
approved by i. The algorithm yields the following guarantee.

Theorem 9. Fix k and t. Let Rk,t
alg be the rule induced by

Algorithm 1. Then, for all s ∈ (0, 1), Rk,t
alg is FVR-optimal for

(s, t).
To gain some intuition about the algorithm, note that for

the (k, t)-expanded instance in Theorem 8 (and in the proof
of Theorem 4), it is not necessary to choose a committee max-
imizing the w-score (for the optimal w(f) = 1

1−f ); instead,
it is sufficient to choose one with above-average score. In
other words, if we pick a committee W uniformly at random,
E[SCw(W )] would be sufficient for optimal guarantees. How-
ever, a priori, it is possible that only a single committee W ∗

has SC(W ∗) ≥ E[SC(W )] while all others are strictly be-
low, where we drop the superscript w for convenience. To
get around this and “round” the random committee into a
deterministic one, we greedily construct C = {a1, . . . , ak}
such that at each step, E[SC(W ) | {a1, . . . , aj} ⊆ W ] ≥
E[SC(W )]. The weighting rule we use essentially tells us the
marginal gain to the score of permanently adding each possi-
ble candidate a. On average, adding each does not change the
expectation, so adding one with the largest marginal gain can
only improve the conditional expectation, thereby giving the
desired bound.

Next, we show that unlike the positive results we found for
simultaneous optimality over s in Theorems 8 and 9, the same
does not hold for t.
Theorem 10. For k = 2, no rule is simultaneously FVR-
optimal for (s, t) = (1/2, 1) and (1/2, 2).

3.4 Compatibility with Other Notions of
Representation

Finally, we address the compatibility between FVR and other
notions of representation. While several such notions have
been proposed in the literature [Aziz et al., 2017; Sánchez-
Fernández et al., 2017; Peters et al., 2021; Brill and Peters,
2023], one of the weakest is justified representation (JR). We
show that FVR-optimality is incompatible even with JR; this
implies a similar incompatibility with stronger representation
notions (see the discussion in Section 1.2).

Recall that a committee W of size k is said to satisfy JR
if there is no blocking coalition T of voters which fulfills the
following properties:

1. Large: |T | ≥ n/k;
2. Cohesive:

⋂
i∈T Ai ̸= ∅;

3. Unrepresented: W ∩Ai = ∅ for all i ∈ T .
We establish the following incompatibility.
Theorem 11. For each k > 1, there exists an s such that no
k-committee rule is FVR-optimal for (s, 1) and satisfies JR at
the same time.

4 Discussion
We have introduced the notion of voter flexibility and a corre-
sponding objective, flexible-voter representation (FVR), un-
der approval voting. In the single-winner setting, we present
a simple rule that is simultaneously optimal for all flexibil-
ity thresholds. In the multi-winner setting, while some im-
possibilities exist, we still find a polynomial-time rule which
makes similar guarantees, once the definition of “approving a
committee” (i.e., the parameter t) is fixed.

One may wonder what the practical implications of these
objectives are. That is, should we care more about voters
who are flexible? The answer certainly depends on the con-
text. For example, consider an election in which Party A
runs 20 candidates whereas Party B runs only 2. In this set-
ting, Party A voters are not necessarily “more flexible” than
Party B voters, and it may be preferable to simply take the ap-
proval winner. On the other hand, consider a setting where a
community is deciding on one of several projects to fund. In
this case, we may wish to reward voters who are more flexi-
ble. Indeed, the flexibility of such voters may indicate that
they find their disapproved projects strongly unacceptable.
Further, encouraging flexibility can help achieve consensus,
an inherently difficult task if few voters are flexible and no
candidate has a reasonably-sized base.

More broadly, we believe the notion of flexibility is an in-
teresting foundational metric. Even when the chosen rules are
not FVR-optimal, flexible-voter representation can be used
to compare various candidates and weigh them according to
their total support. Applied in a way suitable to the context,
such notions can help ensure a more desirable outcome.
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Proportional participatory budgeting with additive utilities.
In Proceedings of the 34th Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 12726–
12737, 2021.

Jannik Peters. A note on rules achieving optimal metric dis-
tortion. CoRR, abs/2305.08667, 2023.

Luis Sánchez-Fernández, Edith Elkind, Martin Lackner, Nor-
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Supplementary Material for “The Proportional Veto Principle for Approval Ballots”

A Omitted Proofs
A.1 Proof of Theorem 3
Fix p > 0 and s ∈ (0, 1), and let g(s, p) := 1

1+
(s(1+p))1+p

pp

.

First, we show that FVR(Rp-power, s) ≤ g(s, p). Take an arbitrary instance, and let a∗ be the candidate chosen by Rp-power.
Let B := {i ∈ N | |Ai| ≥ sm and a∗ /∈ Ai} be the set of s-flexible voters who disapprove a∗, and let r := |B|/n. It is
sufficient to show that r ≤ g(s, p).

Since Na∗ ⊆ N \ B, it holds that SCp(a
∗) ≤

∑
i∈N\B fp

i . Let us consider the average score of all candidates,
1
m

∑
a∈M SCp(a). We have that

1

m

∑
a∈M

SCp(a) =
1

m

∑
a∈M

∑
i∈Na

fp
i

=
1

m1+p

∑
a∈M

∑
i∈Na

|Ai|p

=
1

m1+p

∑
i∈N

∑
a∈Ai

|Ai|p =
1

m1+p

∑
i∈N

|Ai|1+p =
∑
i∈N

f1+p
i =

∑
i∈B

f1+p
i +

∑
i∈N\B

f1+p
i .

For each i ∈ B, it holds by definition that fi ≥ s, so
∑

i∈B f1+p
i ≥ |B| · s1+p = rns1+p. Since a∗ is a candidate with the

maximal score, it must hold that SC(a∗) ≥ 1
m

∑
a∈M SCp(a). Therefore,∑

i∈N\B

fp
i ≥ SC(a∗) ≥ 1

m

∑
a∈M

SCp(a) =
∑
i∈B

f1+p
i +

∑
i∈N\B

f1+p
i ≥ rns1+p +

∑
i∈N\B

f1+p
i .

That is, rns1+p ≤
∑

i∈N\B fp
i (1− fi). Note that within the range x ∈ [0, 1], basic calculus shows that the function xp(1− x)

is maximized at x = p
1+p , so we get

rns1+p ≤
∑

i∈N\B

(
p

1 + p

)p
1

1 + p
=

∑
i∈N\B

pp

(1 + p)1+p
= (1− r)n · pp

(1 + p)1+p
.

Cancelling n from both sides and solving for r, we obtain

r ≤
pp

(1+p)1+p

s1+p + pp

(1+p)1+p

=
1

1 + (s(1+p))1+p

pp

= g(s, p).

This proves that FVR(Rp-power, s) ≤ g(s, p).
Next, we show that FVR(Rp-power, s) ≥ g(s, p). Take any r < g(s, p). It suffices to show that there exists an instance where

a group of at least rn voters are all s-flexible but do not approve the candidate chosen by the p-power scoring rule. Consider
an instance with sufficiently large n and m (to be made more precise later), and let a∗ be a candidate. Let C be a group of
⌈rn⌉ voters, and assume that each voter in C approves exactly ⌈sm⌉ candidates in M \ {a∗}, with the approvals distributed
among these candidates as equally as possible. Further, assume that each voter in N \ C approves

⌈
p

1+p ·m
⌉
− 1 candidates

in M \ {a∗}, with the approvals distributed among these candidates as equally as possible; moreover, each of these voters also
approves a∗.

In this instance, we have

SCp(a
∗) =

∑
i∈N\C

fp
i = (n− ⌈rn⌉) ·

(⌈
p

1+p ·m
⌉

m

)p

= ⌊(1− r)n⌋ ·

(⌈
p

1+p ·m
⌉

m

)p

.

On the other hand, each candidate besides a∗ is approved by at most
⌈
⌈rn⌉·⌈sm⌉

m−1

⌉
voters in C, and approved by at most⌈

⌊(1−r)n⌋·
(⌈

p
1+p ·m

⌉
−1
)

m−1

⌉
voters in N \ C. Hence, the score of each such candidate a is at most

SCp(a) ≤
⌈
⌈rn⌉ · ⌈sm⌉

m− 1

⌉
·
(
⌈sm⌉
m

)p

+

⌈
⌊(1− r)n⌋ ·

(⌈
p

1+p ·m
⌉
− 1
)

m− 1

⌉
·

(⌈
p

1+p ·m
⌉

m

)p

.



We will show that SCp(a
∗) > SCp(a) when n and m are large enough. This is sufficient to complete the proof, because it

implies that the rule Rp-power selects the candidate a∗, which is approved by none of the voters in C.
We have

SCp(a
∗)− SCp(a) ≥ ⌊(1− r)n⌋ ·

(⌈
p

1+p ·m
⌉

m

)p

−
⌈
⌈rn⌉ · ⌈sm⌉

m− 1

⌉
·
(
⌈sm⌉
m

)p

−

⌈
⌊(1− r)n⌋ ·

(⌈
p

1+p ·m
⌉
− 1
)

m− 1

⌉
·

(⌈
p

1+p ·m
⌉

m

)p

.

As m grows,
⌈

p
1+p ·m

⌉
m and

⌈
p

1+p ·m
⌉
−1

m−1 converge to p
1+p , while ⌈sm⌉

m and ⌈sm⌉
m−1 converge to s. In this case, the right-hand side

of the inequality above becomes

⌊(1− r)n⌋ ·
(

p

1 + p

)p

− ⌈⌈rn⌉s⌉ · sp −
⌈
⌊(1− r)n⌋ · p

1 + p

⌉
·
(

p

1 + p

)p

.

It suffices to show that this expression is positive when n is large enough. Note that the expression is at least

((1− r)n− 1) ·
(

p

1 + p

)p

− (((rn+ 1)s) + 1) · sp −
(
(1− r)n · p

1 + p
+ 1

)
·
(

p

1 + p

)p

= n

[
(1− r)

(
p

1 + p

)p

− rs1+p − (1− r)

(
p

1 + p

)p+1
]
−
(

p

1 + p

)p

− (s+ 1)sp −
(

p

1 + p

)p

= n

[
(1− r) · pp

(1 + p)1+p
− rs1+p

]
− 2

(
p

1 + p

)p

− (s+ 1)sp.

It remains to show that the expression inside the brackets (attached to n) is positive. This expression is positive if and only if
r
(

pp

(1+p)1+p + s1+p
)
< pp

(1+p)1+p . This inequality holds exactly when

r <

pp

(1+p)1+p

pp

(1+p)1+p + s1+p
=

1

1 + (s(1+p))1+p

pp

= g(s, p),

which holds by assumption. This completes the proof.

A.2 Missing Portion of Proof of Theorem 5
Recall that to complete the proof, it is sufficient to show that

SCw(a∗) >
1

m− 1

∑
c∈M\{a∗}

SCw(c) + (w(f ′) + w(f)).

This is equivalent to showing that

(m− 1)SCw(a∗) >
∑

c∈M\{a∗}

SCw(c) + (m− 1)(w(f ′) + w(f)).

We have

(m− 1)SCw(a∗) = (m− 1)|B̄| · w(f)
= (ℓ− 1)|B̄| · w(f) + (m− ℓ)|B̄| · w(f)
≥ (ℓ− 1)|B̄| · w(f) + (m− ℓ) ((1− g(f, f ′)) · n+m) · w(f)

= (ℓ− 1)|B̄| · w(f) +m · (1− f) · w(f) · f ′ · w(f ′)

(1− f) · w(f) + f ′ · w(f ′)
· n+m · (m− ℓ) · w(f)

= (ℓ− 1)|B̄| · w(f) + ℓ′ · w(f ′) · g(f, f ′) · n+m · (m− ℓ) · w(f)
≥ (ℓ− 1)|B̄| · w(f) + ℓ′ · w(f ′) · (|B|+m) +m · (m− ℓ) · w(f)
= (ℓ− 1)|B̄| · w(f) + w(f ′) · ℓ′ · |B|+m((m− ℓ) · w(f) + ℓ · w(f ′))

≥ (ℓ− 1)|B̄| · w(f) + w(f ′) · ℓ′ · |B|+m(w(f) + w(f ′))



> (ℓ− 1)|B̄| · w(f) + w(f ′) · ℓ′ · |B|+ (m− 1)(w(f) + w(f ′))

=
∑

c∈M\{a∗}

SCw(c) + (m− 1)(w(f ′) + w(f)),

where the second-to-last inequality holds because 1 ≤ ℓ ≤ m − 1, and the last inequality holds because w(f) > 0. This
completes the proof.

A.3 Proof of Theorem 6
Fix w and suppose that Rw is FVR-optimal. By Theorem 5, this implies that ρ

ρ+φs
= 1 − s for all s ∈ (0, 1), where

ρ = supf (1− f) · w(f) and φs = inff≥s f · w(f).
First, we show that w(f) > 0 for every f . Indeed, since w is nontrivial, there exists f∗ ∈ Q ∩ (0, 1) for which w(f∗) > 0,

so we have ρ ≥ w(f∗) · (1− f∗) > 0. Further, if w(f) = 0 for some f , then φf ≤ w(f) · (1− f) = 0. Therefore,

ρ

ρ+ φf
≥ 1 > 1− f,

a contradiction.
We next show that for all flexibilities f1, f2, it holds that (1 − f2) · w(f2) = (1 − f1) · w(f1). Fix f1, f2 ∈ Q ∩ (0, 1). By

setting s = f1, we have that
ρ

ρ+ φf1

= 1− f1.

Note that the ratio a
a+b is increasing in a and decreasing in b. Therefore, replacing ρ by a value at most ρ and replacing φf1 with

a value larger than φf1 will only decrease the ratio. In particular, by their definitions, ρ ≥ (1−f2) ·w(f2) and φf1 ≤ f1 ·w(f1).
Hence,

(1− f2) · w(f2)
(1− f2) · w(f2) + f1 · w(f1)

≤ 1− f1.

As shown before, each w(f) is positive, so the denominator is positive. Multiplying on both sides, we obtain

(1− f2) · w(f2) ≤ (1− f1) · ((1− f2) · w(f2) + f1 · w(f1)).

Distributing and rearranging yields
f1 · (1− f2) · w(f2) ≤ f1 · (1− f1) · w(f1).

Since f1 > 0, we can divide both sides by f1 to get

(1− f2) · w(f2) ≤ (1− f1) · w(f1).

Redoing the entire argument with f1 and f2 flipped yields the reverse inequality, and hence equality.
With this in hand, let c := w(1/2) · (1− 1/2). By plugging in f for f1 and 1/2 for f2, we immediately get that w(f) = c

1−f

for all f .

A.4 Proof of Theorem 7
Fix m, k, s, and t. Consider an instance with n =

(
m

⌈sm⌉
)

voters, each approving a distinct subset of ⌈sm⌉ candidates.
Note that by symmetry, every k-committee W is t-disapproved by exactly the same number of voters. By Lemma 1 and an
averaging argument, this must be a H(m, ⌈sm⌉, k; t− 1)-fraction of voters. Hence, no matter which committee is selected, an
H(m, ⌈sm⌉, k; t− 1)-fraction of voters, all of whom are s-flexible, will t-disapprove.

To show tightness, consider a rule that chooses a k-committee that is t-approved by the highest number of s-flexible voters.
Note that each s-flexible voter approves at least a 1−H(m, ⌈sm⌉, k; t− 1) fraction of the committees (as approving more than
⌈sm⌉ candidates can only increase this value). Hence, by an averaging argument, there must exist a committee approved by
at least a 1−H(m, ⌈sm⌉, k; t− 1) fraction of these voters. Therefore, at most an H(m, ⌈sm⌉, k; t− 1)-fraction of s-flexible
voters (and therefore of all voters as well) can t-disapprove the chosen committee.

A.5 Proof of Theorem 8
Fix k, t, s, and an instance with m candidates. Let W be the committee chosen by Rk,t

expanded, and let B be a subset of voters that
are s-flexible and do not t-approve W . By Lemma 1, if a voter is s-flexible, then she approves at least a 1−H(m, ⌈sm⌉, k; t−1)
fraction of candidates in the (k, t)-expanded instance. In other words, the voter is (1 − H(m, ⌈sm⌉, k; t − 1))-flexible in the
instance on which ROPT is run. Therefore, Theorem 4 guarantees that |B| ≤ H(m, ⌈sm⌉, k; t− 1) · n.



A.6 Proof of Theorem 9
Fix k, t, m, and s. By Lemma 1, each voter i ∈ N t-approves a 1 −H(m, |Ai|, k; t − 1)-fraction of k-committees. For each
k-committee W , let

SC(W ) :=
∑

i:|Ai∩W |<t

1

H(m, |Ai|, k; t− 1)
;

note that the sum is taken over all voters who t-disapprove W . Observe that had we run ROPT on the (k, t)-expanded instance,
it would choose a committee with the lowest such score. However, a careful inspection of the proof for ROPT reveals that
we do not need to choose a lowest-score committee for the guarantees to hold. Instead, any committee with score no greater
than the average score already fulfills the guarantee; the minimum is only a convenient choice to ensure this. Formalizing this
observation in the multi-winner setting, where the following expectation is taken over all k-committees, we have that

E[SC(W )] =
1(
m
k

) ∑
W

SC(W )

=
1(
m
k

) ∑
i

∑
W :|Ai∩W |<t

1

H(m, |Ai|, k; t− 1)

=
1(
m
k

) ∑
i

(
m

k

)
·H(m, |Ai|, k; t− 1) · 1

H(m, |Ai|, k; t− 1)
= n.

As long as W is such that SC(W ) ≤ n, then we claim that it yields FVR-optimality for (s, t). Indeed, suppose that B is a set of
s-flexible voters that t-disapprove W . Then each voter i ∈ B contributes 1

H(m,|Ai|,k;t−1) ≥
1

H(m,⌈sm⌉,k;t−1) points to SC(W ).
Since SC(W ) ≤ n, we have |B| ≤ n ·H(m, ⌈sm⌉, k; t− 1).

It therefore suffices to show that Algorithm 1 chooses a committee W with SC(W ) ≤ n. Let a1, . . . , ak be the sequence of
candidates added to the committee in the k iterations of the loop. For 0 ≤ j ≤ k, let Cj = {a1, . . . , aj} be the set of the first j
candidates, so Ck is the final committee returned by the algorithm. We will show that for each j ≥ 1, it holds that

aj ∈ argmin
a∈M\Cj−1

E[SC(W ) | Cj−1 ∪ {a} ⊆W ]. (1)

In other words, aj is chosen greedily to minimize E[SC(W ) | Cj ⊆W ]. Note that (1) implies that for each j ≥ 1,

E[SC(W ) | Cj ⊆W ] ≤ E[SC(W ) | Cj−1 ⊆W ].

Therefore,
SC(Ck) = E[SC(W ) | Ck ⊆W ] ≤ E[SC(W ) | C0 ⊆W ] = E[SC(W )] = n,

where the first equality holds because |Ck| = k (so conditioning on Ck ⊆ W implies W = Ck with probability 1), the
inequality by a straightforward induction, and the second equality because C0 = ∅ (so the conditioning is vacuous).

To complete the proof, it remains to establish (1). Fix a ∈ M \ Cj−1 with a ̸= aj . Let C ′
j = Cj−1 ∪ {a}, i.e., the alternate

set had we added a instead of aj . We will show that

E[SC(W ) | Cj ⊆W ] ≤ E[SC(W ) | C ′
j ⊆W ].

More specifically, we will show that

E[SC(W ) | Cj ⊆W ]− E[SC(W ) | C ′
j ⊆W ] ≤ 0.

Note that the conditional distribution of a uniformly selected W conditioned on some set T ⊆ W is simply uniform over the(
m−|T |
k−|T |

)
sets containing T . Hence,

E[SC(W ) | Cj ⊆W ]− E[SC(W ) | C ′
j ⊆W ] =

1(
m−j
k−j

)
 ∑

W :Cj⊆W

SC(W )−
∑

W :C′
j⊆W

SC(W )

 .

Since we only wish to show that this quantity is at most 0, we can ignore the constant in front and show that the difference of
sums is nonpositive. We can remove from both sums all committees W that contain both aj and a to obtain that the difference
is equal to ∑

W :Cj⊆W
a/∈W

SC(W )−
∑

W :C′
j⊆W

aj /∈W

SC(W ).



An alternative way to sum over the same sets is to simply sum over all sets T ⊆ M \ (Cj−1 ∪ {aj , a}) with |T | = k − j and
output Cj ∪ T or C ′

j ∪ T , respectively. For brevity, we will let R := M \ (Cj−1 ∪ {aj , a}) denote the set of these remaining
candidates in neither Cj nor C ′

j . Hence, the above difference is equal to∑
T

(SC(Cj ∪ T )− SC(C ′
j ∪ T )),

where the sum is taken over all sets T ⊆ R of size k − j. Expanding the definition of the score, we get that this is equal to∑
i

(
1

H(m, |Ai|, k; t− 1)
·
∑
T

(I[|Ai ∩ (Cj ∪ T )| < t]− I[|Ai ∩ (C ′
j ∪ T )| < t])

)
. (2)

Note that the sets Ai ∩ (Cj ∪ T ) and Ai ∩ (C ′
j ∪ T ) differ in size by at most 1, and the difference is 1 when exactly one of

aj and a is contained in Ai. More specifically, either aj ∈ Ai and a /∈ Ai (in which case the first is larger by 1) or vice
versa (in which case the second is larger by 1). Hence, the only scenarios in which the difference of indicators is nonzero is
when exactly one of aj and a is in Ai, and moreover |Ai ∩ (Cj−1 ∪ T )| = t − 1; the latter condition can be rewritten as
|Ai ∩ T | = t− 1− |Ai ∩ Cj−1|. When aj ∈ Ai, the difference is −1, while if a ∈ Ai, the difference is 1.

Fix a voter i such that exactly one of aj and a is contained in Ai, and consider the number of sets T ⊆ R of size k−j such that
|Ai ∩T | = t− 1− |Ai ∩Cj−1|. We claim that it is

(
m−j−1
k−j

)
times h(m− j− 1, |Ai \Cj−1| − 1, k− j; t− 1− |Ai ∩Cj−1|).

Indeed, it is exactly the probability of choosing a random set T of size k − j from a set R of size m − j − 1 (recall that
R = M \ (Cj−1 ∪ {aj , a})) which contains |Ai ∩R| = |Ai \ (Cj−1 ∪ {aj , a})| = |Ai \Cj−1| − 1 elements of Ai, and ending
up with |Ai ∩ T | = t− 1− |Ai ∩Cj−1| such elements. Putting this together, we have that as long as exactly one of aj and a is
in Ai, the entire inner sum is

(
m−j−1
k−j

)
times

(I[a ∈ Ai]− I[aj ∈ Ai]) · h(m− j − 1, |Ai \ Cj−1| − 1, k − j; t− 1− |Ai ∩ Cj−1|). (3)

In fact, (3) continues to hold even when not exactly one of aj and a is in Ai, as the difference in indicators is simply 0 in that
case. Hence, (2) is

(
m−j−1
k−j

)
times∑

i

(
(I[a ∈ Ai]− I[aj ∈ Ai]) ·

h(m− j − 1, |Ai \ Cj−1| − 1, k − j; t− 1− |Ai ∩ Cj−1|)
H(m, |Ai|, k; t− 1)

)
.

Note that the probability mass function and cumulative distribution function ratio is exactly the weight wi given to voter i in
the round where aj is chosen in Algorithm 1. Rewriting the expression above, we see that this is equal to∑

i:a∈Ai

wi −
∑

i:aj∈Ai

wi.

Since aj is a candidate with the highest weighted approval when it is chosen, this difference is at most 0, as desired.

A.7 Proof of Theorem 10
Consider an instance with m = 4 candidates partitioned into two sets, B = {b1, b2} and C = {c1, c2}, and n = 2 voters—one
approves b1, b2 while the other approves c1, c2. Suppose we select a committee W of size 2. First, assume that W contains one
candidate from each set. We have H(4, 2, 2; 1) = 5/6; however, all voters (i.e., a 1-fraction of voters) 2-disapprove W . Next,
assume that W contains two candidates from one set and none from the other set. In this case, we have H(4, 2, 2; 0) = 1/6;
however, one voter (i.e., a 1/2-fraction of voters) 1-disapproves W . Hence, no rule can be simultaneously FVR-optimal for
(s, t) = (1/2, 1) and (1/2, 2).

A.8 Proof of Theorem 11
Take some m > k. Suppose that the candidates are partitioned into two sets B ∪ C, where B = {b1, . . . , bk−1} and C =
{c1, . . . , cm−k+1}. There are k groups of voters, N1, . . . , Nk, each of size m − k + 1. For 1 ≤ j ≤ k − 1, each voter in Nj

approves bj and no other candidate. Each voter in Nk approves all candidates in C except one, a distinct one per voter.
Observe that for a committee W to satisfy JR, we must have B ⊆ W . Indeed, if not, there is some j such that bj /∈ W , and

the set Nj forms a blocking coalition. However, once B ⊆ W , we have |W ∩ C| = 1. Hence, there exists a voter in Nk who
disapproves the unique candidate from C in W , and therefore disapproves the entire committee. This voter is m−k

m -flexible
and comprises a 1/(k · (m − k + 1)) ≥ 1/(km) fraction of the voters. Note that the optimal FVR guarantee for s = m−k

m

and t = 1 is H(m,m − k, k; 0) = 1/
(
m
k

)
. For sufficiently large m, we have

(
m
k

)
> km, so the optimal FVR guarantee for

(s, t) = (m−k
m , 1) is incompatible with JR.
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