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Abstract. We study trade-offs between fairness and efficiency when allocating indivisible 
items online. We attempt to minimize envy, the extent to which any agent prefers another’s 
allocation to their own, while being Pareto efficient. We provide matching lower and upper 
bounds against a sequence of progressively weaker adversaries. Against worst-case adver-
saries, we find a sharp trade-off; no allocation algorithm can simultaneously provide both 
nontrivial fairness and nontrivial efficiency guarantees. In a slightly weaker adversary 
regime where item values are drawn from (potentially correlated) distributions, it is possi-
ble to achieve the best of both worlds. We give an algorithm that is Pareto efficient ex post 
and either envy free up to one good or envy free with high probability. Neither guarantee 
can be improved, even in isolation. En route, we give a constructive proof for a structural 
result of independent interest. Specifically, there always exists a Pareto-efficient fractional 
allocation that is strongly envy free with respect to pairs of agents with substantially differ-
ent utilities while allocating identical bundles to agents with identical utilities (up to multi-
plicative factors).
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1. Introduction
Fairly and efficiently allocating resources to heteroge-
neous agents is a fundamental problem in operations 
research with applications including advertising (Mehta 
et al. 2007, Balseiro et al. 2021, Bateni et al. 2022), organ 
transplantation (Su and Zenios 2006, Bertsimas et al. 
2013), nurse shift scheduling (Miller et al. 1976), and 
resource allocation in shared facilities, like data centers 
(Butler and Williams 2002, Armony and Ward 2010, 
Ghodsi et al. 2011, Vardi et al. 2022).

We study the problem of allocating indivisible goods 
to agents who have additive valuations. Our goal is 
proving strong mathematical guarantees of both the 
interpersonal fairness and the efficiency of the resulting allo-
cation. Several fairness notions have been used in the lit-
erature, but arguably, the gold standard is envy freeness, 
which requires that each agent is at least as happy with 
their own allocation as the allocation of any other agent. 
In terms of efficiency, we aim for Pareto-efficient or 
approximately Pareto-efficient allocations, which in 

isolation, can be achieved by allocating each item to the 
agent who values it most.

Ignoring efficiency, envy-free solutions always exist in 
many well-studied fair division settings that involve 
divisible goods or a numéraire, such as cake cutting 
(Brams and Taylor 1996, Procaccia 2016) and rent divi-
sion (Su 1999, Gal et al. 2017). For divisible items, one 
strategy for finding a fair allocation is the competitive equi-
librium from equal incomes (CEEI) solution of Varian 
(1974). In the equilibrium allocation, agents use assigned 
(equal) budgets to purchase their preferred bundles of 
goods at virtual prices, and the market clears (all goods 
are allocated). This solution is envy free (Foley 1967) and 
coincides with the solution that maximizes the Nash 
social welfare (Arrow and Intriligator 1982): that is, the 
solution that maximizes the product of agent utilities.

By contrast, with indivisible goods, envy is clearly 
unavoidable in general; consider a single item that is 
desired by two agents. That is why previous papers (Lip-
ton et al. 2004, Caragiannis et al. 2016) focus on the 
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relaxed notion of envy freeness up to one good (EF1), in 
which envy may exist, but for any bundle that an agent 
prefers over their own, there exists a single good whose 
removal eliminates that envy. With indivisible goods, 
the approximate-CEEI solution (Budish 2011) is EF1 but 
may not allocate all items, whereas the integral solution 
that maximizes the Nash social welfare is both EF1 and 
Pareto efficient (Caragiannis et al. 2016).

Our point of departure is that we allow items to arrive 
online. That is, we must choose how to allocate an item 
immediately and irrevocably at the moment it arrives 
without knowing the values of items that will arrive in 
the future. This setup mirrors common decision-making 
scenarios in humanitarian logistics. A paradigmatic 
example is that of food banks (Aleksandrov et al. 2015, 
Lee et al. 2019), which receive food donations and deliver 
them to nonprofit organizations, such as food pantries 
and soup kitchens. Indeed, items are often perishable, 
which is why allocation decisions must be made quickly, 
and donated items are typically unsold or leftover pro-
ducts, leading to a lack of information about items that 
will arrive in the future.

As noted, the static setting permits a solution that is 
EF1 and Pareto efficient for any number of items (Cara-
giannis et al. 2016), but this requires up-front knowledge 
of all items. In contrast, in the online setting, one would 
expect the maximum envy to increase with the number 
of items but may hope to control the rate at which it 
grows. However, it is entirely unclear what impact mini-
mizing envy online will have on efficiency. Our primary 
research question is:

Are there online allocation algorithms that are simulta-
neously fair and efficient?

1.1. Our Contributions
We study the trade-off between fairness and efficiency in 
the following setting; T indivisible items arrive online 
(one by one) and must be allocated immediately and 
irrevocably to a set of agents N . Agent i ∈N has value vit 
for item t; these values are known at the time of allocation 
and are generated according to one of four different 
adversary models, which we describe. For each adver-
sary model, we fully characterize the extent to which fair-
ness and efficiency are compatible (or not).

In Section 3, we consider the strongest worst-case 
adversaries. We start, in Sections 3.1 and 3.2, by deter-
mining the limits of what is possible when solely mini-
mizing envy with randomized allocation algorithms 
against an adaptive adversary that chooses the agent 
values for an arriving item after seeing the (realized) allo-
cations of all the previous items. A natural idea is to allo-
cate each item to an agent chosen uniformly at random. 
We find that this random allocation has vanishing envy: 
envy that grows sublinearly in the number of items 
(Theorem 1). Surprisingly, given the simplicity of the 
algorithm, we also construct a matching lower bound; 

Theorem 2 establishes that the rate at which random allo-
cation causes envy to vanish is asymptotically optimal 
(up to logarithmic factors). Unfortunately, random allo-
cation only provides trivial efficiency guarantees.

Despite random allocation being asymptotically opti-
mal in terms of fairness, there may exist other algorithms 
with vanishing envy that perform much better in terms 
of efficiency. We show that this is not the case. In Section 
3.3, we study a weaker, nonadaptive worst-case adversary 
that selects an instance (with T items) after observing the 
algorithm but before it is executed: so, without knowl-
edge of any random outcomes in the algorithm. Our 
main negative result (Theorem 3) is that, even against 
this weaker adversary, no algorithm with vanishing 
envy can have stronger efficiency guarantees than ran-
dom allocation, implying the same result for adaptive 
adversaries. An important implication of Theorem 3 is 
that in settings where agents’ value distributions are not 
known or where there is a strong need for worst-case 
guarantees, algorithm designers are forced to choose 
between achieving either nontrivial efficiency guaran-
tees or nontrivial fairness properties.

In Section 4, we study weaker, Bayesian adversaries. 
Section 4.1 considers the weakest of these, which selects 
a distribution D from which each value is drawn (inde-
pendently and identically across items and agents). 
Here, a good algorithm was identified by Dickerson et al. 
(2014) and later simplified and improved by Kurokawa 
et al. (2016), albeit in a different context: allocate each 
item to the agent who values it most. We find that this 
core idea, with very minor modification, is ex post Pareto 
efficient and either envy free with high probability or 
EF1 (Theorem 4).

When agents are nonidentical, the strategy of allocat-
ing each item to the agent with the highest value fails, as 
do variants like considering the highest quantile instead 
of the highest value. Despite this, we design an algorithm 
that provides ex post Pareto efficiency and vanishing 
envy. Our main positive results are established against 
an even stronger adversary that allows for correlated 
agents; that is, vit can be correlated with vît but not with 
vit̂ . Of course, all results established for correlated agents 
extend to the settings with independent agents.

In Section 4.2, we analyze our high-level strategy while 
postponing some crucial technical obstacles. We generate 
an offline instance with n agents and as many items as the 
support of the correlated discrete distribution D. We 
show in Theorem 5 that it is possible to use a (fractional) 
Pareto-efficient solution to this offline instance to guide 
the (integral) online allocation. This rounding can be cou-
pled with any Pareto-efficient and envy-free offline solu-
tion (for example, the fractional allocation that maximizes 
the product of agents’ utilities) to yield an ex post Pareto- 
efficient algorithm with vanishing envy.

Notably, if the solution to the offline instance is a 
strongly envy-free allocation, where each agent strictly 
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prefers their own allocation over any other, the same 
approach would imply online envy freeness with high 
probability (a much stronger guarantee than simply van-
ishing envy). This goal is too optimistic. However, we 
show in Section 4.3 that it is possible to provide an offline 
allocation with a slightly weaker property, which when 
used online, results in either envy freeness with high 
probability or EF1 ex post (Theorem 8). Remarkably, this 
is the same guarantee as against the weak Bayesian 
adversary.

Theorem 8 relies on a structural, constructive result 
about fractional allocations to the offline problem (Theo-
rem 7). We give an algorithm that starts with a solution 
to the Eisenberg–Gale convex program (henceforth, the 
E-G program) (Eisenberg and Gale 1959) with equal bud-
gets and iteratively adjusts the budgets until it arrives at 
a Pareto-efficient fractional allocation where agent i 
either strictly prefers their allocation to the allocation of 
agent j or if they are indifferent, then i and j have identical 
fractional allocations and the same value (up to multipli-
cative factors) for all items allocated to them. We believe 
that this result and approach may be of independent 
interest.

We conclude with a remark on the fairness criteria of 
our main positive result: “EF1 or envy free with high 
probability.” Even in isolation under the weakest adver-
sary, this is the strongest achievable fairness guarantee. 
It is impossible to always output an EF1 allocation (ex 
post), and it is impossible to always output an allocation 
that is envy free with high probability (see Section EC.2 
in the e-companion).

1.2. Related Work
Our paper is related to the growing literature on online or 
dynamic fair division (Walsh 2011; Kash et al. 2014; Alek-
sandrov et al. 2015; Friedman et al. 2015, 2017; Freeman 
et al. 2018; Li et al. 2018; He et al. 2019; Bogomolnaia et al. 
2021; Gkatzelis et al. 2021). In settings similar to our 
worst-case adversary, He et al. (2019) allow items to be 
reallocated at a later time and study the number of adjust-
ments that are necessary and sufficient in order to main-
tain an EF1 allocation online. Bansal et al. (2020) propose 
an algorithm that guarantees envy of O(log T)with high 
probability for the case of two independent identical 
agents but do not consider efficiency. In contrast to our 
positive result in Section 4.3, their result allows the distri-
bution to depend on T.

Dickerson et al. (2014) study a completely different set-
ting and show that allocating an item to the agent who 
values it most results in an envy-free allocation with prob-
ability 1 as the number of items goes to infinity (a similar 
result appears in Kurokawa et al. 2016). It is straightfor-
ward to apply this against the weakest adversary we con-
sider, where agents are identical and items values are 
independent and identically distributed (i.i.d.). We dis-
cuss their result in greater detail in Section 4.

For the offline problem (i.e., when all agents’ values 
are available to the algorithm), Caragiannis et al. (2016) 
show that, in fact, there is no trade-off between fairness 
and efficiency; the (integral) allocation that maximizes 
the Nash social welfare is simultaneously Pareto efficient 
and EF1. Computing the fractional allocation that maxi-
mizes Nash social welfare is a special case of the Fisher 
market equilibrium with affine utility buyers; the latter 
problem was solved in (weakly) polynomial time by 
Devanur et al. (2008) and improved to a strongly polyno-
mial time algorithm by Orlin (2010). Our structural result 
starts from an exact solution to the Eisenberg–Gale con-
vex program (Eisenberg and Gale 1959) and then uses a 
polynomial number of operations. Therefore, all our 
algorithms run in strongly polynomial time; we further 
comment on this in Section 5. Gao et al. (2021) study an 
online version of a Fisher market in which items arrive 
over time. They define an online equilibrium to be such 
that the time-averaged prices and allocations form an 
equilibrium for the corresponding offline market with 
item supplies proportional to the item arrival probabili-
ties, and they obtain asymptotic fairness guarantees. 
Similarly, our results for correlated distributions (Theo-
rems 6 and 8) leverage a connection between the online 
instance and an offline instance in which item type 
values are scaled by their frequency.

Beyond envy, the price of fairness measures the relative 
loss in social welfare that results from enforcing a fair-
ness constraint. The price of fairness has been studied in 
static settings for divisible items (Caragiannis et al. 2009; 
Bertsimas et al. 2011, 2012) and more recently, indivisible 
items (Barman et al. 2020, Bei et al. 2021, Narayan et al. 
2021). Our work is similar in spirit; we approximate 
Pareto efficiency rather than welfare and are willing to 
relax the fairness notion rather than strictly enforcing it.

2. Preliminaries
We study the problem of allocating a set of T indivisible 
items (also referred to as goods) arriving over time, 
labeled by G � [T] � {1, 2, : : : , T}, to a set of n agents, 
labeled N � [n]. Agent i ∈N assigns a (normalized) 
value vit ∈ [0, 1] to each item t ∈ G. Agents have additive 
utilities for subsets of items, where vi(S) �

P
t∈Svit for 

S ⊆ G. An allocation A is a partition of the items into bun-
dles A1, : : : , An, where Ai is assigned to agent i ∈N .

Items arrive one by one, in order, over a total of T 
rounds and are immediately allocated. Let Gt � [t] be the 
set of items that have arrived up until time t. Allocations 
of Gt are denoted At. Agents’ valuations for the tth item 
only become available once the item arrives, and we 
would like to allocate the goods so that the final alloca-
tion A � AT is fair and efficient. Many of our results char-
acterize fairness and efficiency as T grows. We use 
standard asymptotic notation; see Section EC.1 in the 
e-companion for a reminder.
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We now discuss the different adversary models that 
govern how the item values are generated before for-
mally defining our notions of fairness and efficiency.

2.1. Adversary Models
One may think of each scenario as a game between the 
adversary and the allocation algorithm. For the first two, 
it will be convenient to think of the algorithm being fixed 
before the adversary picks a strategy. For the last two 
adversaries, it will be more intuitive to think of the 
adversary picking a strategy (distribution) first.

We list our adversaries from strongest to weakest, 
where a stronger adversary can simulate the strategy of a 
weaker adversary but not vice versa. Distributions are 
assumed to be discrete with finite support and indepen-
dent of T, so it cannot have support of size T, variance 
1=T, etc. We refer to adversaries (1) and (2) as worst case 
and adversaries (3) and (4) as Bayesian. 

1. Adaptive adversary. The adversary selects values 
{vit}i∈N after observing the algorithm’s allocations for 
the first t � 1 items.

2. Nonadaptive adversary. The adversary selects an 
instance (with n agents and T items) after seeing the 
algorithm’s description but without knowing the out-
come of any randomness in the algorithm. Our main 
negative result is for this setting.

3. Correlated agents and i.i.d. items. The adversary 
specifies a joint distribution for agent values D1, : : : , Dn. 
In round t, the value of item t to each agent i is drawn 
from their distribution: that is, vit ~ Di. Value vit can be 
correlated with vjt but not with vit̂ . For simplicity, we 
treat this setting as follows. Each item t has one of m 
types. Agent i has value vi(γ) for an item of type γ; the 
type of each item is drawn i.i.d. from a distribution D 
with support GD, |GD | �m. We write fD(γ) for the 
probability that the tth item has type γ. Our main posi-
tive result is for this setting.

4. Identical agents and i.i.d. items. The adversary 
selects a distribution D. In round t, the value of item t 
to each agent i is drawn independently from this distri-
bution (i.e., vit ~ D).

Against Bayesian adversaries, we study the allocation 
algorithm’s performance as T→∞. Worst-case adver-
saries always have the option to let all future items be 
worthless to every agent, so here T is assumed to be fixed 
and known when the adversary selects their strategy.

2.2. Measuring Fairness
We focus on a well-studied notion of fairness called envy. 
An allocation A � (A1, : : : , An) is envy free when vi(Ai) ≥

vi(Aj) for all i, j ∈N . The pairwise envy of agent i toward j 
is Envyi, j(A) �max{vi(Aj)� vi(Ai), 0}, whereas Envy(A)
�maxi, j∈N Envyi, j(A) is the maximum envy. Envy(A) � 0 
implies that the allocation is envy free. An allocation A is 
EF1 when, for all pairs of agents i, j, Envyi, j(A) ≤maxt∈Aj vit. 
Note that this is a stronger guarantee than Envy(A) ≤ 1 

when maxt∈Gvit < 1. For convenience, we will occasion-
ally refer to Envy(Ak) as Envyk for k ∈ G, and EnvyT �

Envy(AT) � Envy(A). An algorithm has vanishing envy if 
the expected maximum pairwise envy is sublinear in T: 
that is, E[Envy(A)] ∈ o(T) or limT→∞E[Envy(A)]=T→ 0.

2.3. Measuring Efficiency
The utility profile of an allocation A is a vector 
u � (u1, : : : , un), where ui � vi(Ai). A utility vector u domi-
nates another utility vector u′, denoted by u ≻ u′, if ui ≥

u′i for all i and there is some j for which uj > u′j . An alloca-
tion with utility profile u is Pareto efficient if there is no 
allocation with utility vector u′ such that u′ ≻ u. Where 
appropriate, we use a notion of approximate Pareto effi-
ciency, initially by Ruhe and Fruhwirth (1990), to mea-
sure the efficiency of our algorithms. An allocation with 
utility profile u is α-Pareto efficient (for 0 < α ≤ 1) when 
u=α�is undominated.

Because our setting is online, we need to specify 
whether efficiency guarantees are worst case or average 
case with respect to the adversary instance and the ran-
domness of our algorithms. For a worst-case guarantee, 
we say that an allocation is α-Pareto efficient ex post if it 
always outputs an α-Pareto-efficient allocation: that is, 
for all agent valuations and all possible outcomes of any 
randomness in the algorithm. On the other hand, an allo-
cation algorithm is α-Pareto efficient ex ante if the 
expected utility profile is α-Pareto efficient (where 
the expectation is with respect to the randomness in the 
instance and the algorithm). Our main positive result 
guarantees 1-Pareto efficiency ex post, whereas our main 
negative result shows that a specific notion of fairness is 
incompatible with 1=n-Pareto efficiency ex ante.

3. Fairness and Efficiency Are 
Incompatible Against Worst-Case 
Adversaries

In this section, we discuss the trade-off between effi-
ciency and fairness against the stronger non-Bayesian 
adversaries.

To build intuition, we consider a couple of obvious 
strategies for finding fair or efficient allocation algo-
rithms and highlight how they fail. First, we observe that 
the natural Pareto-efficient algorithm that allocates each 
item to the agent who values it most has EnvyT ∈Ω(T).

Example 1. Consider two agents. Let v1t � 1 for all t ∈
G and v2t � 1=2 for all t ∈ G. When allocating each item 
to the agent who likes it most, A1 � G and A2 � ∅. This 
allocation is Pareto efficient but has EnvyT � T=2.

The prior allocation algorithm ignored envy en-
tirely, so it is no surprise that it had linear envy. Our 
next example analyzes a greedy policy that allocates 
each item to the agent with the greatest envy and 
finds that it, too, fails to achieve vanishing envy.
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Example 2. Consider the algorithm that at step t allo-
cates the item to the agent with the maximum envy if 
she has positive value for the item and otherwise, say, 
allocates to the agent with the highest value for the item. 
We claim that this algorithm can lead to EnvyT ∈Ω(T).

We construct an example where each agent envies 
the other after the second item is allocated. For t ≥ 2, 
whenever agent i has maximum envy, we present an 
item with value ɛ for her and value 1 for the other 
agent. Table 1 summarizes the analysis.

For t ≥ 2, the envy of each agent increases by one 
every two steps. Therefore, the maximum envy at step 
2t is approximately t, and EnvyT=T approaches 1=2 as 
T goes to infinity.

These examples suggest that it is nontrivial to come 
up with an allocation algorithm that achieves vanish-
ing envy. Coupling vanishing envy with Pareto effi-
ciency, the task appears quite daunting.

We first investigate what is possible when focusing 
solely on fairness. We find that vanishing envy is achiev-
able; in fact, uniform random allocation has E[EnvyT] ∈

Õ(
ffiffiffiffiffiffiffiffiffi
T=n

p
) against adaptive adversaries while trivially 

being 1
n-Pareto efficient ex ante. Now, the question 

becomes as follow. Is this optimal, or are there other 
strategies with even stronger fairness properties? We 
provide an adaptive adversary strategy that guarantees 
EnvyT ∈Ω((T=n)r=2

) for any r < 1, thereby showing that 
random allocation is optimal (up to logarithmic factors) 
in terms of envy.

Finally, we turn our attention to simultaneously pro-
viding fairness and efficiency guarantees. We find that, 
even against a nonadaptive adversary, no algorithm can 
achieve vanishing envy while being 1

n+ ε
� �

-Pareto effi-
cient for any ε > 0. This clearly establishes the bound-
aries of what is possible against worst-case adversaries; 
any allocation algorithm must choose between achiev-
ing either nontrivial fairness guarantees or nontrivial 
efficiency.

3.1. Random Allocation Has Vanishing Envy and 
Is 1=n-Pareto Efficient

A natural randomized algorithm is to allocate each item 
(independently) to an agent selected uniformly at ran-
dom; we refer to this as the random allocation algorithm. 
The following observation is a direct result of the fact 
that each agent receives each item with probability 1=n 

under random allocation and therefore, has expected 
utility 1=n times their utility for all items.

Proposition 1. The random allocation algorithm is 1=n-Pareto 
efficient ex ante.

Next, we analyze the fairness of the random allocation 
algorithm by first characterizing the adversary’s optimal 
strategy. We prove that for an adaptive adversary who 
maximizes E[EnvyT], where the expectation is with 
respect to the randomness of the algorithm, the optimal 
strategy is integral; that is, all values are in {0, 1}. In fact, 
the optimal integral strategy sets assign vit � 1 for all 
i ∈ [n], t ∈ [T]. This optimal adversary strategy is nona-
daptive, and therefore, because all the randomness is 
coming from the algorithm, the random variables for the 
envy between agents i and j at times t and t′ are indepen-
dent. Standard concentration inequalities for the envy 
between any pair of agents, combined with a union 
bound over all such pairs, give an upper bound on the 
expected envy.

Theorem 1. Suppose that T ≥ n log T, where log is the 
natural logarithm. Then, the random allocation algorithm 
guarantees that E[EnvyT] ∈O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T=n

p
).

The assumption of T ≥ n log T is innocuous, as other-
wise, we can give each agent at most log T items to 
achieve EnvyT ≤ log T.

Proof of Theorem 1. A typical extensive-form game 
tree would have nodes associated with the algorithm 
or the adversary and arcs corresponding to actions 
(the allocation of the current item in the case of the 
algorithm and choosing a value vector in the case of 
the adversary). However, because we consider a fixed 
algorithm, it is convenient to imagine an unusual, 
adversary-oriented game tree.

Consider a game tree with nodes on T+ 1 levels. 
Every node on level 1, : : : , T has n outgoing arcs 
labeled 1, : : : , n. The leaf nodes on level T+1 are 
labeled by the maximum envy for the corresponding 
path, which defines an allocation of the T items.

A fully adaptive strategy s for the adversary is 
defined by labeling every internal node u with a value 
vector s(u), where s(u)i is the value of agent i for the 
item corresponding to node u. The adversary’s strat-
egy is allowed to depend on the allocations and valua-
tions so far (i.e., the path from the root to u). The 

Table 1. Blindly Allocating to the Agent with the Highest Envy Leads to Constant Per-Round Envy

t 1 2 3 4 5 ⋯

Value of agent 1 1/2 1 ɛ 1 ɛ ⋯
Value of agent 2 1/2 ɛ 1 ɛ 1 ⋯
Envy of agent 1 �1=2 1/2 1=2� ɛ 3=2� ɛ 3=2� 2ɛ ⋯
Envy of agent 2 1/2 1=2� ɛ 3=2� ɛ 3=2� 2ɛ 5=2� 2ɛ ⋯
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objective of the adversary is to choose a strategy s that 
maximizes the expected envy. The algorithm selects 
an outgoing edge at every node u, corresponding to 
an allocation of the item with valuation s(u). Consider 
the algorithm that allocates every item uniformly at 
random or equivalently, picks a random outgoing 
edge at each node u.

The following two lemmas are inspired by the work 
of Sanders (1996) on load balancing and show that the 
adversary labels every internal node of this tree with 
the vector 1n. All omitted proofs appear in the e- 
companion.

Lemma 1. For every allocation algorithm, the adversary 
has an optimal adaptive strategy that labels every internal 
node of the game tree with a vector in {0, 1}n.

This holds for any allocation algorithm because for 
every agent’s valuation of any item, it is possible to com-
pute whether that item increases or decreases the maxi-
mum envy in expectation. If it increases (decreases) the 
maximum envy, the adversary benefits by increasing 
(decreasing) the corresponding valuation to one (to 
zero).

The following lemma leverages specific properties of 
the random allocation algorithm.

Lemma 2. Against uniformly random allocations, the 
adversary has an optimal adaptive strategy that labels every 
internal node of the game tree with the vector 1n.

The fact that the adversary is adaptive naturally intro-
duces a dependence in the change in any pairwise envy 
from one arrival to the next. Lemma 2 allows us to cir-
cumvent this dependence as though we are dealing with 
a nonadaptive adversary and express any pairwise envy 
as the sum of independent random variables.

Specifically, given this adversary strategy, define inde-
pendent random variables

Xij
t �

�1, with probability 1=n,
0, with probability 1� 2=n,
1, with probability 1=n

8
><

>:

for all t ∈ [T], i, j ∈ [n]. Clearly, Envy
ij
T �maxi, j∈[n]{

PT
t�1 

Xij
t , 0}: For each Xij

t , E[Xij
t ] � 0, E[(Xij

t )
2
] � 2=n and |Xij

t | ≤ 1. 
We bound the probability of having large envy between 
any pair of agents i and j by applying Bernstein’s inequal-
ity (Bernstein 1946) (see Section EC.3 in the e-companion) 
to Envy

ij
T, which equals 

PT
t�1 Xij

t when envy exists. It fol-
lows that, for λ > 0,

Pr[Envy
ij
T ≥ λ] � Pr

"
XT

t�1
Xij

t ≥ λ

#

≤ exp �
1
2λ

2

2T
n +

1
3λ

 !

� exp �
3nλ2

12T + 2λn

� �

:

Let λ � 10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T=n

p
. Taking a union bound over pairs 

of agents gives
Pr[EnvyT ≥ λ] � Pr[∃i, j ∈ [n] such that Envy

ij
T ≥ λ]

≤ n2exp �
300T log T

12T+ 20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT log T

p

 !

≤
1
T , 

where the last inequality uses the assumption that 
T ≥ n log T. Because the maximum possible envy is T, 
the desired bound on expected envy directly follows, 
completing the proof of Theorem 1. w

The existence of a randomized algorithm with EnvyT 
∈O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T=n

p
) implies the existence of deterministic 

algorithms with the same guarantee. One such algorithm 
can be found through standard derandomization techni-
ques (Alon and Spencer 2000). This deterministic algo-
rithm can be interpreted as placing an exponential 
penalty on each pairwise envy and greedily allocating 
each item to minimize the sum of penalties at the end of 
each round (Benadè et al. 2018).

3.2. Random Allocation Optimizes Fairness 
Against Adaptive Adversaries

In this section, we show that an adversary can guarantee 
EnvyT ∈Ω((T=n)r=2

) for any r < 1. As r→ 1, it follows 
that the random allocation algorithm in Section 3.1 is 
optimal (up to a logarithmic factor).

Theorem 2. For any n ≥ 2 and r < 1, there exists an 
adversary strategy for setting item values such that any 
algorithm must have EnvyT ∈Ω((T=n)r=2

).

We first prove the bound for n � 2, followed by the 
case of an arbitrary number of agents.

Lemma 3. For n � 2 and any r < 1, there exists an adver-
sary strategy for setting item values such that any algo-
rithm must have EnvyT ∈Ω(Tr=2).

Proof. Label the agents L and R, and let {v0 � 1, v1, 
v2, : : : } be a decreasing sequence of values (specified 
later) satisfying vd� vd+1 < vd′ � vd′+1 for all d′ < d. The 
adversary keeps track of the state of the game, and 
the current state defines its strategy for choosing the 
agents’ valuations for the next item. The lower bound 
follows from the adversary strategy illustrated in 
Figure 1. Start in state 0, which we will also refer to as L0 
and R0, where the adversary sets the value of the arriv-
ing item as (1, 1). To the left of state 0 are states labeled 
L1, L2, : : : ; when in state Ld, the next item that arrives 
has value (1, vd). To the right of state 0 are states labeled 
R1, R2, : : : ; when in state Rd, the next item arrives with 
value (vd, 1). Whenever the algorithm allocates an item 
to agent L (R), which we will refer to as making an L (R) 
step, the adversary moves one state to the left (right).

We construct the optimal allocation algorithm 
against this adversary and show that for this algorithm, 
the envy at some time step t ∈ [T]will be at least Ω(Tr=2)
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for the given r < 1. This immediately implies Lemma 3; 
if the envy is sufficiently large at any time step t, the 
adversary can guarantee the same envy at time T by 
making all future items valued at zero by both agents.

The intuition for the adversary strategy we have 
defined is that it forces the algorithm to avoid entering 
state Ld or Rd for high d, as otherwise, the envy of 
some agent will grow to v0 + v1+⋯ +vd, which will be 
large by our choice of {vd}. At the same time, if an L 
step is taken at state Ld, followed by a later return to 
state Ld, the envy of R increases by at least vd� vd+1; 
we choose {vd} so that this increase in envy is large 
enough to ensure that any algorithm that spends too 
many time steps close to state 0 incurs large envy.

By the pigeonhole principle, either the states to the 
left or to the right of state 0 are visited for at least half 
the time. Assume, without loss of generality, that our 
optimal algorithm spends time T′ � ⌈T=2⌉ in the “left” 
states (L0, L1, : : : ) and that T′ is even. We prove that the 
envy of agent R grows large at some time step t. We 
ignore any time the algorithm spends in the states Rd, 
d ≥ 1. To see why this is without loss of generality, con-
sider first a cycle spent in the right states that starts at 
R0 with an item allocated to R and eventually returns to 
R0. In such a cycle, equal numbers of items are allocated 
to both agents. All of these items have value 1 to agent 
R, yielding a net effect of zero on agent R’s envy. (We 
ignore agent L completely, as our analysis is of the envy 
of agent R.) The other case is when the algorithm starts 
at R0 but does not return to R0. This scenario can only 
occur once, which means that the algorithm has already 
taken T′ steps on the left side; the allocation of these 
items does not affect our proof.

Let 0 ≤ K ≤ T′=2 be an integer, and denote by 
OPT(K) the set of envy-minimizing allocation algo-
rithms that spend the T′ steps in states L0, : : : , LK (and 
reach LK). Note that the algorithm aims to minimize 
the maximum envy at any point in its execution. Let 
A∗(K) be the following algorithm, starting at L0. Allo-
cate the first K items to agent L, thus arriving at state 
LK. Alternate between allocating to agents R and L for 
the next T′� 2K items, thereby alternating between 
states LK�1 and LK. Allocate the remaining K items to 
agent R. Our first result is that A∗(K) belongs to 
OPT(K).

Lemma 4. A∗(K) ∈OPT(K).

We analyze the envy of A∗(K) as a function of K before 
optimizing K. Agent R’s maximum envy is realized at 
step T′�K, right before the sequence of R moves. 
EnvyT′�K has two terms: the envy accumulated to reach 
state LK and the envy from alternating R and L moves 
between states LK and LK�1, so

EnvyT′�K �
XK�1

d�0
vd +

T′� 2K
2 · (vK�1� vK): (1) 

Given r < 1, define vd � (d+ 1)r� dr. Notice that 
PK�1

d�0 vd 

� Kr. When K ≥
ffiffiffiffiffiffiffiffiffiffi
T′=2

p
, it follows that 

PK�1
d�0 vd ≥

(T′=2)r=2
∈Ω(Tr=2), which is what we set out to prove. 

We limit the rest of the analysis to the case where 
K ≤

ffiffiffiffiffiffiffiffiffiffi
T′=2

p
.

Lemma 5. Let K ≤
ffiffiffiffiffiffiffiffiffiffi
T′=2

p
, and define vd � (d+ 1)r� dr 

for r < 1. Then, vK�1� vK ≥ r(1� r)Kr�2.

Applying Lemma 5 to (1) and distributing terms yields
EnvyT′�K ≥ Kr � r(1� r)Kr�1 +

T′

2 r(1� r)Kr�2

≥
1
2 (K

r + T′r(1� r)Kr�2), (2) 

where the second inequality uses the fact that r(1� r) ≤
1=4 < 1=2 and assumes K > 1 (otherwise, the envy would 
be linear in T′). To optimize K, noting that the second 
derivative of the bound is positive for K ≤

ffiffiffiffiffiffiffiffiffiffi
T′=2

p
, we 

find the critical point:
∂

∂K (K
r +T′r(1� r)Kr�2) � rKr�1�T′r(1� r)(2� r)Kr�3

� 0⇒ K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T′(1� r)(2� r)

p
:

Defining C1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� r)(2� r)

p
, substitute into (2) to obtain

EnvyT′�K ≥
1
2 (C

r
1(T
′)

r=2
+T′r(1� r)Cr�2

1 (T
′)

r=2�1
)

∈Ω(Tr=2): w 

We now show how to extend this adversarial instance to 
n agents.

Proof of Theorem 2. We augment the instance of 
Figure 1 in the following way. In addition to the first 
two agents, L and R, we have n � 2 other agents who 
value every item at zero. Allocating to agents L or R 
advances the state of the adversary as before; allocat-
ing to an agent i ∈N \ {L, R} does not affect the state.

Let T0 be the number of items allocated to one of 
agents L or R. We break the analysis into two cases. 
First, if T0 ∈Ω(T=n), then, EnvyT ∈Ω((T=n)r=2

) by the 
analysis of Lemma 3. Otherwise, T0 ∈ o(T=n), and there-
fore, T�T0 ∈Θ(T) (i.e., agents 3 through n receive 
many items). This implies that there exists an agent i ∈
[3, : : : , n]who is allocated Ω(T=n) items. Without loss of 
generality, at least half these items were allocated while 
the adversary was in the left states. This implies that 

Figure 1. Adversary Strategy for the Two-Agent Lower 
Bound 

Notes. In state Ld, an item valued (1, vd) arrives, whereas in state Rd, 
an item valued (vd, 1) arrives. The arrows indicate whether agent L or 
agent R is given the item in each state. The arrows are labeled by the 
amount envy changes after that item is allocated.
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agent L values each of these items at one, so agent L has 
total value Ω(T=n) for the items received by agent i. The 
value of agent L for her own allocation is at most O(T0)
(i.e., o(T=n)). Therefore, the envy of agent L toward 
agent i is at least Θ(T=n)� o(T=n) ∈Θ(T=n). w

3.3. Nontrivial Fairness and Efficiency Are 
Incompatible

Recall that random allocation was 1
n-Pareto efficient. We 

conclude this section by showing that no algorithm with 
vanishing envy can improve on this efficiency guarantee 
against a nonadaptive worst-case adversary, which imme-
diately establishes the result against adaptive adversaries.

Theorem 3. Against a nonadaptive adversary, no (randomized 
or deterministic) allocation algorithm can achieve both EnvyT ∈

o(T) and be 1
n+ ε
� �

-Pareto efficient ex ante, for any ε > 0.

To build up some intuition, we start by considering 
the case of an adaptive adversary where the algorithm 
must achieve vanishing envy and 1

n+ ε
� �

-Pareto effi-
ciency ex post. Recall that randomization does not help 
against an adaptive adversary, so we focus on determin-
istic algorithms.

Lemma 6. No deterministic allocation algorithm can achieve 
both EnvyT ∈ o(T) and be 1

n+ ε
� �

-Pareto efficient ex post, for 
any ε > 0, against an adaptive adversary.

Proof. Consider any vanishing envy algorithm that 
for any given T, produces an allocation AT, where 
Envy(AT) ≤ f (T) for some f (T) ∈ o(T), and assume, for 
the sake of contradiction, that this algorithm achieves 

1
n+ ε
� �

-Pareto efficiency for some ε > 0.
We construct an instance denoted I, parameterized 

by ε�and T, which will lead to a contradiction. For 
each agent i ∈N , vij � 1 for j ∈ T

n (i� 1) + 1, : : : , T
n i

� �
, 

and all other items j′ have value vij′ � ε, so agent i 
cares chiefly about the ith segment of T/n items.

Note that for all intermediate allocations at time 
t ≤ T, we must still have Envy(At) ≤ f (T) because an 
adaptive adversary could always make the remaining 
items valueless to all agents. The first step is to show 
via induction that for all “segments” of items T

n (i� 1)
�

+1, : : : , T
n i], every agent must receive a number of 

items in T
n2� xi, T

n2 + xi
� �

, where xi �
f (T)
ε 1+ 2

ε

� �i�1 

bounds the largest deviation from the mean number 
of items (T=n2) permissible in segment i subject to the 
allocation having sublinear envy.

As base case for the inductive argument, consider 
the first segment (i.e., i � 1). Suppose that some agent 
k receives T

n2 + y items where y > 0. Another agent k̂ 
must then receive fewer than T

n2 items. Then, the envy 
of k̂ for k at the end of the first segment, Envyk̂ , k(A

T=n), 
is at least ε · y. However, Envyk̂ , k(A

T=n) ≤ f (T), which 
implies that y ≤ f (T)

ε ; the lower bound on y is identical.

For the inductive step, again suppose that in the 
segment T

n (i� 1) + 1, : : : , T
n i

� �
, some agent k receives 

T
n2 + y items, where y > 0, and let k̂ be the agent who 
received fewer than T

n2 items. At the start of segment i,

vk̂ A
T
n(i�1)
k

� �
� vk̂ A

T
n(i�1)
k̂

� �
≥�

Xi�1

i′�1
2xi′ , 

where the sum is over the maximum deviations from 
T=n2 in previous segments. The bound is tight when k̂ 
received T

n2 + xi′ items from each previous segment i′, k 
got T

n2� xi′ , and k̂ had value 1 for all items up until 
T
n (i� 1). Therefore, after the ith segment,

f (T) ≥ Envyk̂ , k(A
T
ni) ≥ ε · y+ vk̂ A

T
n(i�1)
k

� �
� vk̂ A

T
n(i�1)
k̂

� �

≥ ε · y� 2
X

i′<i
xi′ , 

which after substituting each prior xi′ with the bound 
from the induction hypothesis, implies that

y≤ 1
ε

�
f (T)+2

X

i′<i
xi′
�
�

1
ε

f (T)+2
X

i′<i

f (T)
ε

1+2
ε

� �i′�1
 !

�
f (T)
ε

1+2
ε

Xi�2

p�0
1+2
ε

� �p
0

@

1

A �
f (T)
ε

1+2
ε

� �i�1
, 

where the final transition results from summing the geo-
metric series. The bound on y is identical when we con-
sider the case that y < 0.

Next, we show that the allocation AT cannot be 
1
n+ ε
� �

-Pareto efficient. First, note that the social welfare- 
maximizing allocation achieves utility T

n , : : : , T
n

� �
by giv-

ing all the items of the ith segment to agent i. Mean-
while, because xi < xn, we have that in AT, each agent 
gets utility ui at most (1+ (n� 1)ε) T

n2 + xn
� �

. Therefore,

ui

1=n+ ε < (1+ (n� 1)ε) T
n2 + xn

� �
1

1
n+ ε

 !

� (1+ (n� 1)ε) T
n2 +

f (T)
ε

1+ 2
ε

� �n�1
 !

n
1+ εn

�
1+ (n� 1)ε

1+ εn ·
T
n + n · f (T)

ε
1+ 2
ε

� �n�1
 !

�
T
n · 1� ε

1+ εn

� �
· 1+ f (T)

T ·
n2

ε
1+ 2
ε

� �n�1
 !

:

For large-enough T, in particular when f (T)
T < ε

1+(n�1)ε ·
ε

n2(1+2=ε)n�1 , this implies ui <
T
n · (1=n+ ε) for each agent 

i. We conclude that AT is not 1
n+ ε
� �

-Pareto efficient, a 
contradiction. w

We use this result to prove Theorem 3 for a nonadap-
tive adversary.
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Proof of Theorem 3. Suppose that there is an alloca-
tion algorithm that guarantees that for any T, no mat-
ter the instance the adversary selects, E[Envy(AT)]

≤ f (T) for some f (T) ∈ o(T), where the expectation is 
over the randomness used by the algorithm. We will 
describe a family of n instances. After the arrival of 
the first T

n i items, it will be impossible for the alloca-
tion algorithm to distinguish between n� i+ 1 of these 
instances. For i ∈ {1, : : : , n}, instance Ii’s first T

n i items 
follow I, the instance of the adaptive adversary 
described, and the remaining items have no value. We 
bound the number of items the algorithm can allocate 
to each agent in each segment by induction; this time 
our bounds are looser and probabilistic. Let E(x1, : : : , 
xi�1, x) be the event that every agent receives a num-
ber of items in T

n2 6xj
� �

from each segment j � 1: : : , 
i� 1, and there exists an agent who receives a number 
of items at distance at least x from T

n2 in segment i.
Let α∗ be a number such that α∗ · f (T) ∈ o(T) and 

α∗ ∈ ω(1). For example, one may think of α∗ � Tδ�for 
some small δ > 0 that depends on f(T). We show by 
induction that if x∗i ∈ supx Pr[E(x∗1, : : : , x∗i�1, x)] ≥ 1

α∗
� �

, 
then x∗i ≤

α∗f (T)
ε 1+ 2

ε

� �i�1.
As base case when i � 1, consider the allocation of 

the first segment when the algorithm is faced with 
instance I1. Suppose, from items 1 through Tn, the algo-
rithm allocates to some agent k at least T

n2 + x∗1 items, 
for x∗1 > 0, with probability 1=α∗. The conditional 
expected envy of some agent k̂ (who received fewer 
than T

n2 items) under E(x∗1) is at least ε · x∗1, and 
E[Envy(AT)] ≥ 1

α∗ · εx
∗
1. Because E[Envy(AT)] ≤ f (T), we 

have that x∗1 ≤
α∗f (T)
ε �

α∗f (T)
ε 1+ 2

ɛ

� �0. The same bound is 
obtained for deviations below T

n2. Because the first T
n 

items are identical for all instances, the bound on the 
number of items received from the segment also holds 
for instances I2, : : : , In.

Suppose that for all j � 1, : : : , i� 1, x∗j ≤
α∗f (T)
ε 1+ 2

ε

� �j�1. 
We analyze the envy of the algorithm at the end of Ii 
under the event E(x∗1, : : : , x∗i�1, x∗i ). For similar reasons 
as before,

f (T)≥E[Envy(AT)]≥
1
α∗

"

x∗i ·ɛ�
Xi�1

j�1
2x∗j

#

≥
1
α∗

x∗i ·ɛ�
2α∗f (T)
ɛ
·
Xi�1

j�1
1+2

ɛ

� �j�1
2

4

3

5

≥
1
α∗

x∗i ·ɛ�α
∗f (T) 1+2

ɛ

� �i�1
�1

 !" #

:

It follows that x∗i ≤
α∗f (T)
ε 1+ 2

ε

� �i�1, which holds on 
instances Ii, : : : , In, to complete the induction.

Finally, we analyze the efficiency of the algorithm 
on instance In. For arbitrary agent i, let ṽij be the value 
that i has for each item in segment j. We bound their 
expected utility as

ui ≤
Xn

j�1

T
n2 + x∗j
� �

ṽij +
n
α∗
XT

k�1
vik, 

where the first term assumes a deviation of at most x∗j in 
each segment and the second accounts for the worst-case 
large deviation in which a single agent receives all items. 
It now follows that

ui≤
Xn

j�1

T
n2+x∗n
� �

ṽij+
n
α∗

T
n
+

T(n�1)ε
n

� �

, (x∗j <x∗n ∀j<n)

�
T
n2+x∗n
� �

Xn

j�1
ṽij+

nT
α∗

1
n
+
(n�1)ε

n

� �

,

�
T
n2+x∗n
� �

(1+(n�1)ε)+ T
α∗
(1+(n�1)ε),

�(1+(n�1)ε) T
n2+x∗n+

T
α∗

� �

�
T
n2 (1+(n�1)ε) 1+n2x∗n

T
+

n2

α∗

� �

≤
T
n

1
n
+ε�

ε
n

� �

1+n2α∗f (T)
εT

1+2
ε

� �n�1
+

n2

α∗

 !

: (ind: hyp:)

By construction, α∗ ∈ ω(1) and α∗ · f (T) ∈ o(T), from 
which it follows that α∗ > 2n3

ε , and eventually, T is large 
enough to satisfy α

∗f (T)
T < ε2

2n3 1+2
ε( )

n�1. Together, this yields

ui <
T
n

1
n+ ε�

ε

n

� �

1+ ε2n+
ε

2n

� �

�
T
n

1
n+ ε�

ε

n

� �

1+ εn

� �
<

T
n

1
n+ ε
� �

, 

whereas the allocation that gives items T
n (i� 1) + 1, : : : , T

n i
� �

to agent i results in utility u′i � T
n to each i ∈N . We con-

clude that an allocation algorithm with vanishing envy is 
not 1

n+ ε
� �

�Pareto efficient for ε > 0. w

4. Simultaneous Fairness and Efficiency 
Against Bayesian Adversaries

Having established that it is impossible to simulta-
neously provide nontrivial fairness and efficiency guar-
antees against worst-case adversaries, we turn our 
attention to weaker Bayesian adversaries.

We start in Section 4.1 with identical agents and i.i.d. 
items. Using a result by Dickerson et al. (2014), we show 
that it is straightforward to simultaneously achieve 
Pareto efficiency and either envy freeness with high 
probability or envy freeness up to one good.
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We then proceed to our main positive result, an al-
gorithm for correlated agents with i.i.d. items that gives 
the optimal fairness and efficiency guarantees. This, of 
course, implies the same result for independent agents 
with i.i.d. items. In Section 4.2, we highlight key insights 
while ignoring some of the technical obstacles and find an 
ex post Pareto-efficient algorithm achieving the weaker 
fairness guarantee of vanishing envy. We develop the 
algorithm fully in Section 4.3.

4.1. Identical Agents with i.i.d. Items
Suppose an adversary picks a single distribution D, with 
support GD of size m, and each vit is sampled i.i.d. from D, 
for all agents i ∈N and all items t ∈ [T]. Consider the fol-
lowing variant of the algorithm discussed in Example 1.

Algorithm 1 If D is a point mass, allocate arriving 
items in a round-robin manner. Otherwise, allocate 
each item t to the agent i with the maximum value vit, 
breaking ties uniformly at random.

Efficiency and fairness can be simultaneously achieved 
using Algorithm 1.

Theorem 4. Algorithm 1 always outputs an allocation that 
is Pareto efficient. Furthermore, for every distribution D, at 
least one of the properties hold. 

1. The output allocation is EF1 for all T ≥ 0.
2. For all ε > 0, there exists T0 � T0(ε), such that for all 

T ≥ T0, the output allocation is envy free with probability at 
least 1� ε.

This result was essentially proved in a different con-
text by Dickerson et al. (2014). They consider a static set-
ting with T items and n agents, where vit is drawn from a 
distribution Di. It is found that, under mild conditions on 
the distributions, an envy-free allocation exists with 
probability 1 as T→∞ as long as each agent receives 
roughly T/n goods, and each agent has higher expected 
utility for the goods they are allocated than the rest. We 
remove these conditions with a slight and unavoidable 
complication in the fairness guarantee. Full details 
appear in Section EC.5.1 in the e-companion.

4.2. Vanishing Envy and Pareto Efficiency for 
Correlated Agents

Ideally, we would retain the simplicity of Algorithm 1
and extend it to work with stronger adversaries. How-
ever, when agents’ valuations are no longer identical but 
merely independent, asking that agent i has the highest 
value for an arbitrary item with probability 1=n is a fairly 
strong requirement, so the result of Dickerson et al. 
(2014) no longer holds. One possible approach is to 
assign item t to the agent i for whom FDi(vit) is highest, 
where FDi is the quantile function for agent i’s value dis-
tribution. In fact, this approach is fruitful if one focuses 
solely on fairness, as shown by Kurokawa et al. (2016). 

Unfortunately, the resulting allocation is not guaranteed 
to be Pareto efficient, as the following example shows.

Example 3. Consider an instance with n � 2 where v1t ~ 
U[0, 1] and v2t ~ U 1

2� ε,
1
2+ ε

� �
for all t ∈ G, where U 

denotes the uniform distribution. Agent 2 cares chiefly 
about how many items they receive. Suppose each item 
t is allocated to the agent i for whom FDi(vit) is greatest. 
Roughly, we can construct a Pareto improvement by 
transferring one item t for which FD2(v2t) > FD1(v1t) �

1� ε�from agent 2 to agent 1 and transferring back mul-
tiple items for which FD2(v2t) < FD1(v1t) � ε.

All in all, achieving fairness and efficiency simulta-
neously beyond identical agents seems a lot more 
intricate than either property in isolation. We will skip 
the independent agent case altogether and directly 
study the harder problem of correlated agents; each 
item t draws its type γj from a distribution D. Items 
are i.i.d., but agent values can be correlated.

Before we present the optimal algorithm, we illus-
trate some key ideas by giving a simple algorithm that 
achieves ex post Pareto efficiency and a weaker notion 
of fairness, namely vanishing envy with high proba-
bility. Recall that fD(γj) is the probability that an item 
drawn from D has type γj, GD is the support of D, 
|GD | �m, and vi(γj) is the value of an item of type γj 
to agent i. For ease of notation, we sometimes refer to 
item type γj as j.

Our approach is to solve an offline divisible item 
allocation problem as an intermediate step. The result-
ing fractional allocation is X ∈ [0, 1]n×m, where n is the 
number of agents and m � |GD | is the number of types 
of items in the support of D. For each i ∈N , Xij ∈ [0, 1]
is the proportion of item type j allocated to agent i. X 
is constrained to be feasible (i.e., 

P
i∈N Xij � 1 for all 

types j ∈ GD). The ith row of X, denoted Xi, is the frac-
tional allocation received by agent i ∈N .

Algorithm 2 (Pareto-Efficient Rounding)
Input: Distribution D over item types, agent valua-

tion functions vi. 
1. For each γj ∈ GD and i ∈N , set v′i (γj) � vi(γj)fD(γj).
2. Find the divisible allocation X of GD that maxi-

mizes the product of utilities with respect to v′.
3. In the online setting, allocate the newly arrived 

item t with type γj to agent i with probability Xij, for all 
t � 1, : : : , T.

We first show that Algorithm 2 always produces a 
Pareto-efficient allocation. In fact, we show something 
much stronger; every rounding of every Pareto-efficient 
fractional allocation X results in an ex post Pareto- 
efficient allocation.

Theorem 5. Given a distribution D over m item types and 
valuation function vi for each agent i ∈N , let X be a 
Pareto-efficient allocation of GD under valuation functions 
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v′i , with v′i (γj) � vi(γj) · fD(γj). Let S be a set of T items 
drawn from D and A � (A1, : : : , An) be any allocation of S 
where an item of type γj is allocated to agent i only if Xij >

0. Then, A is Pareto efficient under v.

Proof. By definition, v′i is vi scaled by the probability 
fD(γj) that type γj appears. Let ṽi be the valuation 
function when scaling with respect to the observed 
frequencies in S (i.e., ṽi(γj) � vi(γj) · fr(γj)), where fr(γj)

�
P

t∈S 1{item t has type γj}. We prove the theorem in 
two steps. First, we show that X is Pareto efficient 
under ṽ. Second, we show that this implies that A is 
Pareto efficient under v.

Suppose for contradiction that X is not Pareto effi-
cient under ṽ. Then, there exists an allocation X′ that 
dominates X under ṽ. Let ∆ � X′�X denote the num-
ber of item transfers needed to go from X to X′. For all 
c ∈ [0, 1], the allocation X+ c∆ is feasible and still dom-
inates X under ṽ. We construct ∆′, where ∆′ij � ∆ij·

fr(γj)=fD(γj). Observe that the change in utilities 
induced by transfers ∆′ under v′ equals the change in 
utilities induced by transfers ∆ under ṽ. Therefore, the 
(possibly infeasible) allocation X+∆′ dominates X 
under v′, as does X+ c∆′ for all c ∈ [0, 1].

Consider X+ c∆′ for 0 < c �minkfD(γk)=fr(γk). Notice 
that c is well defined and that (X+ c∆′)ij � δjX′ij+
(1� δj)Xij ∈ [0, 1], where δj � c · fr(γj)=fD(γj) ≤ 1. We 
conclude that X+ c∆′ is feasible and dominates X 
under v′, a contradiction.

Next, we show that if X is Pareto efficient under ṽ, 
then A is Pareto efficient under v. Suppose that A is 
not efficient under v and is dominated by an alloca-
tion A′. Let Y, Y′ be fractional allocations of GD, where 
Yij � (

P
t∈[T] 1{t ∈ Ai and item t has type γj})=(

P
t∈[T] 1 

{item t has type γj}) is the fraction of items of type γj 
given to agent i in A. Define Y′ similarly for A′.

The utility of agent i receiving allocation Y under ṽ is
X

j∈GD

ṽi(γj)Yij

�
X

j∈GD

vi(γj) · fr(γj) ·

P
t∈[T] 1{t∈Ai and item t has typeγj}
P

t∈[T]1{item t has typeγj}

�
X

j∈GD

vi(γj) ·

 
X

t∈[T]
1{item t has typeγj}

!

·

P
t∈[T]1{t∈Ai and item t has typeγj}
P

t∈[T]1{item t has typeγj}

�
X

t∈[T]
vit · 1{gt ∈Ai}, 

which is the same as for allocation A under v (similarly 
with A′, Y′). Let ∆ � Y′�Y. For any c > 0, c∆ is a Pareto 

improvement on any allocation under ṽ, and therefore, 
the (potentially infeasible) allocation X+ c∆ dominates 
X under ṽ. In EC.5.2 in the e-companion, we show how 
to find c∗ > 0 such that X+ c∗∆ is feasible. Combining the 
two steps completes the proof. w

Maximizing the product of utilities leads to a fractional 
Pareto-efficient allocation. Therefore, Theorem 5 implies 
that Algorithm 2 is ex post Pareto efficient. We now 
show that it also guarantees a notion of fairness slightly 
weaker than vanishing envy, namely vanishing envy 
with high probability.

Theorem 6. For all ε > 0, there exists T0 �
ffiffiffiffiffiffiffiffi
4=ɛ

p
, such 

that if T ≥ T0, Algorithm 2 outputs an allocation A such 
that for all agents i, j, Envyi, j(A) ∈ o(T) with probability at 
least 1� ε�and E[EnvyT] ∈O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
).

Proof of Theorem 6. The fractional allocation X that 
maximizes the product of utilities is envy free (Varian 
1974), which implies 

P
k∈[m]vi(γk)fD(γk)Xik ≥

P
k∈[m]vi(γk)

fD(γk)Xjk for all pairs of agents i, j ∈N .
Let A be the allocation that results from Algorithm 

2. Agent i’s value for agent j’s bundle, vi(Aj), is a ran-
dom variable that depends on randomness in both the 
algorithm and item draws. Let Ik, j

t be an indicator ran-
dom variable for the event that item t is of type γk and 
is assigned to agent j. For any pair of agents i, j ∈N , 
vi(Aj) �

P
t∈[T]

P
k∈[m]vi(γk)I

k, j
t . Therefore, E[vi(Aj)] � T·

P
k∈[m]vi(γk)fD(γk)Xjk. By the envy freeness of the frac-

tional allocation, E[vi(Ai)] ≥ E[vi(Aj)].
It now follows from Hoeffding’s inequality (Hoeffd-

ing 1963) with parameter δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
that

Pr[vi(Ai)�E[vi(Ai)]≤�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
]≤2 exp �

2T log T
T

� �

�
2

T2 :

Similarly, we bound the deviation of vi(Aj), Pr[vi(Aj)

�E[vi(Aj)] ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
] ≤ 2=T2. Together, we conclude 

for T0 �
ffiffiffiffiffiffiffiffi
4=ε

p
that Envyi, j(A) �max{vi(Aj)� vi(Ai), 0}

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
∈ o(T) with probability at least 1� 4

T2 

≥ 1� ε.
To compute expected envy at T, we set ɛ � 1

n2T, 
observe T0 � 2n

ffiffiffiffi
T
√

< T as required, condition on some 
pairwise envy exceeding 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
, and apply a 

union bound to obtain

E[EnvyT] ≤
X

i, j∈N
Pr Envyi, j ≥ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

ph i
·T

+ 1 · 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p

� n2T · 1
n2T
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
∈O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p� �
:
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4.3. Beyond Vanishing Envy: Optimal Fairness 
for Correlated Agents

In the proof of Theorem 6, we use standard tail inequal-
ities to show that, with high probability, the envy 
between any two agents does not deviate from its expec-
tation by more than O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
). The divisible alloca-

tion is envy free, and rounding it online leads to 
vanishing envy. If, instead, the divisible allocation X 
used to guide the online decisions satisfied strong envy 
freeness, for every pair of agents i, j ∈N , vi(Xi) > vi(Xj), 
then we could argue similarly that the online integral 
allocation would be envy free with high probability.

Unfortunately, strong envy-free allocations do not 
always exist, even for divisible items, as in the case of 
two agents with identical valuation functions. Inter-
estingly, this condition is also sufficient; as long as no 
two agents have identical valuation functions (up to 
multiplicative factors), a strongly envy-free allocation 
exists (Barbanel 2005). However, this is no longer suf-
ficient if we want both Pareto efficiency and strong 
envy freeness (see EC.6.1 in the e-companion for an 
example).

Nevertheless, we can achieve a notion of fairness off-
line that is weaker than strong envy freeness but suffi-
cient for our purposes. We say that agent i is indifferent to 
agent j if vi(Xi) � vi(Xj). We construct a directed indiffer-
ence graph I(X) with a vertex for each agent i ∈N and con-
taining edge (i, j) exactly when i is indifferent to j under 
X. For an envy-free allocation X, the absence of (i, j) in 
I(X) implies that vi(Xi) > vi(Xj) (i.e., strong (pairwise) 
envy freeness). We consider the following notion of 
fairness.

Definition 1. A fractional allocation X is clique identical 
strongly envy free (CISEF) if (1) X is envy free, (2) I(X) 
is a disjoint union of cliques, (3) agents in the same cli-
que have identical valuations (up to a multiplicative 
factor) for all items allocated to any member of the cli-
que, and (4) agents in the same clique have identical 
allocations.

Our main structural result is that, although Pareto 
efficiency is incompatible with strong envy freeness, it 
is compatible with CISEF.

Theorem 7. Given any instance with m divisible items and 
n additive agents, there always exists an allocation that is 
simultaneously CISEF and Pareto efficient.

This result is constructive and somewhat technical 
(see Section EC.6.2 in the e-companion). We provide a 
sketch.

Proof Sketch of Theorem 7. We start by solving the 
E-G program or equivalently, by finding the competi-
tive equilibrium from equal incomes. This is a standard 
approach for finding an envy-free and Pareto-efficient 
allocation. Recall that the E-G program with “budgets” 

e consists of

max
X

Xn

i�1
ei log

Xm

j�1
vijXij,

subject to
Xn

i�1
Xij ≤ 1, ∀j ∈ [m], and

Xij ≥ 0, ∀i ∈ [n], j ∈ [m]:

Specifically, we give each agent a budget ei � 1 and 
find market-clearing prices (a price pj for each item j) 
such that each agent i only buys items that maximize 
her “bang-per-buck” ratio vij=pj. Let X0 be this initial 
allocation, and let p and e be the prices and budgets.

Then, at a high level, we proceed by repeatedly alter-
ing X, p, and e in such a way that X, p remains an opti-
mal solution to the convex program with budgets e 
while preserving envy freeness. This terminates when 
X satisfies the desired properties. More specifically, at 
termination, I(X) will be a disjoint set of cliques, where 
agents in a clique have identical allocations. w

It is worth highlighting a connection between the 
indifference graph and the bipartite maximum bang- 
per-buck (MBB) graph. Properties of MBB graphs have 
been crucial to recent algorithmic progress in approxi-
mating Nash social welfare (Cole and Gkatzelis 2015, 
Chaudhury et al. 2018, Garg et al. 2018) and computing 
equilibria in Arrow–Debreu exchange markets (Garg 
and Végh 2019). In the indifference graph, there is an 
edge from i to j when i is indifferent between her alloca-
tion and the allocation of agent j. We show (in Lemma 
EC.2 in the e-companion) that this condition is similar to 
the condition for edges existing in the MBB graph but are 
unaware of further overlap.

Algorithm 3 is a slightly modified version of Algorithm 
2 that when using a Pareto-efficient and CISEF fractional 
allocation to guide the online allocations, yields an inte-
gral allocation that is Pareto efficient ex post and achieves 
the target fairness properties.

Algorithm 3 (Pareto-Efficient Clique Rounding)
Input: Item distribution D, agent valuation func-

tions vi. 
1. For each γj ∈ GD and i ∈N , define v′i (γj) � vi(γj)

fD(γj).
2. Compute a fractional allocation X∗ of GD that is 

Pareto efficient and CISEF under v′i . Let C1, : : : , Cs be 
the disjoint cliques of I(X∗).

3. In the online setting, assign the newly arrived item 
t with type γj to clique Ci with probability 

P
k∈Ci

X∗kj. 
When an item is assigned to a clique Ci, allocate it to the 
agent in Ci who has received the least value so far 
according to (all) agents in the clique.

An algorithm for constructing X∗ can be found in Sec-
tion EC.6.2 in the e-companion. Notice in Algorithm 3, 
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step 3 that there is a unique agent with smallest value 
(up to tiebreaking) because all agents agree on the value 
of all items that have gone to the clique (up to multiplica-
tive factors).

Theorem 8. Algorithm 3 always outputs an ex post 
Pareto-efficient allocation. Furthermore, for all distributions 
D and every pair of agents i, j, at least one of the following 
holds: 

1. i envies j by at most one item, or
2. for all ε > 0, there exists T0 � T0(ε), such that i does 

not envy j with probability at least 1� ε�when T ≥ T0.

Proof of Theorem 8. Let X∗ be the fractional CISEF 
and Pareto-efficient allocation, and let A be the inte-
gral allocation produced by Algorithm 3. Pareto effi-
ciency of A follows directly from Theorem 5.

For any two agents i, j ∈N , there are two cases. Sup-
pose i and j belong to the same clique Ck. Let S be the 
set of items assigned to Ck during the execution of 
Algorithm 3 (i.e., S � ∪ℓ∈Ck Aℓ). Agents in Ck have iden-
tical valuations up to a multiplicative factor for the 
items that they get with positive probability. There-
fore, giving each item to the agent that has received 
the least value so far (according to any agent, as they 
rank allocations of S in the same order) ensures that 
Envyi, j(A) ≤maxs∈Svis ≤ 1:

Now, suppose i and j belong to different cliques Ci 
and Cj, respectively. By the definition of a CISEF allo-
cation, we know that vi(X∗i ) � vi(X∗j ) + c for some con-
stant c > 0.

Let Ã be the fractional allocation where every agent 
p in clique Cp receives the 1= |Cp | fraction of the items 
assigned to Cp. In particular, all i′ ∈ Ci receive Ãi′t �

1
|Ci |

1{t ∈ Ak for some agent k ∈ Ci} (similarly for Ãj). 
Ãi is the average allocation of agents in Ci (in A), and 
as argued earlier, the maximum envy for two agents 
in the same clique is at most one in A. It follows that 
|vi(Ai)� vi(Ãi) | ≤ 1. Furthermore, agents in the same 
clique receive identical allocations in Ã, so E[vi(Ãi)�

vi(Ãj)] � TE[vi(X∗i )� vi(X∗j )] � cT.
By Hoeffding’s inequality (Hoeffding 1963), vi(Ãj)�

vi(Ãi) < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T log T

p
� cT with probability at least 1�

Θ(1=T2) ≥ 1� ε. The bound is negative for sufficiently 
large T, so we can pick T for which vi(Ãj)� vi(Ãi) <

�2 with probability at least 1� ɛ. We conclude 
vi(Aj)� vi(Ai) < vi(Ãj)� vi(Ãi) + 2 < 0 with probability 
at least 1� ε. w

5. Discussion
We finish with a discussion of several pertinent issues 
that have not been addressed so far.

5.1. Additivity Assumption
We assume that agents have additive valuations. This com-
mon assumption is often considered strong. However, for 

the purpose of defining envy in our online setting, we 
believe that it is quite natural. Because items arrive over 
time and are potentially perishable (as in food bank appli-
cations), they are likely used independently of each other. 
Furthermore, we can reformulate Envyij(A) �

P
t∈Ai

vit�P
t∈Aj

vit �
PT

t�1 vit(It∈Ai � It∈Aj) as the sum of per-round 
envies, so assuming additive valuations amounts to 
assuming that envy is additive over time.

5.2. Computational Considerations
Theorem 7 ensures that all our algorithms run in polyno-
mial time. We require an exact solution to the E-G pro-
gram, which is obtainable in strongly polynomial time 
(Orlin 2010). The edge-elimination steps happen O(n2)

times. The only remaining question is the number of bits 
in the solution (X, p) and budgets e, as the item transfers 
in Lemmas EC.4 and EC.5 in the e-companion can both 
increase the length (in bits) of X and e. However, as we 
discuss in Section EC.6.2 in the e-companion, this 
increase is limited to a constant number of bits.

5.3. Future Directions
We very nearly have a complete picture of what is possi-
ble when optimizing fairness or efficiency in isolation. 
The one exception is minimizing fairness for the nona-
daptive worst-case adversary, where vanishing envy is 
certainly possible (the Õ(

ffiffiffiffiffiffiffiffiffi
T=n

p
) guarantee of Theorem 1

applies), but we do not even have a superconstant lower 
bound. An open technical question is what happens 
when the distributions chosen by the adversary are 
allowed to depend on T. Finally, there is a legitimate 
question of whether it is reasonable to assume perfect 
information about agent utilities. It may be more realistic 
to assume partial access to utilities: for example, in the 
form of pairwise comparisons between the item under 
consideration and previously allocated ones.
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