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Abstract
The mathematical study of voting, social choice theory, has traditionally only been applicable

to choices among a few predetermined alternatives, but not to open-ended decisions such as
collectively selecting a textual statement. We introduce generative social choice, a design
methodology for open-ended democratic processes that combines the rigor of social choice theory
with the capability of large language models to generate text and extrapolate preferences. Our
framework divides the design of AI-augmented democratic processes into two components: first,
proving that the process satisfies representation guarantees when given access to oracle queries;
second, empirically validating that these queries can be approximately implemented using a
large language model. We apply this framework to the problem of summarizing free-form
opinions into a proportionally representative slate of opinion statements; specifically, we develop
a democratic process with representation guarantees and use this process to represent the opinions
of participants in a survey about chatbot personalization. In a trial with 100 representative US
residents, we find that 93 out of 100 participants feel “mostly” or “perfectly” represented by the
slate of five statements we extracted.

Significance Statement
Presently, there is a vigorous drive to integrate artificial intelligence (AI) into democratic

participation tools. This integration presents great opportunities like allowing participants to
express their preferences in natural language, and higher scalability due to a reduced need
for human facilitation. But the integration of AI also raises concerns about the legitimacy of
such democratic processes, which our design framework addresses in two ways: First, the AI’s
evaluation can be broken down into testing its performance on precisely defined subtasks and can
rely on mathematical guarantees for the process overall. Second, the normative desirability of an
AI-enhanced democratic process can be analyzed using the techniques of social choice theory.
Thus, our work helps unlock the potential of AI-driven democratic innovation.

1 Introduction
Voting is a key way in which groups — be they national electorates, members of a legislature, or
members of a board — make common decisions. The theoretical foundation of voting is provided
by the field of social choice theory, which studies mathematical guarantees in the context of how
different voting rules aggregate individual preferences into a collective decision. The typical social
choice setting involves a small, predetermined set of alternatives (e.g., the candidates in an election),
over which voters specify their preferences and from which the voting rule selects an outcome.

Many pressing policy questions, however, are too nuanced to fit this neat template of choosing
between a few alternatives. The need for open-ended forms of democratic input is demonstrated,
for example, by the increased use of deliberative minipublics [13, 28], which provide policy recom-
mendations to governments on complex issues such as climate change [40] and electoral reform [14].
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Similarly nuanced questions arise around the alignment of artificial intelligence (AI) with societal
interests; in this context, Meta [9] and OpenAI [12] have been experimenting with democratic
processes that seek public input to open-ended questions such as “how far [. . . ] personalization of AI
assistants like ChatGPT to align with a user’s tastes and preferences should go?” [41]. Though delib-
eration can address such open-ended questions, it lacks two key strengths of voting: scalability [e.g.,
16] and guarantees on its outcomes.

To address these shortcomings, we introduce a new paradigm for the design of democratic
processes: generative social choice. It fuses the rigor of social choice theory with the flexibility and
power of generative AI, in particular large language models (LLMs), to reach collective answers to
open-ended questions in a scalable and principled way.

1.1 How LLMs Address the Limitations of Classical Social Choice

In our view, there are two fundamental obstacles to applying classical social choice to open-ended
questions, both of which can be overcome by LLMs.

• Unforeseen Alternatives. In classical social choice, the set of alternatives is explicitly specified
and static. Take the 2016 Brexit referendum, for example, in which the alternatives were either
to maintain the status quo or make a clean break with the European Union. Since intermediate
options were not specified, they could not be selected by voters, even if they might have enjoyed
a much larger degree of support. Even in participatory budgeting [8], the set of alternatives is
limited to the budget-feasible subsets of previously proposed projects.
By contrast, LLMs have the capability of generating alternatives that were not initially anticipated
but find common ground between agents. In principle, the possible outcomes of an LLM-
augmented democratic process may span the universe of all relevant outcomes for the problem
at hand, e.g., all possible bills or statements.

• Extrapolating Preferences. In classical social choice theory, voters specify their preferences in a
rigid format. Typically, agents evaluate each alternative independently, or, if the alternatives
form a combinatorial domain,1 a voting rule might assume that preferences have a restricted
parametric shape and only elicit its parameters. Clearly, this approach does not suffice if a
democratic process may produce alternatives that were not previously anticipated, and therefore
not elicited: to even know which alternatives would be promising to generate, the process must
be able to extrapolate agents’ preferences.
LLMs can address this problem as they enable participants to implicitly specify their preferences
by expressing their opinions, values, or criteria in natural language. The LLM can act as a proxy
for the participant, predicting their preferences over any alternative, whether foreseen or newly
generated.

1.2 A Framework for Generative Social Choice

It is clear, at this point, what LLMs can contribute to social choice. LLMs and social choice theory
make an odd couple, however, because social choice focuses on rigorous guarantees whereas LLMs are
notoriously impervious to theoretical analysis. We propose a framework for generative social choice
that addresses this difficulty by breaking the design of democratic processes into two interacting
components.

1This is the case, for example, in multi-winner elections or participatory budgeting.
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• First component: Guarantees with perfect queries. Assume that the LLM is an oracle that can
precisely answer certain types of queries, which may involve generating new alternatives in an
optimal way or predicting agents’ preferences. Once appropriate queries have been identified,
the task is to design algorithms that, when given access to an oracle for these queries, provide
social choice guarantees.

• Second component: Empirical validation of queries. Assuming the LLM to be a perfect oracle is
helpful for guiding the design of a democratic process, but of course not an accurate reflection
of reality. In the second component, the task is to implement the proposed queries using calls to
an LLM, and to empirically validate how well these implementations match the queries.

Naturally, the two components interact: The theory identifies queries that are useful for social
choice and should hence be validated empirically. Conversely, experiments show which queries can
be answered accurately in practice, raising the question of which guarantees algorithms relying on
these queries might provide.

A key benefit of this framework is that theoretical results derived in it are future-proof: as LLMs
continue to rapidly improve, they will only grow more reliable in answering queries, making the
LLM-based aggregation methods ever more powerful.

1.3 Our Results: A Case Study in Generative Social Choice

In addition to introducing the framework presented above, we demonstrate it in one particular setting:
summarizing a large body of free-form opinions into a slate of few statements, in a representative
manner. In this setting, participants share free-form opinions about a given policy issue on an
online platform such as Polis [35] or Remesh,2 or as part of a qualitative survey. Then, a voting
rule selects a slate of k statements that is proportionally representative of the diversity and relative
prevalence of viewpoints among the participant population.

The setting of statement selection was formalized by Halpern et al. [17] in the language of
multi-winner approval elections: If we think of statements as candidates, and of an agreement
between participants and statements as binary approval votes, the slate should satisfy axioms for
proportional representation from this literature such as justified representation (JR). In our work,
we allow cardinal (rather than just binary) levels of participant–statement agreement. Furthermore,
we introduce a novel strengthening of JR, balanced justified representation (BJR), which we believe
to be particularly well suited for our statement-selection application and of independent interest.

Whereas previous summarization systems can only select a slate among users’ statements, our
process can generate new statements, which might find new common ground between participants
and allow for more representative slates. Our process takes as input each user’s interactions on the
platform as a description of their preferences. The process then employs an LLM to (1) translate
these descriptions into participants’ utilities for any new statements (discriminative queries, in the
language of machine learning), and (2) generate statements that maximize the utility of a subset of
participants, based on their descriptions (generative queries).

Following our framework’s first component, we show that, with access to polynomially many of
these queries, a democratic process resembling Greedy Approval Voting [1] guarantees BJR. Crucially,
this guarantee holds not just relative to a set of predetermined statements but to the space of all
possible statements (Section 3.1).

A potential issue with this process is that, through the generative query, it calls the LLM with
a prompt whose length scales linearly in the number of participants. This is problematic since
LLMs can only handle input of bounded length. We show that, unless one makes assumptions

2https://www.remesh.ai/
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on the structure of preferences, this problem of linear-size queries is unavoidable for any process
guaranteeing BJR with subexponentially many queries (Section 3.2). If, however, the space of
statements and preferences is structured, specifically, if it has finite VC dimension [37], democratic
processes based on sampling can guarantee BJR (with high probability) using a polynomial number
of queries whose length is independent of the number of participants (Section 3.3).

In Section 4, we present a practical, LLM-based implementation of discriminative and generative
queries. Empirical validation shows that the proposed implementation of the discriminative query
accurately extrapolates agents’ preferences to unseen statements. Further, we show that the
proposed implementation of the generative query consistently produces high-agreement statements
by leveraging the complementarity of different LLM-based generation methods.

Equipped with these query implementations, we then deploy the full democratic process in
Section 5. As part of OpenAI’s grant program for Democratic Inputs to AI [12], we pilot our
process to study US residents’ opinions on the extent to which chatbots should be personalized. We
elicit free-text opinions about this topic from a sample of 100 participants and distill them into a
representative slate of five statements, using our LLM-enhanced democratic process. To validate
that these statements faithfully represent the population, we conduct a second survey with a fresh
sample of 100 US residents. After matching the five statements to equal-sized blocs of participants,
93% of participants indicate that their assigned statement in our slate captures their opinion on
chatbot personalization “mostly” (18%) or “perfectly” (75%). To support future research on online
participation, we made the participants’ full responses available as a public data set.3

1.4 Related Work

In a recent position paper that is independent of our work, Small et al. [36] discuss the opportunities
and risks of LLMs in the context of Polis. The opportunities they identify include topic modeling,
summarization, moderation, comment routing, identifying consensus, and vote prediction. Most
relevant to us are their experiments for the vote prediction task, which are closely related to our
implementation and evaluation of discriminative queries. In the future, our democratic process as a
whole could serve in the summarization role envisioned by Small et al. [36], for which they do not
propose specific algorithms and perform no systematic experiments.

Our discriminative queries using LLMs are also related to work by Konya et al. [19], who
integrate an LLM with a latent factor model to predict preferences. More broadly, the paradigm of
virtual democracy facilitates automated decisions on ethical dilemmas by learning the preferences
of stakeholders and, at runtime, predicting their preferences over the current alternatives and
aggregating the predicted preferences; example papers, which employ classical machine-learning
algorithms, apply the paradigm to domains such as autonomous vehicles [27], food rescue [23], and
kidney exchange [15]. These papers all aim to predict preferences on a fixed set of alternatives — they
do not generate new alternatives.

A source of inspiration for our work is the paper of Bakker et al. [2]. They fine-tune an LLM to
generate a single consensus statement for a specific group of people, based on written opinions and
ratings of candidate statements. Reward models are trained to capture individual preferences, and
the acceptability of a statement for the group is measured through a social welfare function. One
difference from our work is that we do not attempt to find a single statement that builds consensus
across the entire group — we instead allow for multiple statements representing distinct opinions. A
more fundamental difference is that we view our experiments as an instance of a broader framework
that allows for a systematic investigation of the types of queries an LLM can perform and the
theoretical guarantees they provide.

3https://github.com/generative-social-choice/chatbot_personalization_data/
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Finally, we build on the rich literature on justified representation in approval-based committee
elections [1, 22]. As we have already mentioned, Halpern et al. [17] also study representation axioms
from this literature in a statement-selection context. The key technical challenge in their work is
that they only have access to partial approval votes. The learning-theoretic approach they adopt,
as well as a later refinement by Brill and Peters [7], bears technical similarity to the algorithm we
propose for obtaining representation with size-constrained generative queries. All previous papers
in this literature assume a non-generative setting with a fixed set of alternatives.

2 Model
Let N be a set of n agents, and let U denote the universe of (well-formed, on-topic) statements,
which may be finite or infinite. Each agent i ∈ N has a utility function ui : U → R that maps
statements to utilities. Whereas our positive results apply for arbitrary real-valued utility functions,
our impossibilities will even hold in the restricted setting of approval utilities, where utilities are
0 or 1, which much of the prior work [22] has focused on. An instance of the statement-selection
problem consists of N , U , {ui}i∈N , and a slate size k ∈ N≥1.

A democratic process is an algorithm that, when run on an instance, returns a slate, i.e., a
multiset consisting of k statements from the universe.4 Crucially, this algorithm receives only N
and k in its input, but not U or the ui, which it must instead access through queries as we describe
below.

For convenience, we denote the rth largest element in a finite set X of real numbers (for
1 ≤ r ≤ |X|) by max(r)(X). To deal with edge cases, we set max(0)(X) :=∞ for all sets X.

2.1 Queries

Since the democratic process does not receive the statements and preferences in its input, it instead
accesses them indirectly through queries. The democratic processes we develop make use of two
query types:

Discriminative Queries. Discriminative queries extrapolate an agent’s utility function to unseen
statements. For an agent i and statement α, Disc(i, α) returns ui(α).

Generative Queries. For a set of agents S of size at most t and an integer 0 ≤ r ≤ |S|, t-
Gen(S, r) returns the statement in U that maximizes the r-highest utility among the members
of S. Formally, the query returns

argmax
α∈U

max(r)
(
{ui(α) | i ∈ S}

)
, (1)

breaking ties arbitrarily.

Intuitively, the generative query’s parameter r interpolates between finding a lowest common
denominator (t-Gen(S, |S|) maximizes the minimum utility over S) and finding a statement that
precisely matches a narrow coalition in S (e.g., t-Gen(S, 1) gives some agent maximum utility, but

4Allowing a slate to contain the same statements multiple times avoids technical problems with the edge case where
generative queries return the same statement, in which case no query-based algorithm would be able to procure k
distinct statements. We also believe this choice to be suitable for our application domain, where representing multiple
segments of the population by identical statements might sometimes be appropriate, for example if all agents in
these segments have identical preferences. For ease of exposition, we will slightly abuse notation and treat slates as if
they were sets; this essentially amounts to assuming that different generative queries do not return exactly the same
statement.
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may be unpopular among the remaining agents). For convenience, we will simply write Gen(·, ·) to
refer to generative queries without a size limit or to talk generally about generative queries with
different size constraints t.

2.2 Representation Axiom

The aim of our democratic processes is to produce a slate of statements W that is representative of
the agent population. If agents have approval utilities, statement selection reduces to the classic
setting of multi-winner approval voting. Therefore, our target axiom is inspired by the family of
justified representation axioms [1] in this literature:
Definition 1. A slate W satisfies balanced justified representation (BJR) if there is a function
ω : N → W matching agents to statements in a balanced way,5 for which there is no coalition
S ⊆ N , statement α ∈ U , and threshold ϑ ∈ R such that (i) |S| ≥ n/k, (ii) ui(α) ≥ ϑ for all i ∈ S,
and (iii) ui(ω(i)) < ϑ for all i ∈ S.6

In words, if there is a coalition of agents that is (i) large enough to “deserve” a statement on
the slate by proportionality and (ii) has cohesive preferences (i.e., there is a statement for which all
these agents have utility at least ϑ), then (iii) the coalition must not be “ignored”, in the sense that
at least one member must be assigned to a statement with utility at least ϑ.

Our notion of BJR strengthens the classical axiom of justified representation, and is logically
incomparable to several other axioms in the social choice literature. We prove these relationships
and motivate the need for a new axiom in Appendix A. Throughout this paper, we will aim to build
democratic processes that satisfy BJR, even when the universe of statements is very large and can
only be navigated through queries.

3 First Component: Guarantees with Perfect Queries
In this section, we instantiate the first component of the generative social choice framework. We
defer all proofs to Appendix B.

3.1 Unconstrained Queries

We begin by constructing a democratic process that guarantees BJR in polynomial time. This
algorithm uses queries of type Disc(·, ·) and n-Gen(·, ·), i.e., generative queries without constraints
on the number of input agents. The democratic process we propose, shown in Process 1, can
either be seen as a generalization of Greedy Approval Voting [1], or as a variant of the Greedy
Monroe Rule [34] that selects statements based on an egalitarian rather than utilitarian criterion.
Our democratic process iteratively constructs a slate, adding statements one at a time. In each
iteration, it identifies a set T of n/k (up to rounding) remaining agents and a statement α such
that mini∈T ui(α) is maximized. It then adds α to the slate, removes the agents T (who are now
satisfied), and repeats. Our proof in Appendix B that this process satisfies BJR follows in structure
the argument by Aziz et al. [1] that Greedy Approval Voting satisfies JR.
Theorem 2. Process 1 satisfies balanced justified representation in polynomial time in n and k,
using queries of types n-Gen(·, ·) and Disc(·, ·).

5That is, each statement on the slate is matched to ⌊n/k⌋ or ⌈n/k⌉ agents.
6This axiom can also be defined in a setting where slates are sets of statements, rather than multisets. In this case,

the statements α are restricted to lie in U \ W , to make the axiom satisfiable. This axiom can be satisfied by a variant
of Process 1, in which the choice of statements in each iteration is restricted to statements that have not previously
been selected.
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Process 1: Democratic Process for Balanced Justified Representation
Inputs: agents N , slate size k

r̄ ← n 1
k

S ← N
W ← ∅
for j = 1, 2, . . . , k do

α← Gen(S, ⌈r̄⌉)
W ←W ∪ {α}

r ←

{
⌈r̄⌉ if j ≤ n− k · ⌊r̄⌋
⌊r̄⌋ else

T ← the r agents in S with largest Disc(·, α)
S ← S \ T

end
return W

3.2 Size-Constrained Generative Queries

So far, our generative queries could generate optimal statements even if the queried set S of agents
was as large as n. When implementing a generative query using an LLM, however, the prompt to
the LLM must include, for each agent in S, enough information to extrapolate the agent’s preference
across the universe of statements. Since this information can easily take hundreds of tokens per
agent in S, the context windows of current LLMs (GPT-4 and PaLM: 8K tokens, LLaMA: 4K
tokens) limits the size of S. Even recent models with extended context windows (GPT-4-32k: 32K
tokens, GPT-4-turbo: 128K tokens, Claude 2: 100K tokens) struggle to effectively use the entirety
of their context window [24]. As a result, democratic processes might for now be restricted to
generative queries for moderate |S|. Therefore, we investigate in this section whether democratic
processes can still ensure BJR when generative queries are limited to sets of agents of some size t
that is substantially smaller than n. Immediately, we see that, if the query size t is even just slightly
smaller than n/k, representation cannot be attained:

Proposition 3. No democratic process can guarantee balanced justified representation with arbitrarily
many n

k (1− 1
k )-Gen(·, ·) and Disc(·, ·) queries. This impossibility even holds in the subsetting of

approval utilities and for the weaker axiom of justified representation.

Conceptually, the proof of this theorem and the subsequent impossibility theorem are based on
the idea of overshadowing. Specifically, we construct instances that have few “popular” statements
and many “unpopular” statements with lower support. For a given set S of at most t agents, our
instances will ensure that some unpopular statement will be at least as well liked within S as any
popular statement. Thus, all generative queries might return unpopular statements, and we design
the instance such that no slate composed entirely of unpopular statements is representative. In
Appendix B, we apply this idea in a straightforward way to prove Proposition 3.

On the face of it, slightly larger size-constrained generative queries seem promising for achieving
BJR, since there is a democratic process that achieves BJR with queries of size t = ⌈n/k⌉. Indeed,
observe that, for any S and r,

Gen(S, r) = argmax
α∈U

max(r)
(
{ui(α) | i ∈ S}

)
= argmax

α∈U
max
S′⊆S
|S′|=r

max(r)
(
{ui(α) | i ∈ S′}

)
= argmax

α∈
{

Gen(S′,r)
∣∣ S′⊆S,|S′|=r

} max(r)
(
{ui(α) | i ∈ S}

)
,
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which shows that any call to Gen(S, r) can be simulated by (exponentially many) r-Gen(·, ·) queries
and discriminative queries. By applying this simulation to Process 1, in which all generative queries
satisfy r ≤ ⌈n/k⌉, Theorem 2 immediately implies that BJR can be implemented by ⌈n/k⌉-Gen(·, ·)
queries, though the time complexity of the modified process is obviously prohibitive.

Proposition 4. There exists a democratic process that satisfies balanced justified representation
using (exponentially many) queries of type ⌈n/k⌉-Gen(·, ·) and Disc(·, ·).

Unfortunately, the exponential running time of this naïve democratic process turns out to be
unavoidable, even if the generative queries can have linear size in n. Our proof must necessarily
be more complicated than our previous impossibility in Proposition 3, in which we constructed
an explicit instance on which any democratic process with t-bounded generative queries had to
violate representation. A more sophisticated proof is necessary since, for any instance, there exists
a democratic process that satisfies BJR in polynomial time with ⌈n/k⌉-Gen(·, ·) queries on this
instance; namely, a variant of the algorithm from Proposition 4 that guesses the right subset S′

and returns the corresponding statement Gen(S, r). We prove our impossibility (in Appendix B)
by showing that, for any fixed polynomial-time algorithm, there exists an instance on which this
algorithm violates BJR, through an application of the probabilistic method.

Theorem 5. No democratic process can guarantee balanced justified representation with any number
of Disc(·, ·) queries and fewer than 2

k en/(12k) queries of type n
8 -Gen(·, ·). This holds even for the

subsetting of approval utilities and the weaker axiom of justified representation. As a corollary, if
k ∈ O(n0.99), then any democratic process guaranteeing BJR with n

8 -Gen(·, ·) and Disc(·, ·) queries
has exponential running time.

3.3 Structured Preference Settings

While the last section’s lower bounds are potentially worrisome, a silver lining is that the instances
we used to prove them were contrived. Our impossibility proofs were constructed by drowning
popular statements in an overwhelming number of relatively unpopular statements: for any set of
agents (of a given size), there was a statement that was well liked by only these agents and not
by any other agent. Since statements and preferences in the real world presumably have some
structure, it seems highly implausible that such an abundance of orthogonal statements would exist
for real-world populations. Note that, by “structure” we are not referring to any fixed geometry of
alternatives (in contrast to, say, spatial models of voting). Instead, we only require that preferences
do not have infinite “complexity”.

To formally define this complexity, we introduce the notion of a statement space (U ,F), which
consists of a universe of statements U and a set of possible utility functions F ⊆ RU . A statement-
selection instance belongs to (U ,F) if its universe of statements is U and if each agent i’s utility
function ui appears in F .

To measure the complexity of a statement space, we borrow a fundamental complexity notion
from learning theory, the VC dimension [37]. We extend the definition of VC dimension to statement
spaces in a natural way: The VC dimension of (U ,F) is the largest d ∈ N, for which there exist
u1, u2, . . . , ud ∈ F such that, for any index set I ⊆ {1, . . . , d}, there is a statement α ∈ U and
threshold ϑ ∈ R such that ui(α) ≥ ϑ for all i ∈ I and ui(α) < ϑ for all i /∈ I. If no largest integer d
exists, the VC dimension is infinite. In other words, d is the size of the largest set of participants,
such that for any subset of participants there is a statement that has a utility above some threshold
for this subset and none of the agents outside of this subset.
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Process 2: Democratic Process for BJR with Size-Constrained Queries.
(differences with Process 1 are highlighted in color)
Inputs: agents N , slate size k, VC dimension d, error probability δ

nx ← O
(
k4 (d + log(k/δ))

)
ϵ← 1

4k2

r̄x ← nx

( 1
k − ϵ

)
r̄ ← n

( 1
k − 2ϵ

)
S ← N
W ← ∅
for j = 1, 2, . . . , k do

X ← draw nx agents from N without replacement
Y ← X ∩ S

α←

{
Gen(Y, ⌈r̄x⌉) if |Y | ≥ r̄x

some arbitrary α ∈ U else
W ←W ∪ {α}

r ←

{
⌈r̄⌉ if j ≤ n− k ⌊r̄⌋
⌊r̄⌋ else

T ← the r agents in S with largest Disc(·, α)
S ← S \ T

end
return W

This notion of VC dimension of a statement space (U ,F) is identical to the classic, learning-
theoretic VC dimension of a hypothesis set H, constructed as follows. We define a family of functions
hα,ϑ that map the utility functions u ∈ F to binary labels as follows:

hα,ϑ(u) :=
{

1 if u(α) ≥ ϑ

0 else

That is, hα,ϑ(u) indicates whether an agent with utility function u assigns a utility of ϑ or larger to
a statement α. Then, the VC dimension d of a statement space (U ,F) is identical to the classic,
learning-theoretic VC dimension of the hypothesis set H := {hα,ϑ |α ∈ U , ϑ ∈ R}, consisting of
binary classifiers over F .

It seems unlikely that d would be huge in real-world settings, as it would imply, for instance
(assuming a one-dimensional simplification), that we could find a statement such that people that
lie at opposite sides of the space of opinions all support that statement, while people that lie in the
middle disagree with it. If, hence, the VC dimension of the statement space is finite in realistic
settings, we can obtain BJR even with size-constrained generative queries, as formalized by the
following theorem.

Theorem 6. Let d be the VC dimension of the statement space and δ > 0 the maximum admissible
error probability. Then, Process 2 runs in polynomial time in n, k (independent of d) and satisfies
BJR with probability at least 1− δ using Disc(·, ·) and t-Gen(·, ·) queries for t ∈ O

(
k4(d+log k

δ )
)
.

The proof of this theorem can be found in Appendix B. The process that achieves this result,
Process 2, is an adaptation of Process 1. The key difference (Process 2) is that here we run Gen(Y, ·)
on a random subset Y ⊆ N of the agents. Importantly, the size of this subset does not grow with
the total number of agents n.
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To illustrate the power of this theorem with a simple example, suppose that opinions on a
discussion topic vary along three dimensions, say socially conservative vs. liberal, fiscally conservative
vs. liberal, and religious vs. secular. Suppose furthermore that agents and statements can be
represented as points in this three-dimensional space, such that the utility ui(α) is a (strictly
monotonically decreasing) function of the Euclidean distance between the agent i and statement α
in this space. Then, the hypothesis set H (as introduced above) of this statement space is just the
set of all spheres in R3, which is well known to have VC dimension d = 4 [e.g., 5, p. 122]. Hence,
Process 2 produces BJR slates (up to a failure probability below 10−6) using t-Gen(·, ·) queries with
t ≤ const · k4 (4 + log(k) + 6 · log(10)). If n is large, this t is much smaller than the lower bounds on
t that are implied by Proposition 3 and Theorem 5 when we assume an unstructured statement
space.

Importantly, Theorem 6 extends to far more complicated preference structures, and it does
not require the structure to be known, but only (an upper bound on) the VC dimension. If, for
example, the set of statements U consists of all sequences of w many words in English (which
has below 106 words), a naive upper bound on the VC dimension of the statement space is
d ≤ log2(|U|) ≤ w log2(106). Thus, t ≤ const · k4 (w + log(k)) suffices to virtually guarantee BJR.

In summary, despite the negative worst-case results from Section 3.2, it is highly likely that
relevant statement spaces in reality have enough structure to allow for a BJR guarantee with high
probability and a relatively small number of queries, which is independent of the number of agents
n. This means that we can scale the democratic process to any number of participants, say to a
national audience, even when using an LLM with bounded context window size.

4 Second Component: Empirical Validation of Queries
We established in the previous section that, with access to perfect generative and discriminative
queries, we can guarantee BJR. In this section, we describe how we implement these queries as
subprocedures interfacing with an LLM, and we empirically study how well our implementations
approximate the idealized queries.

Evaluation Data. To evaluate the query implementations, we use the data collected in our pilot
study on chatbot personalization, which we discuss in detail in Section 5 and Appendix C. The
dataset consists of survey responses by a representative sample of 100 US residents. Each participant
extensively describes their views on chatbot personalization in free-form responses to multiple
questions. Furthermore, each participant rates six example statements. Each statement consists of
a concrete rule for chatbot personalization, a brief justification for the rule’s importance, and an
example illustrating the rule.7 We elicited these ratings by asking participants “to what extent does
this statement capture your full opinion regarding chatbot personalization?” Participants were then
asked to choose a rating on a 5-point scale (with the levels “not at all” (0), “poorly” (1), “somewhat”
(2), “mostly” (3), and “perfectly” (4)) and to give a short free-text response to explain their rating.
We equate ratings with utilities, e.g. an agent i rating a statement α with “mostly” means that
ui(α) = 3. Note, however, that the choice of numerical values is largely inconsequential given that
Process 1 is invariant to monotone transformations of the rating scale.

7For examples of such statements, see Appendix C.2.
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4.1 Discriminative Queries

Our implementation of the discriminative query Disc(i, α) takes as input agent i’s survey responses
and the statement α, and returns a prediction of the rating ui(α). We implement these queries with
a single call to GPT-4’s base model, which has not been fine-tuned using Reinforcement Learning
from Human Feedback (RLHF) [29].8

The prompt text is constructed as follows: It starts with the participant’s free-form survey
responses. Then, as few-shot examples, we list the example statements shown to the participant,
each followed by the participant’s rating and free-text explanations. At the end of the prompt, we
append the statement α, such that, given the previous few-shot examples, the natural next token
would be the agent’s rating for α (see Appendix D for more details on the prompt). Hence, we
can interpret GPT-4’s prediction of the next token as an estimate of ui(α). Since the GPT-4 base
model allows for access to token probabilities, we can construct a probability distribution capturing
the model’s uncertainty about ui(α). In our implementation of Disc(i, α) we return the expected
ui(α) (between 0 and 4), which will be used in our algorithms. An important advantage of using
the expected (rating rather than, say, the mode) is that this virtually eliminates the possibility of
ties when Process 1 chooses which agents to remove from consideration.

To evaluate this implementation of the discriminative query, we study how well it predicts a
participant’s rating of an example statement when the other five example statements are included
in the prompt. Figure 1 displays the result of this analysis, for all 100 participants and all 6 choices
of held-out statement (hence a total of 600 datapoints). Specifically, both subfigures compare
the actual agreement rating given by the participant (row) with the predicted ratings (column)
produced by GPT-4. The subfigures differ in that Figure 1a shows the average distributions, whereas
Figure 1b gives a histogram when these distributions are collapsed to their expected values.

The pronounced diagonal in Figure 1a indicates that the generated rating distributions concen-
trate around the true rating. Predictions are typically within one step of the true rating, and there
is no clear bias.

Since our implementation of the discriminative query returns only the expected value of these
distributions, Figure 1b relates more directly to the performance of our democratic process. Again,
there appears to be a clear linear relationship between true ratings and predictions, even if there
is some visible bias towards intermediate ratings. This bias is not surprising, since, for example,
a statement with a ground-truth rating of 4 (“perfectly”) can be under- but not overestimated.
Fortunately, since Process 1 is unaffected by monotone transformations of the rating scale, all we
need for our democratic process to work is that there be a monotone relation between the true
rating and the output of Disc(·, ·), which appears to be the case.

These results suggest that our LLM-based implementation of the discriminative query successfully
extrapolates participants’ preferences to new statements. This implementation provides a good
approximation to the idealized Disc(·, ·) and we will hence use it in our democratic process.

4.2 Generative Queries

Passing the free-form responses of all 100 participants to GPT-4 would exceed the context window
of 32K tokens of the GPT-4 version we are using. Nevertheless, we are able to circumvent this
limitation by summarizing each agent’s free-form responses more succinctly using the LLM, and

8We primarily use the base model, rather than the RLHF model since, at the time of our experiments, OpenAI did
not provide access to log-probabilities for its RLHF model. Moreover, Santurkar et al. [31] found that RLHF models
are more biased towards the opinions of certain demographics than corresponding base models, which might cause
discriminative queries implemented using RLHF models to systematically skew towards certain viewpoints.
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Figure 1: Confusion matrix of discriminative queries, with normalized row-sums. Both figures
represent the same 600 predicted rating distributions (100 participants times 6 choices of held-out
statement). These 600 predicted distributions are partitioned according to the associated ground-
truth participant rating, each partition corresponding to a row. In Figure 1a each row contains the
average predicted distribution (i.e. the average of the distributions with the ground-truth rating
corresponding to the row). In Figure 1b, each row is a histogram of expected ratings (that is, we
take the expected rating for each distribution).

passing these condensed representations to the LLM for generation. As a result, LLM queries scale
to the full size of our group of participants, which is why our evaluation uses Process 1 rather than
the sampling-based Process 2.

We initially implemented the generative query with a single LLM call, but found a series of
challenges that persuaded us to adopt a multi-prompt design instead. A first challenge with the
single-prompt approach was a lack of stability, in the sense that we found the LLM’s responses to
be sensitive to details of the prompt text, such as wording and the order of the agent descriptions.
A second challenge was that the LLM did not seem sufficiently responsive to the parameter r in our
t-Gen(S, r) queries, although the task differs substantially depending on whether the statement
should represent a small subgroup at a high minimum utility (small r) or a large subgroup at a
moderate minimum utility (larger r).9 A final challenge was that, when calling the prompt for
large sets S of agents, the generated statements tended to be milquetoast, likely due to the LLM
attempting to satisfy everyone, rather than cohesive subgroups.

To avoid these drawbacks, we implement our generative query through an ensemble: we generate
a pool consisting of several candidate statements by applying the LLM prompt (see Appendix D
for details on the prompt) to different subsets of agents in S. We then use discriminative queries
to estimate agents’ utilities for each statement in the pool and return the one that maximizes the
objective of the idealized generative query, see Eq. (1).10 For our pilot experiment, our ensemble
contains the following statement sources:

• We initialize the pool with four statements generated by clustering participants using a k-means
9This lack of responsiveness persisted despite chain-of-thought prompting [39].

10We maintain all statements from previous calls to the generative query in the pool since this might identify good
statements without requiring any additional LLM calls.
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heuristic, and applying the generation prompt to each cluster.11

• For each generative query, we call the LLM prompt twice on all agents in S; once with a
generation temperature of 0 and once with a temperature of 1.

• For each generative query, we additionally call the LLM prompt on a set of five agents, randomly
selected without replacement from S.

• Furthermore, for each generative query, we compute three statements by applying the LLM
prompt to different sets of agents produced by a nearest-neighbor heuristic.12

Evaluating the generative queries in a quantitative way is difficult for several reasons. First,
since the 100 participants never see the statements generated based on their responses, we do not
know their real ratings for these statements and have to rely on the discriminative queries as a
proxy. Second, since the optimization over all possible statements in the idealized generative query
(see Eq. (1)) cannot be computed in practice, we lack a ground truth for how far our implementation
is from the ideal query.

Therefore, we restrict our evaluation to a more modest goal: comparing the types of statement
generation sources in our ensemble and showing that they are complementary, i.e., that we benefit
from choosing an ensemble approach rather than any single source. For this experiment, we randomly
draw 40 out of the 100 agents and attempt to find a statement that maximizes the 20th-highest
rating.13 We then generate one statement from each of four sources (three of which feature in our
ensemble), by applying the LLM prompt once to all 40 agents (“all”), once to a random subset of
five agents (“random 5”), once to a group of six agents generated by the nearest-neighbor heuristic
(“nn(s = 5)”, see Footnote 12 for details), and once, as a point of reference, to a single random
agent (“random 1”). We run this experiment 50 times and show the results in Figure 2a.

random 1 random 5 all nn(s=5) maximum
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

(a) Distribution of the 20th-highest utility obtained by the
statements from different sources.

all

30.0%
nn(s=5)

32.0%

random 1

22.0% random 5
16.0%

(b) Percentage of experiments in which each
statement source obtained a higher 20th-
highest utility than all others.

Figure 2: Evaluation of the 20th-highest utility obtained by different generation sources in our
experiments. Each of the 50 datapoints corresponds to a random sample of 40 out of the 100 agents.

11Since none of these statements were selected for the slate, we omit a detailed description.
12Specifically, we select a random agent i, and use the discriminative query to order the other agents in terms of how

much they agree with agent i’s free-form opinions. We then select the s most aligned agents for some fixed number s,
and apply the LLM prompt to the resulting cluster of s + 1 agents. Three sets are produced with s = 5, s = 10 and
s = 15. The three clusters are produced with s = 5; s = 10; and s = 5 except only a random subset of 20 agents is
considered.

13This simulates what is required of the generative query in the fourth round of running Process 1 with n = 100, k = 5.
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The main difference across the generation sources is their robustness, i.e., how often they yield
statements whose 20th-highest utility is below 2.8. If we were to generate statements based on a
single random agent (“random 1”), such low-utility statements would be frequently chosen, which is
to be expected given that the randomly chosen agent’s opinions need not align with the remaining
agents. When we instead apply the LLM prompt to a random set of five agents (“random 5”),
unpopular statements become less frequent. Including all agents in the prompt (“all”) further
increases the chance of very good statements, and decreases the incidence of very bad outliers. Still,
this kind of generation does not entirely dominate the “random 5” generation source since it produces
statements with mediocre highest-20 ratings (between 2 and 2.8) more frequently than the random-5
approach. The nearest-neighbors heuristic clearly outperforms the other three generation approaches.
Indeed, all statements it produces have a 20-th highest utility above 2.7, which demonstrates the
promise of applying the LLM prompt to subsets of agents that are chosen to be aligned in their
opinions, rather than on random subsets or all agents.

Though the nearest-neighbor generation yields better statements than any other generation
source in isolation, this does not mean that these other sources become redundant. Indeed, the
last entry (“maximum”) of Figure 2a shows that taking the best out of all four generation sources
further reduces the lower tail of 20th-highest utilities, and that only this approach manages to
generate very popular statements (rating above 3.2) most of the time. Figure 2b shows that the
best-out-of-four statement is only chosen as the nearest-neighbor statement in about a third of our
experiments. This implies that, even though the other three approaches individually lack robustness,
it is rare that all three fail on the same instance. Our ensemble approach to statement generation
makes use of this complementarity between generation sources.

There would be much to learn by extending this experiment to larger groups of remaining agents,
different values of r, and more generation sources. In particular, it would be very interesting to
study whether including multiple copies of the same generation source pays off or not. Unfortunately,
the financial cost of running these experiments is currently limiting our analysis. This cost is mainly
due to the large number of GPT-4 calls made for the discriminative queries, which on their own
cost around $500 for the experiment in Figure 2.14 OpenAI’s recent announcement of GPT-4-turbo,
a GPT-4 variant priced at about a third of the one we used, makes us hopeful that the cost of such
experiments will soon decrease.

5 Pilot on Chatbot Personalization
We piloted our democratic process as part of the OpenAI “Democratic Inputs to AI” grant
program [12], using our method to study public opinion on chatbot personalization. We ran
surveys studying this topic on November 1 and 2, 2023 and generated a slate of five statements
representing public opinion. To obtain actionable guidelines for the development of chatbots, we
adopt a statement format that consists of the rule that participants judge most important for
chatbot personalization, a brief justification for the rule’s importance, and an illustrating example.

14The experiment’s 50 random seeds, 40 agents per seed, and 4 statement to be evaluated per agent result in
50 · 40 · 4 = 8000 discriminative queries. Since each discriminative query has a length of approximately 2000 tokens, at
a current cost of $0.03 per thousand tokens for the GPT-4 base model, the cost for the experiment’s discriminative
queries alone is about $500.
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Figure 3: Overview over the pilot run of our process: In the first stage (“generation”, left), we
survey n = 100 participants. We then feed their responses into Process 1 to generate a slate of
k = 5 statements. In the second stage (“validation”, right), we validate these statements by asking
a fresh sample of n = 100 participants to rate the five statements. Based on these ratings, we
match participants optimally to statements, such that each statement represents an equal number
of participants.

5.1 Pilot Description

We illustrate the setup of the pilot in Figure 3. We first recruit 100 participants through the online
platform Prolific15, which we refer to as the generation sample. Our sample consists of US residents,
stratified with respect to age, gender, and race.16 We ask these participants to complete a survey
on chatbot personalization.17 To introduce participants to the topic of chatbot personalization, we
first show them background information and ask them whether a chatbot should personalize its
answer in each of three example scenarios. Then, we asked participants to describe their stance on
chatbot personalization, by answering four questions in free-text form that ask about the trade-offs
of personalization, the rules participants would like to see imposed on chatbot personalization, as
well as arguments for and against their proposed rules.

We also ask participants to rate their agreement with six example statements, which we generated
with a single call to GPT-4 and without knowledge of participant responses. These ratings are
given on the five-level scale described at the beginning of Section 4. Both the initial scenarios and
statements are shown to participants in random order.

Based on participant responses, we extract a slate of five representative statements using
Process 1. To evaluate this slate, we then launch a second survey with a new set of 100 stratified
participants, the validation sample, to evaluate the slate’s statements (see Figure 3, on the right).
In this validation survey, after showing participants the same introductory information about

15https://www.prolific.com/
16For more details on the demographic composition of the sample, see Appendix C.1.
17See Appendix E.1 for the verbatim survey questions.

15

https://www.prolific.com/


chatbots, we ask them to rate the five statements on the slate (using the same question format
as at the end of the generation survey). For reproducibility, and to support future research on
online participation, we made participants’ full responses publicly available at https://github.
com/generative-social-choice/chatbot_personalization_data/.

5.2 Results

Due to space limitations, we defer the slate of five statements we generated to Appendix C.2. No
statement on the slate is categorically opposed to personalization but each statement expresses
restrictions on personalization that major groups of US residents believe should be respected. We
understand the following three points to be the main themes of the slate:

Privacy and data security: Four out of five statements stress the importance of privacy and of
preventing chatbot data from being used in other contexts.

User control: The same four statements state that users should have control over which of their
data are stored and used for personalization.

Truthfulness: The remaining statement’s primary concern is that chatbots should never provide
inaccurate or misleading information.

A striking feature of the slate is the high level of agreement between statements: Indeed, four of the
five statements each express a concern about privacy and data security while recommending user
control as a guardrail on personalization. Both the high level of agreement between participants,
and the popularity of these two themes came as a surprise to us. The slate’s fifth statement stresses
that chatbot personalization should not go so far as to compromise the chatbot’s truthfulness.

In Appendix C.2, we document which of the ensemble’s generation sources each statement
originated with, examine differences between the statements, and argue that these statements do
not seem derivative of our priming scenarios. In Appendix C.3, a qualitative analysis of all responses
in the generation sample confirms that concerns about privacy and data security and user control
highlighted by our slate were frequently brought up by participants (72 of 100 participants mentioned
one or both of these themes)18 and that an example statement about user control received very
favorable approval ratings, indicating its popularity.

In the remainder of this section, we demonstrate the representativeness of the slate using
the validation sample, a fresh sample of 100 US residents. This validation is crucial since these
participants actually rated the statements of our slate, which allows us to reason about their
preferences without extrapolation. Furthermore, this validation sample received no introductory
materials other than a brief explanation of chatbot personalization, which reduces the risk of priming
participants in favor of or against certain statements.

According to the ideal of proportional representation, each statement in our generated slate
should represent 20% of the US population as accurately as possible. Following this principle,
we match the participants of our validation sample to the statements of our slate such that each
statement has 20 participants matched to it and the sum of participants’ rating levels for their
assignment is maximized, i.e., such that the balanced assignment maximizes the representation
objective of Monroe [26]. We then study the ratings of participants for their assigned statements.

As can be seen in Figure 4, 75% of the participants say that their assigned statement “perfectly”
captures their full opinion on chatbot personalization, and an additional 18% of participants say it
“mostly” captures their full opinion. Only 7% of participants feel only “somewhat” represented or
less. Hence, the vast majority of participant opinions are represented accurately by our slate.

18The manual labeling of responses with themes is also contained in our data repository.
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not at all
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mostly

perfectly

How well does your assigned statement represent you?
not at all (1%) poorly (0%) somewhat (6%) mostly (18%) perfectly (75%)

Figure 4: Ratings of participants from the validation survey for their assigned statement.

Remarkably, none of the 100 agents have a higher rating for a statement other than their
assigned statement, which means that the requirement to assign an equal number of agents to each
statement is not a binding constraint. This is a good sign for our claim of proportional representation,
which could be in question if, say, many agents would rather be matched to the statement about
truthfulness than their current assignment. It also shows that, should the slate violate BJR, this
violation would have to be based on an entirely different kind of statement. Moreover, since such
a violation would have to strictly increase the utility of all 20 members of the deviating coalition,
it would have to unite most of the 25 agents who are not yet “perfectly” represented and would
have to “perfectly” represent all coalition members who are already “mostly” represented. While we
cannot entirely rule out such a BJR violation, this narrow path makes the existence of a violation
seem unlikely.

Naturally, we must closely inspect the seven agents who feel relatively badly represented by their
assigned statement, since their responses might reveal viewpoints missing from our slate. Though
the free-text explanations given with the ratings are generally short, they allow us to understand
what the seven participants dislike about the selected statements. While certain themes occur
repeatedly among these seven participants,19 their reasons for feeling relatively unrepresented are
eclectic. Since proportionality axioms like BJR only guarantee representation to large, cohesive
groups, these responses also give us no reason to doubt the representativeness of our slate.

Having established that the slate of statements represents the population well, an interesting
question is how distinct the preferences of different groups are. Does our balanced matching identify
distinct opinion clusters, or would participants in one group be just as happy with another group’s
statement? To answer this question, we consider the distribution of ratings across statements for
each group, shown in Figure 5. Comparing the different plots, it is clear that the preferences of
different groups substantially differ. In particular, each group has a clear preference for its assigned

19For instance, four of these participants do not believe that chatbot companies can be trusted to not collect data
despite their customers’ privacy choices or to keep collected data safe; and three express that the advantages of
including all available data outweighs potential privacy risks. At least three of the participants doubt that chatbots
can meaningfully identify truth or should be relied on as truthful.
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Figure 5: Agreement of participants in different groups with each of the statements. Each row
corresponds to a group; for example, G1 represents the 20 participants assigned to statement S1.
For each group, we plot the frequencies of rating levels given by members of this group to statements
S1 through S5. S4 denotes the statement about truthfulness.

statement over the other statements (in Figure 5, see the distributions on the diagonal, from top
left to bottom right).

Taken together, Figures 4 and 5 indicate that there is heterogeneity in opinions across the
population and that our slate accurately represents this heterogeneity.

6 Discussion
As a result of the increase in power, availability, and steerability of LLMs, we are currently witnessing
an explosion of creative prototypes for participative processes with generative-AI components [e.g.,
10, 20, 25, 33]. This expansion of the capabilities of participation is thrilling, but — as these
prototypes continue to proliferate and eventually turn into deployed practices — we ought to
critically interrogate the legitimacy of these processes on two fronts.

The first line of questioning has already received broad attention [e.g., 36]: can the AI building
blocks in the process be trusted? Taking our process as an example, we have started answering this
question by measuring the average accuracy of our LLM queries, by overcoming an observed lack
of robustness through the ensemble implementation of our generative query, and by piloting the
process in practice. Before our process is ready for high-stake deployments, though, it must yet be
hardened against malicious participant input (e.g., prompt injections [38] meant to unduly sway
generative queries), and the effect of biases against groups of people [4, 21] and viewpoints [e.g.
18] in the LLM must be studied and counteracted. The thorniest question is whether participants
themselves will trust the LLMs, for which our best suggestion is to grant participants recourse in
the case of errors,20 though this sacrifices some scalability for greater legitimacy.

20Say, if a discriminative query misjudged their preference, or if they can suggest a more popular statement than
what a generative query produced.
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We want to raise a no less important question: is the process around the AI components
democratic? Granted, an AI participation process solicits input from all participants, and might
even treat participants symmetrically. But that property alone (neutrality) is an utterly unimpressive
benchmark for a voting rule. Instead, voting rules with AI elements, like those without, should
argue their case based on social choice axioms that ensure, for example, the rule’s responsiveness,
efficiency, and fairness.

At its heart, generative social choice articulates a vision of what it means for an AI-enhanced
voting rule to be democratic. By showing the required ingredients — the axioms targeted by the
rule, necessary conditions on the behavior of the LLM, and evidence that the LLM meets these
conditions — a voting rule can assuage the above two threats to legitimacy, while tapping into the
possibilities enabled by generative AI.
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Appendix
A Relationship Between BJR and Other Justified Representation

Axioms
Our notion of BJR is closely related to several axioms in the social choice literature.21 Suppose for
the time being that we were to relax BJR by not requiring the matching of agents to statements to
be balanced, in which case each agent would be matched to their most preferred statement without
loss of generality. In the subsetting of approval utilities, this relaxed axiom coincides with the
justified representation (JR) axiom of Aziz et al. [1]. For our setting of general cardinal utilities, the
relaxed axiom is implied by extended justified representation (EJR) and full justified representation
(FJR) as defined by Peters et al. [30].
Table 1: Utility matrix of first example in-
stance, with k = n = 3.

α α′ β β′

u1 1 1 0 0
u2 1 1 0 0
u3 0 0 1 1

Table 2: Utility matrix of second example
instance, with k = n = 2.

α1 α2 β β′

u1 3 0 2 2
u2 0 3 2 2

The need for a new, balanced-matching-based notion of justified representation is best explained
using two simple examples. The first example, given in Table 1, is standard: k = 3 statements must
be selected, two thirds of the agents (specifically, agents 1 and 2) approve statements α, α′, and the
remaining third of the agents (agent 3) approves statements β, β′. As has been frequently observed
[e.g., 1, Example 3], JR (and thus the relaxation of BJR with unbalanced matchings) is satisfied by
the slate {α, β, β′}. This is problematic since this slate is patently unproportional: it represents two
thirds of the population by one third of the slate, and vice versa.

JR cannot rule out this form of unproportionality because each member of the two-thirds bloc is
already represented by some statement they approve, and JR does not allow agents and coalitions
to formulate any claims to representation beyond that point. Axioms like EJR and FJR allow
coalitions to make stronger claims than JR by assuming that an agent (say, agent 1 in the previous
example) may prefer to be represented by multiple statements rather than just one. Specifically,
these axioms model an agent’s utility as being the sum of their utilities for all statements on the
slate.

Though this approach allows EJR and FJR to rule out the unproportional slates in the first
example, it causes them to require slates on other instances that we find undesirable for the setting
of statement selection, especially for non-approval utilities. Table 2 shows one such instance, in
which two statements must be selected for two agents. Each agent i ∈ {1, 2} has a statement αi

which is very specific to i and thus has a high utility for i but low utility for the other agent. In this
instance, we believe that a slate consisting of these two statements would be a good choice since it
represents the specificity of agents’ preferences to the highest degree; indeed, only this slate satisfies
BJR. EJR and FJR, by contrast, rule out these statements, since they prefer to represent both
agents jointly by two less specific statements (namely, β, β′) rather than each agent individually by

21Note that we defined slates as multisets, whereas these axioms typically define committees as sets. The discussion
in this section is both valid if one translates the multi-winner axioms into the multiset setting, or by using the set
variant of BJR described in Footnote 6.

23



a specific statement.22

Our axiom of BJR enforces more specificity on the second instance, while ruling out the
unproportional slates on the first example instance. Instead of allowing a single agent to be
represented by multiple statements, BJR’s analysis of the shortcoming of JR in the first example is
that too many agents were represented by a single statement on the slate. Philosophically, we see
connections between our axiom and the notion of fully proportional representation of Monroe [26]:
“voters should be segmented into equal-sized coalitions, each of which is assigned a representative,
such that the preferences of voters are as closely as possible reflected by the representatives of
their segment.” In the remainder of this appendix, we show that BJR, other than implying JR, is
incomparable to previously studied notions of justified representation, even in the setting of approval
utilities.

Proposition 7. Balanced justified representation (BJR) is incomparable with proportional justified
representation (PJR), extended justified representation (EJR), full justified representation (FJR),
and core stability. This incomparability holds even for approval utilities, and holds both in our setting
where slates/committees are multisets23 and in the classical setting where they are sets (using the
adaptation of BJR in Footnote 6).

Proof. We will show this incomparability in two steps: we first show that BJR implies none of the
other axioms, and then that none of the axioms implies BJR.

BJR does not imply other axioms. Consider the instance with n = 6, k = 4, and the following
utilities:

α α′ α− β γ δ

u1 1 1 1 0 0 0
u2 1 1 1 0 0 0
u3 1 1 0 0 0 0
u4 0 0 0 1 0 0
u5 0 0 0 0 1 0
u6 0 0 0 0 0 1

In this instance, the slate {α−, β, γ, δ} satisfies BJR since, if we assign agents 1 and 2 to α−,
agents 3 and 4 to β, agent 5 to γ, and agent 6 to δ, then only agent 3 is not already maximally
satisfied. As a result, no potential deviating coalition can include the necessary n/k = 3/2 agents.

By contrast, this slate does not satisfy PJR because the coalition of agents 1, 2, and 3 is large
enough to proportionally claim ℓ = 2 statements, has two statements they all like in common (α, α′),
but only one of the four statements on the slate is liked by any agent in this coalition.

Since EJR, FJR, and core stability imply PJR, none of them can be implied by BJR either.

Other axioms do not imply BJR. To prove this direction of the claim, consider the following
instance with n = 8 agents and k = 4. The table below shows the agents’ utilities for a subset of
the statements:

22One might hope that EJR and FJR can be adapted to this perspective, by extending utilities to sets in a
unit-demand rather than additive way. With this modification, however, they no longer rule out the unproportional
slate in the first example instance.

23Brill et al. [6] give a formal embedding to translate existing justified representation axioms to the multiset setting
(“party-approval elections”, in their terminology). Whereas the existence of core stable committees is unresolved when
committees are sets of alternatives, such committees are guaranteed to exist in the multiset setting [6].
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α α′ β β′

u1 1 1 0 0
u2, u3, u4 1 0 0 0

u5 0 0 1 1
u6, u7, u8 0 0 1 0

In addition, any pair of agents {i, j} is associated with a statement γi,j , which exactly they approve.
In this instance, the slate {α, α′, β, β′} does not satisfy BJR. Indeed, since a balanced assignment

assigns two agents to each statement of the slate, it holds for any such balanced assignment that some
agent i assigned to α′ and some agent j assigned to β′ have 0 utility for their assigned statement.
Since these two agents could deviate to the statement γi,j , BJR is violated.

By contrast, we will show that this slate satisfies core stability, and thus the weaker axioms of
FJR, EJR, and PJR. Indeed, suppose that some non-empty coalition S along with a (multi)set T of
at most |S|

n · k statements formed a core deviation. Suppose that S includes 0 ≤ x ≤ 2 many among
the agents {1, 5}. Since agents 1 and 5 have a utility of 2 for the candidate slate, they can only be
part of a deviating coalition if the deviation T gives them utility at least 3. Analogously, since the
other agents have a utilty of 1 for the candidate slate, they can only deviate if T gives them utility
at least 2. If we define the coalition welfare cw as the sum of utilities, across the agents in S, for T ,
it follows that cw ≥ 3 x + 2 (|S| − x) = 2 |S|+ x. Now, the average contribution of a statement in T
to this objective is

cw
|T |
≥ 2 |S|+ x

|S| k/n
≥ 2 n

k
+ x

n

|S| k
= 4 + x

2
|S|︸︷︷︸
>0

. (2)

Note that statements α and β are the only ones that can potentially contribute at least 4 to the
coalitional welfare (since all other statements are approved by fewer than two agents), and they can
also contribute only exactly an amount of 4, never more. Thus, it must be that cw/|T | is equal to 4.
This, in turn, implies that x = 0, i.e., that agents 1 and 5 are not in S, and that T consists only of
the statements α and β (possibly with repetition). But now observe that, since agents 1 and 5 are
not in the coalition, α and β cannot marginally contribute more than 3 to the coalition welfare,
which contradicts Eq. (2) and thus shows that the slate satisfies core stability.

B Deferred Proofs
Theorem 2. Process 1 satisfies balanced justified representation in polynomial time in n and k,
using queries of types n-Gen(·, ·) and Disc(·, ·).

Proof. In this proof, we will use αj , Tj to denote the values of α and T assigned in a given iteration
1 ≤ j ≤ k. We construct the matching ω by, for each round j = 1, . . . , k, mapping all agents that
were removed from S in that round to the statement that was added to W in that round, i.e. for all
i ∈ Tj we have ω(i) = αj . Clearly, this matching is balanced, since either ⌊n/k⌋ or ⌈n/k⌉ agents are
removed in each round.

Now consider a coalition S′ ⊆ N , a statement α′ ∈ U , and a threshold ϑ ∈ R such that |S′| ≥ n/k
(and, by integrality, |S′| ≥ ⌈n/k⌉) and ui(α′) ≥ ϑ for all i ∈ S′. Once Process 1 terminates we have
S = ∅, hence there must be an earliest iteration j where some agent i′ ∈ S′ appeared in Tj . At the
beginning of iteration j of the loop, it must thus still hold that S′ ⊆ S. Note that

max(⌈r̄⌉)({ui(α′) | i ∈ S}) = max(⌈n/k⌉)({ui(α′) | i ∈ S}) ≥ max(|S′|)({ui(α′) | i ∈ S})
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≥ max(|S′|)({ui(α′) | i ∈ S′}) ≥ ϑ.

Thus, since i′ ∈ Tj and by the definition of the generative query (Eq. (1)), it must hold that

ui′(ω(i′)) = ui′(αj) ≥ max(⌈r̄⌉)({ui(αj) | i ∈ S}) ≥ ϑ.

We conclude that S′, α′, ϑ do not violate BJR.

Proposition 3. No democratic process can guarantee balanced justified representation with arbitrarily
many n

k (1− 1
k )-Gen(·, ·) and Disc(·, ·) queries. This impossibility even holds in the subsetting of

approval utilities and for the weaker axiom of justified representation.

Proof. Set t := n/k (1− 1/k). Let n be some multiple of k2, so that t is an integer. Suppose that
there is one “popular” statement α, which has utility 1 for all agents. Furthermore, for each set
S of at most t agents, let there be an “unpopular” statement with utility 1 for S and 0 for all
other agents. This unpopular statement is a valid answer for any query of the shape t-Gen(S, ·),
because the r-th largest utility among S for this statement is 1, the maximum possible utility of
this instance. Thus, with the right tie breaking, one can implement all t-Gen(·, ·) queries to return
unpopular statements, from which it follows that the process will have to return a slate W entirely
of unpopular comments.

Since each unpopular statement has positive utility for at most t agents, at most k · t =
n (1− 1/k) = n− n/k agents receive positive utility from any statement in W . In other words, n/k
agents have utility 0 for all statements in W , but have utility 1 for the popular statement α. This
demonstrates a violation of (balanced) justified representation.

Theorem 5. No democratic process can guarantee balanced justified representation with any number
of Disc(·, ·) queries and fewer than 2

k en/(12k) queries of type n
8 -Gen(·, ·). This holds even for the

subsetting of approval utilities and the weaker axiom of justified representation. As a corollary, if
k ∈ O(n0.99), then any democratic process guaranteeing BJR with n

8 -Gen(·, ·) and Disc(·, ·) queries
has exponential running time.

Proof. Choose k to be an even integer and n as a multiple of 8, such that t := n/8 is integer as well.
Fix a process that makes fewer than 2

k en/(12k) many t-Gen(·, ·) and any number of discriminative
queries. We will prove the claim using the probabilistic method: we will define a random instance
and show that the process will fail BJR with positive probability, which means that there exists
a deterministic instance where the process fails BJR. In fact, the random instances we construct
will have approval utilities, and we will derive a contradiction to not just BJR, but also JR on this
instance, to simultaneously prove the “this holds even. . . ” part of the claim.

For given n, k, construct our instance as follows: Each set S of n
2 k many agents has infinitely

many “unpopular” statements that have utility 1 for S and utility 0 for all other agents. Furthermore,
each agent is uniformly and independently assigned a color in {1, 2, . . . , k/2}, and all agents with
the same color c have utility 1 for a “popular” statement βc, which has utility 0 for everyone else.
Since all utilities are 0 or 1, there will typically be many statements α that are tied in the definition
of a generative query Gen(S, r) (Eq. (1)): if there exist statements that have utility 1 for at least r
agents in S, any such statement may be returned; if no such statements exist, the query may return
any arbitarary statement. To resolve this ambiguity, we assume that the generative query breaks
ties in the “most favorable” way: the generative query will respond to Gen(S, r) with a statement
that has utility 1 for as many agents in S as possible, and breaks remaining ties according to some
canonical ordering of statements in which unpopular comments precede popular comments.
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Consider the trajectory of the process on an instance with just the unpopular statements, i.e.,
where each t-Gen(S, ·) query of the process is answered by a canonical unpopular statement that
attains the maximum number min(|S|, n

2 k ) of agents in S that have utility 1 for it.
Now, consider the random instance with unpopular and popular statements. We will show that,

with positive probability, all t-Gen(·, ·) queries made by the process are still answered by their
canonical unpopular statement, which means that the process will follow the same trajectory as
above. This will be the case if, for each t-Gen(S, ·) query made by the process and for each color c,
at most n

2 k agents in S have color c, so that βc will not be returned by the query. For a specific S
and c, the probability of this event can be upper-bounded using Chernoff as

P
[
at least n

2 k
agents in S have color c

]
= P

[
Binomial(n/8, 2/k) ≥ 2 · n

4 k

]
≤ exp

[
− n

12 k

]
.

By a union bound, it follows that, with positive probability, this event does not occur in any of the
fewer than 2

k en/(12k) queries, for any of the k
2 colors. This implies that there is an instance in the

support of our random instance on which the trajectory of the process remains the same as if there
were no popular statements and where, in particular, the process must return a slate of unpopular
statements.

Finally, we show that, when the process only returns unpopular statements, it must violate
justified representation. (This always hold for our random instance, ex post.) Since each unpopular
statements gives positive utility to at most n

2 k agents, no more than n
2 agents can be covered by the

slate of k statements selected by the process. Therefore, there are at least n
2 uncovered agents, which

are partitioned in some arbitrary manner across the k
2 many colors. By an averaging argument,

there must be some color c with at least n
k uncovered agents, which means that the process’ output

violates justified representation and BJR for βc.

Lemma 8 (Agnostic PAC learning for sampling without replacement). Let H be a hypothesis class,
consisting of binary classifiers h : X → Y, with |Y| = 2, over some domain X . Let d <∞ denote
the VC dimension of H. For a given hypothesis h ∈ H, denote its 0–1 loss on a nonempty finite set
S ⊆ X × Y of labeled datapoints by LS(h) :=

∑
(x,y)∈S 1{h(x) ̸= y}/|S|.

Let D ⊆ X ×Y be a finite set of labeled datapoints. Consider a random process that chooses some
number m ≤ |D|/2 of labeled datapoints S = {(x1, y1), (x2, y2), . . . , (xm, ym)} from D uniformly and
without replacement, and denote by ĥ the empirical risk minimizer argminh∈H LS(h). For any
0 < ϵ < 1, 0 < δ < 1, this process will satisfy

LD(ĥ) ≤ min
h∈H

LD(h) + ϵ (3)

and
|LS(h)− LD(h)| ≤ ϵ ∀h ∈ H (4)

with probability at least 1− δ, as long as

m ≥ C · d + log 1/δ

ϵ2 (5)

for some absolute constant C.
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Proof. If |D| ≥ m2/δ, the result will follow from the sampling bounds for i.i.d. samples. Note that
we can implement the without-replacement drawing of S through rejection sampling, i.e., by drawing
a sample of m datapoints uniformly with replacement, and re-drawing if this sample should contain
any datapoint multiple times. We will consider only the first round of this rejection sampling. The
probability that any two datapoints are identical is at most

∑m−1
i=0 i/|D| = m (m−1)

2 |D| ≤ m2

2 |D| ≤ δ/2,
so we reject with probability at most δ/2. Moreover, since drawing with replacement is the same as
drawing i.i.d. from the uniform distribution over D, we can apply a standard agnostic PAC learning
bound [32, Thm. 6.8] to show that the empirical risk minimizer ĥ on the sample with replacement
satisfies Eq. (3) with probability at least 1− δ/2 as long as the constant in Eq. (5) is sufficiently
large. By a union bound over both events, with probability at least 1− δ, the with-replacement
sample is not rejected and additionally satisfies Eq. (3), which proves the claim for our sampling
process without replacement in the case of |D| ≥ m2/δ.

From here on, suppose that |D| < m2/δ. Essentially, our claim will follow from Theorem 2 by
El-Yaniv and Pechyony [11], a bound on transductive learning, but we have to do some work to
get their bound into our desired shape. We apply their Theorem 2 twice, with a value of δ that
is half of the δ in our theorem, the full sample D, the hypothesis class H, γ = 1, and setting m
once to m and once to |D| −m (swapping the role of sampled and not sampled datapoints). By
union-bounding over both invocations and unfolding some definitions in the theorem, we obtain
that, with probability at least 1− δ, it holds for all h ∈ H that

LD\S(h) ≤ LS(h) + Rtrans(H) + slack and LS(h) ≤ LD\S(h) + Rtrans(H) + slack (6)

where Rtrans(H) denotes the transductive Rademacher complexity of H on D, and slack is defined
and bounded in the following.

The slack term is defined as

slack := c0 q
√

m +
√

s q

2 ln 1/δ,

where c0 < 5.05 is an absolute constant, q := 1
m + 1

|D|−m ≤
2
m , and s := |D|

(|D|−1/2)·(1− 1
2(|D|−m) ) . Since m

is a positive integer, m ≥ 1, hence |D|−m ≥ m ≥ 1, and thus s = |D|
|D|−1/2 ·

1
1− 1

2 (|D|−m)
≤ 4/3 ·2 = 8/3.

Thus,

slack ≤ 5.05 · 2√
m

+

√
8/3
m

ln 1/δ = 1√
m

(10.10 +
√

8/3 ln 1/δ). (7)

Next, we bound the transductive Rademacher complexity, for which we require several definitions:
Let x⃗ ∈ X |D| be a vector listing the first components (i.e., the unlabeled datapoints) for all members
of D, in arbitrary order. For an index set I ⊆ {1, . . . , |D|}, let x⃗I ∈ X |I| be the restriction of
x⃗ to the indices I. For a hypothesis h and a vector v⃗, let h(v⃗) be the vector that results from
applying h element-wise to the entries of v⃗. Since the codomain of the hypothesis class is binary,
i.e. |Y| = 2, we will assume here that Y = {−1, 1} without loss of generality. For any t ∈ N, let
Σt

trans denote the probability distribution over vectors of length t, whose entries are drawn i.i.d.
and are equal to −1 with probability m (|D|−m)

|D|2 , equal to 1 with probability m (|D|−m)
|D|2 , and are 0

otherwise. Furthermore, let Σt
ind denote the probability distribution over vectors of length t whose

entries are independently drawn and −1 or 1 with equal probability. Finally, denote by B the
probability distribution over subsets of {1, . . . , |D|} in which each element is contained in the subset
independently with probability 2 m (|D|−m)

|D|2 .
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In this notation, El-Yaniv and Pechyony [11, Def. 1 and p. 6] define the transductive Rademacher
complexity Rtrans(H) as

( 1
m + 1

|D|−m) · E
σ⃗∼Σ|D|

trans
sup h∈H σ⃗T h(x⃗).

Note that we can draw σ⃗ from Σ|D|
trans in two steps: we first draw the set of indices I from B

whose entries in σ⃗ are nonzero, and then set σ⃗’s coordinates in I to −1 or 1 with equal probability.
Therefore, we can equivalently write

Rtrans(H) = ( 1
m + 1

|D|−m) · EI∼B E
σ⃗∼Σ|I|

ind
sup h∈H σ⃗T h(x⃗I).

By Bartlett and Mendelson [3, Lemma 4 & Thm. 6], E
σ⃗∼Σ|I|

ind
sup h∈H σ⃗T h(x⃗I) ≤ c1

√
d|I| for some

absolute constant c1. Thus, we can bound

Rtrans(H) ≤ c1 ( 1
m + 1

|D|−m) · EI∼B
√

d|I|

≤ c1
2
m · EI∼B

√
d|I| m ≤ |D| −m

≤ 2 c1
√

d

m
· E

t∼Binomial
(

|D|, 2 m (|D|−m)
|D|2

)√t

≤ 2 c1
√

d

m

(√
6 m (|D|−m)

|D| + P
[
Binomial

(
|D|, 2 m (|D|−m)

|D|2
)

> 6 m (|D|−m)
|D|

]
·
√
|D|

)
≤ 2 c1

√
d

m

(√
6 m (|D|−m)

|D| + exp(−2 m (|D|−m)
|D| ) ·

√
|D|

)
(Chernoff bound)

≤ 2 c1
√

d

m

(√
6 m + exp

(
ln |D|

2 −m
))

(1/2 ≤ |D|−m
|D| ≤ 1)

≤ 2 c1
√

d

m

(√
6 m + exp

(
ln m2/δ

2 −m
))

(|D| < m2/δ)

= 2 c1
√

d

m

(√
6 m + exp

(
ln 1/δ

2 + ln m−m
))

≤ 2 c1
√

d

m

(√
6 m + exp

(
ln 1/δ

2 − (1− 1/e)m
))

(x− ln x ≥ (1− 1/e) x))

By choosing a large enough constant in Eq. (5), we can ensure that (1− 1/e)m ≥ ln 1/δ
2 . Then, we

can continue:

≤ 2 c1
√

d

m

(√
6 m + e0

)
≤ 2 c1

√
d

m (
√

6 + 1)
√

m

≤ c2
√

d√
m

, (8)

where we set c2 := 2 (
√

6 + 1) c1. Putting together Eqs. (6) to (8), we obtain that, for all h ∈ H,

LD\S(h) ≤ LS(h) + α and LS(h) ≤ LD\S(h) + α

where we defined
α := 10.10 +

√
8/3 ln 1/δ + c2

√
d√

m
.

We have

LD(h) = m

|D|
LS(h) + |D| −m

|D|
LD\S(h)
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≤ m

|D|
LS(h) + |D| −m

|D|
(LS(h) + α)

≤ LS(h) + α

and using a similar argument for the the other side, we obtain an error bound that holds uniformly
across all hypothesis

|LS(h)− LD(h)| ≤ α ∀h.

Finally, we compute also a bound for the empirical risk minimizer. We set h∗ := argminh∈H LD(h).
Then, we bound

LD(ĥ)− LD(h∗)

= m

|D|

(
LS(ĥ)− LS(h∗)

)
+ |D| −m

|D|

(
LD\S(ĥ)− LD\S(h∗)

)
≤ m

|D|

(
LS(ĥ)− LS(h∗)

)
+ |D|−m

|D|

(
LS(ĥ)− LS(h∗) + 2 α

)
= LS(ĥ)− LS(h∗)︸ ︷︷ ︸

≤ 0, by definition of ĥ

+2 |D|−m
|D| α

≤ 2 α

By choosing the constant in Eq. (5) large enough, we can ensure24 that

m ≥ 4
ϵ2 · 3 (10.102 + 8/3 ln 1/δ + c2

2d).

By Cauchy’s inequality, this implies that

m ≥ 4
ϵ2 · (10.10 +

√
8/3 ln 1/δ + c2

√
d)2,

and, by rearranging, that

ϵ ≥ 2 10.10 +
√

8/3 ln 1/δ + c2
√

d√
m

= 2 · α.

Thus, with probability at least 1 − δ, ϵ ≥ LD(ĥ) − LD(h∗), and ϵ ≥ |LS(h)− LD(h)| ∀h, as
claimed.

Theorem 6. Let d be the VC dimension of the statement space and δ > 0 the maximum admissible
error probability. Then, Process 2 runs in polynomial time in n, k (independent of d) and satisfies
BJR with probability at least 1− δ using Disc(·, ·) and t-Gen(·, ·) queries for t ∈ O

(
k4(d+log k

δ )
)
.

Proof. For convenience, we define supp(α, ϑ|S) := {i ∈ S | ui(α) ≥ ϑ} to be the set of agents in S
who have utility at least ϑ for statement α. Further, we define Process 3, which is equivalent to
Process 2 but whose more explicit notation makes it easier to refer to specific values of the variables
in this proof. Note that we have

Gen(S, ⌈r⌉) = argmax
α∈U

sup {ϑ | |supp(α, ϑ|S)| ≥ r}

and hence we can write αj defined in Process 3 of Process 3 as

αj = argmax
α∈U

sup {ϑ | |supp (α, ϑ|Yj)| ≥ r̄x} . (9)
24We may assume without loss of generality that d ≥ 1, since, if d = 0, H only contains a single classifier and the

claim holds trivially. If d ≥ 1, we can upper bound the term 12·10.102

ϵ2 by a multiple of d
ϵ2 .
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Process 3: Democratic Process for BJR with Size-Constrained Queries (more explicit version of Process 2).
Inputs: agents N , slate size k, VC dimension d, error probability δ
nx ← 16 C k4 (d + log(k/δ)) (C is the constant from Lemma 8)
if n ≤ 2 · nx then

nx ← n
end
ϵ← 1

4k2

r̄x ← nx

( 1
k − ϵ

)
r̄ ← n

( 1
k − 2ϵ

)
S1 ← N
W0 ← ∅
for j = 1, 2, . . . , k do

Xj ← draw nx agents from N without replacement
Yj ← Xj ∩ Sj

αj ←

{
Gen(Yj , ⌈r̄x⌉) if |Yj | ≥ r̄x

some arbitrary α ∈ U else
ϑj ← sup {ϑ | |supp (αj , ϑ|Yj)| ≥ r̄x}
Wj ←Wj−1 ∪ {αj}

rj ←

{
⌈r̄⌉ if j ≤ n− k ⌊r̄⌋
⌊r̄⌋ else

Tj ← the rj agents in Sj with largest Disc(·, αj)
Sj+1 ← Sj \ Tj

end
return Wk

Step 1. We start by showing that with probability at least 1− δ, we have∣∣∣∣ 1
nx
|supp (α, ϑ|Yj)| − 1

n
|supp (α, ϑ|Sj)|

∣∣∣∣ ≤ ϵ (10)

for all α ∈ U , ϑ ∈ R, and 1 ≤ j ≤ k. For convenience, we define the indicator function:

fα,ϑ(i) := I [ui(α) ≥ ϑ] .

We can now write:

1
n
|supp (α, ϑ|Sj)| = 1

n
|{i ∈ Sj | ui(α) ≥ ϑ}|

= 1
n

∑
i∈N

I [ui(α) ≥ ϑ] I [i ∈ Sj ]

= 1
n

∑
i∈N

fα,ϑ(i) I [i ∈ Sj ]

and similarly:

1
nx
|supp (α, ϑ|Yj)| = 1

nx

∑
i∈N

fα,ϑ(i) I [i ∈ Yj ]

= 1
nx

∑
i∈N

fα,ϑ(i) I [i ∈ Xj ∩ Sj ]
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= 1
nx

∑
i∈Xj

fα,ϑ(i) I [i ∈ Sj ] .

To bound the difference between these two terms, we map them to the learning-theoretic setting from
Lemma 8 as follows: Let the domain X be the set of agents N , and the labels Y be {0, 1}. The set
of labeled datapoints is D := {(i, 0)}i∈N , from which we draw the uniform sample S := {(i, 0)}i∈Xj

without replacement, and the hypothesis class is:

H := {fα,ϑ(·) I [· ∈ Sj ] | α ∈ U , ϑ ∈ R} .

Hence, each hypothesis can be identified with a pair (α, ϑ) and it is then easy to see that the losses
from Lemma 8 are precisely the terms we are trying to relate:

LS(α, ϑ) = 1
nx
|supp (α, ϑ|Yj)| and

LD(α, ϑ) = 1
n
|supp (α, ϑ|Sj)| .

Hence, Lemma 8, along with a union bound across the k steps, tells us that if the sample size
satisfies:

nx ≥ C · vc-dim(H) + log k/δ

ϵ2 (11)

= 16 C k4(vc-dim(H) + log k/δ),

then Eq. (10) holds with probability at least 1− δ. To show Eq. (10), it remains to relate vc-dim(H)
to the VC dimension d of our statement space. Note that for all hypotheses in H, all datapoints
in Sj are constrained to 0 due to the factor I[· ∈ Sj ]. Compared to a definition without this
indicator factor, this restriction does not increase the VC dimension of the hypothesis class since
the datapoints in Sj cannot be part of any shattered subset. Consequently, vc-dim(H) is at most
equal to the VC dimension of the hypothesis class

{fα,ϑ(·) | α ∈ U , ϑ ∈ R} .

It is easy to verify that the VC dimension of this set of indicator functions corresponds to our
notion of VC dimension d, hence vc-dim(H) ≤ d, which means that our nx from Process 3 satisfies
Eq. (11) and therefore Eq. (10) holds with the desired probability.

Step 2. Next, we show that, when Eq. (10) holds, it must hold that, for each iteration j, all of the
agents Tj removed in this iteration have utility at least ϑj for the selected statement αj . For this,
it suffices to show that there are at least rj agents in Sj with utility at least ϑj for αj , i.e., that
|supp (αj , ϑj |Sj)| ≥ rj . First, observe that we defined rj such that we always have |Sj | ≥ rj , since∑

1≤j≤k

rj ≤ k ⌊n ( 1
k − 2ϵ)⌋+

(
n− k ⌊n ( 1

k − 2ϵ)⌋
)
≤ n.

Secondly, in the edge case where |Yj | < r̄x, we have, by its definition in Process 3, ϑj = −∞ and
hence the requirement is trivially satisfied. In the more interesting case of |Yj | ≥ r̄x, the same
definition implies that:

|supp (αj , ϑj |Yj)| ≥ r̄x.
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By applying our assumption of Eq. (10), it follows that:
1
n
|supp (αj , ϑj |Sj)|+ ϵ ≥ r̄x

nx

and thus that

|supp (αj , ϑj |Sj)| ≥ n ·
(

r̄x

nx
− ϵ

)
= r̄.

Since the left-hand-side is an integer and rj ≤ ⌈r̄⌉, it follows that

|supp (αj , ϑj |Sj)| ≥ rj (12)

as desired.

Step 3. We can now finally show that the algorithm satisfies BJR. Let the matching ω be such that,
for all rounds j ∈ {1, . . . , k} and agents i ∈ Tj , we have ω(i) = αj . Note that any two Tj , Tj′ differ
in size by at most 1, hence clearly the balancing condition (i.e., |{i : ω(i) = w}| ∈ {⌈n/k⌉, ⌊n/k⌋} for
all w ∈Wk) can be satisfied by assigning the remaining agents in Sk+1 appropriately to statements
in Wk. Having defined a balanced matching ω, consider a coalition S ⊆ N of size ≥ n/k, a candidate
α ∈ U , and a ϑ ∈ R such that ui(α) ≥ ϑ for all i ∈ S.

The number of agents remaining after the k iterations satisfies |Sk+1| < n/k, hence S ̸⊆ Sk+1.
To see this, consider the number of agents, rj , removed in each round. During

max {min {n− k ⌊r̄⌋ , k} , 0}

rounds, we remove ⌈r̄⌉ agents per round, and for the remaining rounds we remove ⌊r̄⌋ agents per
round. It follows that in average, we remove min

{
n
k , ⌈r̄⌉

}
agents per round. It is easy to verify that

min
{

n
k , ⌈r̄⌉

}
≥ r̄, hence

|Sk+1| ≤ n− kr̄ = 2 · k · n · ϵ = n

2k
.

This means that for some iteration q ∈ [k] we have S ∩ Tq ̸= ∅. Let q be the iteration where this
happens the first time, which implies that S ⊆ Sq and thus that

n

k
≤ |supp (α, ϑ|S)|

≤ |supp (α, ϑ|Sq)| ,

or, equivalently, that
1
k
≤ 1

n
|supp (α, ϑ|Sq)| .

Assuming Eq. (10), which holds with probability at least 1− δ as established in the first step, it
follows that

1
k
− ϵ ≤ 1

nx
|supp (α, ϑ|Yq)| ,

or, equivalently, that

r̄x ≤ |supp (α, ϑ|Yq)| .

Hence, α is a candidate in the definition of αq as expressed in Eq. (9). Therefore, it must be that
ϑq ≥ ϑ. As shown in the second step, all agents in i ∈ Tq have utility ui(αq) ≥ ϑq ≥ ϑ. Since at
least one agent i ∈ S is in Tq, we have ϑ ≤ ui(αq) = ui(ω(i)), which means that there can be no
violation of BJR.
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C Deferred Details About Pilot

C.1 Representativeness of the Samples

White
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White
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Black
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White
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51%

Male

49%
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18-27
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28-37
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48-57

16%

58+

33%

Age Group (validation sample)

Figure 6: Demographic composition of both samples, compared to the US population as of the 2020
census. Racial and age groups are as defined by Prolific.

As shown in Figure 6, both samples closely reflect the composition of the US population in
terms of race, sex, and age groups. In fact, the sample is not just representative along sex and age
groups, but also within all intersection groups of sex and age. Since we adopt Prolific’s categories
for race and age, we are not aware of how many respondents identify as Hispanic or Latino. Though
Prolific’s highest age category (“58+”) is quite broad, we find that older residents within this age
bracket are also accurately represented: our generation and validation samples respectively contain
15% and 16% respondents aged 68 and older, compared to a share of 17% in the adult population
according to the 2020 census.
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C.2 Generated Slate

The generated slate contains the following five statements. We highlight key points in color,
corresponding to the three themes identified in Section 5.2 — privacy and data security, user
control, and truthfulness.

S1. The most important rule for chatbot personalization is to give users control over the
extent of personalization and the data supplied. This rule is crucial as it ensures user
autonomy, privacy, and a personalized experience. For instance, a user could choose to share
their dietary preferences with a health chatbot for tailored advice, while opting not to disclose
sensitive health data.

S2. The most important rule for chatbot personalization is to always give users the choice
whether the AI chatbot can remember their data or not. This rule is crucial because
it respects the user’s privacy and gives them control over their own data. For instance,
a user might prefer a chatbot not to store any data about their past travels, thus avoiding
unsolicited vacation suggestions.

S3. The most important rule for chatbot personalization is to always prioritize user privacy and
data security. This is crucial because it ensures the protection of sensitive user information,
thereby building trust and promoting responsible AI use. For instance, a chatbot providing
personalized health advice should only collect and use data with explicit user consent,
and should implement robust measures to prevent unauthorized access or data breaches.

S4. The most important rule for chatbot personalization is to avoid providing false or mislead-
ing information. This rule is crucial because it ensures the reliability and trustworthiness of
the chatbot, which is essential for user engagement and satisfaction. For instance, if a user
asks a chatbot for medical advice, providing accurate information could potentially save lives.

S5. The most important rule for chatbot personalization is to emphasize privacy and require
user consent for data collection. This rule is crucial to ensure personal security and
mental health protection. For instance, a health bot providing personalized services can offer
tailored care, but without proper privacy measures, it risks violating user privacy.

All statements were generated by the nearest-neighbor heuristic, which proves highly effective,
except for statement S3, which resulted from applying the LLM prompt to all 60 remaining agents.25

Among the selected statements, all statements except for S2 were added to the pool of candidates in
the round in which they were selected, which demonstrates that generation is responsive to which
agents have been removed from consideration.

In the body of the paper, we have already mentioned the striking prevalence of the combination
of privacy and data security and user control across four statements — S1, S2, S3, and S5. Before
we investigate this repetition in more detail in Appendix C.3, we want to highlight that these four
statements, while aligned in their high level themes, connect them in different ways and emphasize
different nuances. For instance, statement S5’s concern about privacy and user control is justified by
security and mental health concerns, which is much more specific than the more generic justification
of, say, S2. Another interesting statement is S1, in which privacy appears only as one out of multiple
underlying values served by user control, and which stresses not just user control at the time of data
collection, but also control about the level of personalization when the chatbot is subsequently used.
As we will see in Figure 5, participants frequently rate their agreement with the four statements in
the cluster quite differently.

25Statement S1 was generated by adding s = 10 neighbors, whereas S2, S4, and S5 were generated for s = 5. Only S4
resulted from a randomly subsampled pool (retaining 20 of the then-remaining 40 agents). The sampling temperature
for S3 was 0.
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The theme, of truthfulness of statement S4 was not brought up by our introductory materials
either. That being said, one of our expository scenarios touched on a related point by asking if a
chatbot should deliver distressing information in a gentler manner to a depressed user. Statement
S4 does not take a position on this specific question, but sets a clear boundary on how far the
chatbot might go to accommodate the user’s presumed vulnerability. (The statement does not rule
out that the chatbot might decline to answer in this situation.)

C.3 Does the Slate Represent the Generation Sample?

Given the novelty of our process, and the central role of LLMs in it, we need to thoroughly verify that
our slate indeed faithfully represents participant opinions rather than being based on hallucinations
by the LLM. In part, this concern is addressed by the analysis in Section 5.2, which shows that a
fresh sample of participants indeed feels accurately represented by the statements on our slate.

In this section, as an orthogonal analysis, we manually inspect and hand-label the responses
of our generation sample to trace how our process arrived at the slate starting from participants’
statements. Reassuringly, we find that privacy and data security and user control are indeed central
themes in people’s free-form opinion statements: 61 of the 100 participants touch on privacy and
data security in their statements, 38 suggest user control, and 72 bring up at least one of these
two topics. Though we have not attempted to systematically label all recurring themes in the
survey responses, privacy and data security is certainly one of the most prevalent themes, and quite
likely the most prevalent one.26 That the themes of privacy and user control are so prevalent is
particularly noteworthy because no part of our introductory materials primed participants towards
these topics to our understanding — participants instead independently arrived at these points.

The number of 72 participants who touched on privacy and data security and user control alone
can plausibly justify that these themes take up 80% of the slate. Moreover, this number does not
yet count agents who expressed agreement with these themes outside of the free-form responses.
Indeed, the six statements we show to the generation sample include a statement that touches on
user control:

“The most important rule for chatbot personalization is to always offer an opt-out.
Mandatory personalization disregards user autonomy. For example, a person might not
want location-based suggestions just because they mentioned a city once.”

This statement received high ratings among participants of the generation sample: 49 of them
rated this statement as “perfectly” capturing their opinion, 76 participants rated this statement as
“perfectly” or “somewhat” capturing their opinion, and only 3 participants rated this statement as
capturing their opinion “poorly” or “not at all”.27 Furthermore, this statement from the generation
round does not yet touch on the (frequently mentioned) topic of privacy, whose addition might
further enhance a statement’s appeal. In light of these observations, representing 80% of agents
with a statement about privacy and data security and user control seems like a reasonable choice.

26By comparison, truthfulness was mentioned by 48 participants (among which 32 also mention at least one out of
privacy and data security and user control), and 35 participants mention concerns that information from the chatbot
could lead to direct harm (either because false information leads to harm, or because the information supports the
user in harmful actions such as criminal activity).

27These ratings in the generation sample are not directly comparable with the ratings of the validation sample,
since participants in both surveys have been primed quite differently. By the time we ask the participants of the
generation round to rate this statement, they have spent considerable time in the survey considering specific scenarios
and describing their opinions in free text. By contrast, participants in the validation sample have only been exposed
to the introductory text about chatbot personalization.
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D Prompts
Discriminative queries. We implement our discriminative queries using fewshot prompting: the
LLM is given example rating behavior of a user in the prompt, and is tasked with predicting the
rating of a different statement. Our prompt follows the following template:

"""{“FREEFORM_RESPONSES": $your_opinion_dict,
“RATING_RESPONSES": $rating_summary_statements_dict"""

The placeholder $your_opinion_dict contains the user’s free-text responses to the survey
questions labeled “Your Opinion” (with questions as keys and responses as values), and the place-
holder $rating_summary_statements_dict contains the user’s responses to the survey questions
labeled “Rating Summary Statements” (with questions as keys and dictionaries containing user
ratings and free-text explanations as values). See Appendix E for the full text of each survey question.

Below is an excerpt from a discriminative query prompt.

{
"FREEFORM_RESPONSES": {

"<h2>Your Opinion</h2>
<p>In your opinion, what are the trade-offs of personalizing versus
not personalizing chatbots? To illustrate these trade-offs, please
give two new example scenarios and discuss for each of them what the
advantages and drawbacks of a personalized chatbot-answer would be.</p>":
"Personalizing chat bot can’t be negative...",

"<h2>Your Opinion</h2>
<p>Suppose that you had the power of designing the rules for chatbot
personalization that all chatbot companies would have to follow. What
would these rules be? In what cases should/shouldn’t chatbots give
personalized answers?</p>
<p>Please put particular emphasis on rules you consider important but
<strong>other people may not have thought of or may not agree with</strong>.</p>":
"Chatbot rules should follow...",

<More questions here>
},
"RATING_RESPONSES": {

"Consider the following statement: ’The most important rule for chatbot
personalization is to adhere to stringent political correctness. Any
deviation could cause significant reputational damage to the company.
Imagine a chatbot making a culturally insensitive joke based on user history.’
To what extent does this statement capture your full opinion regarding chatbot
personalization? Your choices are:
0 : not at all,
1 : poorly,
2 : somewhat,
3 : mostly,
4 : perfectly.
Briefly explain your choice.": {
"choices": ["not at all", "poorly", "somewhat", "mostly", "perfectly"],
"choice_numbers": [0, 1, 2, 3, 4],
"choice_number": 0,
"choice": "not at all",
"explanation": "I think ..."

},
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<More questions here>

{"The most important rule for chatbot personalization
is to never deny a user’s request. This ensures the chatbot maintains its
functionality and avoids accusations of misinformation. For example, providing
requested food information instead of withholding it due to an assumption about
the user’s health would maintain trust and usability.", {
"choices": ["not at all", "poorly", "somewhat", "mostly", "perfectly"],
"choice_numbers": [0, 1, 2, 3, 4],
"choice_number":

Generative queries. We set the system prompt of GPT-4-32k as follows:

In the following, I will show you a list of users and their opinions regarding chatbot
personalization. The users are divided into subgroups, each of about equal size, with
distinct views on what the most important rules are for chatbot personalization. Identify the
most salient one among these distinct views. Write a statement ADVOCATING FOR THIS
SPECIFIC VIEW ONLY, NOT A SUMMARY OF ALL VIEWS. Start the statement with ’The most
important rule for chatbot personalization is’. GIVE A SINGLE, CONCRETE RULE. Then, in a
second point, provide a justification why this is the most important rule. Then, give a
CONCRETE example of why this rule would be beneficial. Write no more than 50 words.

The main text of the prompt consists of a list of dictionaries, each corresponding to a user and
containing their ID and a LLM-generated summary of their opinions. Below we give a skeleton for
this prompt.

"[{“user_id": prolific user id, “statement": LLM-generated summary of user’s opinions },
{“user_id": prolific user id, “statement": LLM-generated summary of user’s opinions },
more users’ data,
{“user_id": “subgroup", “statement":

E Survey Questions
Below are the full question prompts of the two Prolific surveys we ran.

E.1 Generation Survey

Informed Consent

What should I know about a research study? Whether or not you take part is up to you. You can
change your mind about participating at any time. However, you need to complete the survey to
receive payment.

What is the purpose of this research? This research investigates the role that artificial intelligence
(AI) can play in facilitating and summarizing conversations in large groups. The hope is that AI
models, such as GPT-4, can improve the way we make decisions in large groups. We also hope to
learn what people like you think about how AI model should behave.

How long will the research last and what will I need to do? We expect that you will be in this
research study for well below an hour. We will ask you a number of questions about your opinions
on what artificial intelligence should or should not be allowed to do. We will ask you how you
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believe a chatbot system should behave in certain scenarios, and we will ask what you think about
the opinions formulated by fellow participants of the study.

Who will see your responses? The data you provide will be anonymized immediately. We may later
on publish this anonymous data. We might also show some of your responses to other participants
to learn if they feel similarly or differently about the topic. By continuing this survey, you agree to
this use of your responses.

Is there any way being in this study could be bad for me? We don’t believe there are any risks from
participating in this research, unless you do not wish to discuss political topics.

Will being in this study help me in any way? There are no benefits to you from your taking part in
this research. Possible benefits to society include an enhanced understanding of how AI can be used
for democracy.

What else do I need to know? This research is funded by the Harvard John A. Paulson School of
Engineering and Applied Sciences and a grant from OpenAI.

How will I be compensated? As we showed you on Prolific, you will receive a flat payment for your
participation in the survey (aiming for an hourly compensation of $10-$15/hour). If we indicate so
in the survey, you may receive additional bonus payments. If you do not fill out the questions in
good faith, we reserve the right to withhold payment, in accordance with Prolific rules.

Background on Chatbots

You might have heard about new chatbots such as “ChatGPT”. Think of a chatbot as a website
that uses artificial intelligence (AI) to mimic human conversation through text. The following is an
example of a user asking ChatGPT a question:

“Many people use them to obtain information (for example by asking ‘What are the most
famous things to see in Chicago?’), edit text (for example: ‘Make this email sound more
professional.’), or get advice (for example: ‘What should I think about before buying a
new car?’).”

Many people believe that chatbots will soon be used in many parts of our lives.

Background on Chatbot Personalization

Current chatbots don’t remember past conversations with you and don’t use personal information
about you. They only remember what you wrote inside the chat window that you are using at that
time. Some people believe that chatbots could be more helpful if they were personalized. This
means that the chatbot could tailor its answers based on previous conversations you had with
it, along with other information it might have about you, such as where you live or how old you
are. Other people believe that such personalization could be risky. We will now describe to you 3
example scenarios for how chatbots might be personalized in the future.
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Example Scenarios

A user asks a chatbot:
“Give me the news highlights from last week.”

The chatbot knows from previous interactions that the user leans towards one political party and
primarily reads news from outlets that support that party’s viewpoint. Should the chatbot focus on
news from such outlets?
Please give us your thoughts in a sentence or two.

Example Scenarios

A user asks a chatbot:
“Tell me about World War 2.”

Based on previous conversations, it appears that the user suffers from depression. To avoid distressing
the user, should the chatbot approach the topic in a more gentle manner than it usually would?
Please give us your thoughts in a sentence or two.

Example Scenarios

A female user asks a chatbot:
“Should I have red or white wine with fish?”

In recent conversations, the user has mentioned experiencing nausea and fatigue, which could be
early signs of pregnancy. If the user is indeed pregnant, it is recommended not to drink alcohol.
Should the chatbot bring up this possibility?
Please give us your thoughts in a sentence or two.

Overview

There are two parts remaining in this survey:
• First, we will ask you 5 questions to understand your opinion regarding chatbot personalization

in depth.
• Then, in the last part of the survey, we will ask you to rate other opinions.

These are the most important parts of the survey. As mentioned, we will reward thoughtful answers
with a bonus $2.

Your Opinion

In your opinion, what are the trade-offs of personalizing versus not personalizing chatbots? To
illustrate these trade-offs, please give two new example scenarios and discuss for each of them what
the advantages and drawbacks of a personalized chatbot-answer would be.

Your Opinion

Suppose that you had the power of designing the rules for chatbot personalization that all chatbot
companies would have to follow.
What would these rules be? In what cases should/shouldn’t chatbots give personalized answers?
Please put particular emphasis on rules you consider important but other people may not have
thought of or may not agree with.
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Your Opinion

Suppose you had to convince others of your proposed rules, what would be your strongest arguments?

Your Opinion

What would be the strongest argument against your rules, and how would you address it?

Your Opinion

Are there any questions you would have liked to ask an expert to help you come up with your rules?
Which ones?

Rating Summary Statements

This is the last part of the survey. To summarize the opinions you and other participants expressed in
this survey, we will write a handful of summary-statements, each representing a group of people. To
find a good summary-statement for you, we will now ask you to rate 6 potential summary-statements.

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to always offer an opt-out.
Mandatory personalization disregards user autonomy. For example, a person might not
want location-based suggestions just because they mentioned a city once.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to remain purely factual, foregoing
any emotional or social inferences. Personal touches may muddle the information. For
example, a user asking about divorce laws probably isn’t seeking relationship advice.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is complete avoidance; it’s a ticking
time bomb for privacy invasion. For example, a chatbot revealing someone’s sexual
orientation could be life-threatening in certain countries.”
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To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to make it hyper-personalized
to the extent of predicting user needs. For instance, if I often ask for jokes when I’m
down, the chatbot should initiate humor during my low moments.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to adhere to stringent political
correctness. Any deviation could cause significant reputational damage to the company.
Imagine a chatbot making a culturally insensitive joke based on user history.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to never assume preferences
based on demographics; it’s a form of soft discrimination. For instance, recommending
hip-hop tracks to someone based solely on their ethnicity could be problematic.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

E.2 Validation Survey

Informed Consent

What should I know about a research study? Whether or not you take part is up to you. You can
change your mind about participating at any time. However, you need to complete the survey to
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receive payment.

What is the purpose of this research? This research investigates the role that artificial intelligence
(AI) can play in facilitating and summarizing conversations in large groups. The hope is that AI
models, such as GPT-4, can improve the way we make decisions in large groups. We also hope to
learn what people like you think about how AI model should behave.

How long will the research last and what will I need to do? We expect that you will be in this
research study for well below an hour. We will ask you a number of questions about your opinions
on what artificial intelligence should or should not be allowed to do. We will ask you how you
believe a chatbot system should behave in certain scenarios, and we will ask what you think about
the opinions formulated by fellow participants of the study.

Who will see your responses? The data you provide will be anonymized immediately. We may later
on publish this anonymous data. We might also show some of your responses to other participants
to learn if they feel similarly or differently about the topic. By continuing this survey, you agree to
this use of your responses.

Is there any way being in this study could be bad for me? We don’t believe there are any risks from
participating in this research, unless you do not wish to discuss political topics.

Will being in this study help me in any way? There are no benefits to you from your taking part in
this research. Possible benefits to society include an enhanced understanding of how AI can be used
for democracy.

What else do I need to know? This research is funded by the Harvard John A. Paulson School of
Engineering and Applied Sciences and a grant from OpenAI.

How will I be compensated? As we showed you on Prolific, you will receive a flat payment for your
participation in the survey (aiming for an hourly compensation of $10-$15/hour). If we indicate so
in the survey, you may receive additional bonus payments. If you do not fill out the questions in
good faith, we reserve the right to withhold payment, in accordance with Prolific rules.

Who can I talk to? If you have questions, concerns, or complaints, or think the research has hurt
you, you may talk to the research team at gilirusak@g.harvard.edu.

Background on Chatbots

You might have heard about new chatbots such as “ChatGPT”. Think of a chatbot as a website
that uses artificial intelligence (AI) to mimic human conversation through text. The following is an
example of a user asking ChatGPT a question:

“Many people use them to obtain information (for example by asking ‘What are the most
famous things to see in Chicago?’), edit text (for example: ‘Make this email sound more
professional.’), or get advice (for example: ‘What should I think about before buying a
new car?’).”

Many people believe that chatbots will soon be used in many parts of our lives.
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Background on Chatbot Personalization

Current chatbots don’t remember past conversations with you and don’t use personal information
about you. They only remember what you wrote inside the chat window that you are using at that
time. Some people believe that chatbots could be more helpful if they were personalized. This
means that the chatbot could tailor its answers based on previous conversations you had with
it, along with other information it might have about you, such as where you live or how old you
are. Other people believe that such personalization could be risky. We will now describe to you 3
example scenarios for how chatbots might be personalized in the future.

Rating Summary Statements

This survey consists of only 5 questions. In each of these questions, we will show a statement about
chatbot personalization. We will ask you to rate how well each statement captures your opinion
and to explain your rating. Since we will only ask you these 5 questions, please take the time to
answer them carefully.

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to always give users the choice
whether the AI chatbot can remember their data or not. This rule is crucial because it
respects the user’s privacy and gives them control over their own data. For instance, a
user might prefer a chatbot not to store any data about their past travels, thus avoiding
unsolicited vacation suggestions.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to always prioritize user privacy
and data security. This is crucial because it ensures the protection of sensitive user
information, thereby building trust and promoting responsible AI use. For instance,
a chatbot providing personalized health advice should only collect and use data with
explicit user consent, and should implement robust measures to prevent unauthorized
access or data breaches.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly
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Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to emphasize privacy and require
user consent for data collection. This rule is crucial to ensure personal security and
mental health protection. For instance, a health bot providing personalized services can
offer tailored care, but without proper privacy measures, it risks violating user privacy.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to avoid providing false or
misleading information. This rule is crucial because it ensures the reliability and
trustworthiness of the chatbot, which is essential for user engagement and satisfaction.
For instance, if a user asks a chatbot for medical advice, providing accurate information
could potentially save lives.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly

Rating Summary Statements

Consider the following statement:

“The most important rule for chatbot personalization is to give users control over the
extent of personalization and the data supplied. This rule is crucial as it ensures user
autonomy, privacy, and a personalized experience. For instance, a user could choose to
share their dietary preferences with a health chatbot for tailored advice, while opting
not to disclose sensitive health data.”

To what extent does this statement capture your full opinion regarding chatbot personalization?
Briefly explain your choice.

Choices: not at all, poorly, somewhat, mostly, perfectly
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