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Abstract

In voting theory, when voters have ranked preferences over candidates, the cele-
brated Gibbard-Satterthwaite Theorem essentially rules out the existence of rea-
sonable strategyproof methods for picking a winner. What if we weaken strat-
egyproofness to only hold for Bayesian voters with beliefs over others’ prefer-
ences? When voters believe other participants’ rankings are drawn independently
from a fixed distribution, the impossibility persists. However, it is quite reason-
able for a voter to believe that other votes are correlated, either to each other or to
their own ranking. We consider such beliefs induced by classic probabilistic mod-
els in social choice such as the Mallows, Placket-Luce, and Thurstone-Mosteller
models. We single out the plurality rule (choosing the candidate ranked first most
often) as a particularly promising choice as it is strategyproof for a large class of
beliefs containing the specific ones we introduce. Further, we show that plurality
is unique among positional scoring rules in having this property: no other scoring
rule is strategyproof for beliefs induced by the Mallows model when there are a
sufficient number of voters. Finally, we give examples of prominent non-scoring
voting rules failing to be strategyproof on beliefs in this class, further bolstering
the case for plurality.

1 Introduction

One of the most celebrated results in voting theory is the Gibbard-Satterthwaite Theorem [8, 22]. It
states that when voters express ordinal preferences over at least 3 candidates, there is no “reason-
able” aggregation rule that is strategy-proof : there will always exist instances where voters will be
incentivized to manipulate and lie about their preferences to achieve a better outcome.

However, one caveat about this strong negative result is that, a priori, a voter may need perfect infor-
mation about how others vote to manipulate successfully. Perhaps, if the voter is slightly uncertain,
no manipulation helps consistently enough to be worthwhile. Majumdar and Sen [13] analyzed
exactly this question when voters have independent beliefs. That is, when a voter is considering
whether or not to manipulate, they assume all others have rankings drawn independently from a
fixed distribution. The classic notion of strategyproofness no longer makes sense in this probabilis-
tic Bayesian setting, so they instead use the natural extension known as ordinally Bayesian incentive
compatible (OBIC), essentially that the rules are strategyproof in expectation no matter what un-
derlying cardinal values voters have. Their results, unfortunately, are widely negative. They show
that for a “large” set of distributions, Gibbard-Satterthwaite still holds. There do exist distributions
where many rules are OBIC, e.g., the uniform distribution over all rankings. Still, these positive
examples are extremely brittle: even a slight perturbation leads back to the impossibility.



But independent beliefs are quite restrictive. They cannot capture several kinds of beliefs that would
likely occur in practice. For one, when the number of voters is large, the uncertainty essentially
vanishes. Suppose a distribution places probability 1/4 on other voters having the ranking a ≻ b ≻
c. In that case, when the number of voters is large, it is extremely unlikely that the proportion of
voters with this ranking is anything other than 1/4 ± ε. In a real presidential election, a voter may
quite plausibly believe that a candidate will receive anywhere between 45% and 55% of the votes,
but this situation simply cannot be captured by a single independent ranking distribution. Second,
one’s own ranking may influence the probability placed on others. Suppose a voter, after much
research, discovers that they prefer one proposal to another; they may reasonably believe others
are clever enough to have reached a similar conclusion. In terms of their beliefs, they may place a
slightly higher probability on others voting more similarly to them than not, no matter what their
realized preferences are.

This has led follow-up work to consider the same question under correlated beliefs [1, 16, 14, 2].
However, besides some impossibilities, the work so far has largely been of the following form: for
any reasonable voting rule, there exists a set of beliefs where the rule is OBIC. But perhaps the
more natural direction is the converse: under a natural set of beliefs, is there a reasonable voting
rule that is consistently OBIC? Can this property help us distinguish between voting rules, showing
that under some reasonable beliefs, certain rules are not OBIC, thereby bolstering the case for the
provably incentive-compatible ones? These are the questions we tackle.

Our contributions. We begin by presenting various classes of beliefs induced by classic proba-
bilistic social choice models such as the Mallows [15], Thurstone-Mosteller [23, 18], and Placket-
Luce [20, 12] models. In essence, these are the beliefs a voter would have if they assume that voter
preferences were generated by such a model. Inspired by these models, we present a novel class
of mildly correlated beliefs that includes all of them. We show that, under this class of beliefs, the
plurality rule is OBIC.

Next, we provide a negative result: Among positional scoring rules (where each voter assigns a fixed
score to each position in their ranking), plurality is unique in being OBIC when voters have Mallows
beliefs. All other rules will become not OBIC when there are three candidates, at least when there
are a sufficient number of voters. In addition, we provide some robustness checks on this negative
result. A popular positional scoring rule known as Borda Count fails for any number of voters. By
contrast, we identify other positional scoring rules that are OBIC with two voters, meaning our result
could not be strengthened by relaxing the sufficient number of voters requirement.

Finally, we complement this more sweeping classification with examples of other prominent rules,
such as Copeland and maximin, which fail to be OBIC with specific Mallows beliefs and few voters.
This further bolsters the case for plurality as an unusually attractive rule when viewed through the
lens of ordinal Bayesian incentive compatibility under correlated beliefs.

Related work. As mentioned above, the analysis of OBIC voting rules began with Majumdar and
Sen [13] essentially providing the final word on independent beliefs; their notion of OBIC dates
back to work on committee selection [5].

Since then, there have been a few lines of work on correlated beliefs with slightly different goals.
The most closely related is that of Majumdar and Sen [14]. They define a large class of positively
correlated beliefs based on the Kemeny metric and then show in a similar fashion to the Gibbard-
Satterthwaite Theorem that any voting rule that is OBIC with respect to these beliefs, along with
being Pareto efficient, is necessarily dictatorial. They do present one voting rule that is both OBIC
with respect to these beliefs and nondictatorial (while not being Pareto efficient), but it is a clearly
impractical rule that is designed to make a technical point.1 Note that all the rules we consider are
Pareto efficient.

Another line of work considers local OBIC. A voting rule is locally OBIC with respect to a class of
beliefs if there exists a belief in the class such that any belief in a neighborhood of the original is
OBIC. This means the rule remains OBIC even after a slight perturbation to the underlying belief.
Bhargava et al. [1] and Bose and Roy [2] attempt to classify the set of locally OBIC voting rules with

1Their rule is called Unanimity with Status Quo . There is one default candidate x. If there is a candidate y
which every single voter places as their top choice, then y is elected, but in any other case, x wins.
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respect to a large class of correlated beliefs and show that under minimal conditions, this requirement
can be satisfied.

Mandal and Parkes [16] consider a different notion of incentive compatibility which, rather than
requiring that no manipulation can lead to a utility gain in expectation, bounds the probability under
which there is a utility gain. They again do this with respect to several different classes of beliefs,
including one that we consider based on the Mallows Model.

Further afield, there are extensive lines of research on circumventing the Gibbard-Satterthwaite The-
orem. We provide examples of three here, although there are many others. One line considers the
complexity, showing that some rules, while in principle susceptible to manipulation, have instances
where it is hard (in the worst case) to find such a manipulation [7, 3]. Another considers strate-
gyproofness under restricted domains, where a voter’s set of possible rankings is limited [7, 3]. A
third considers the likelihood of an individual arriving in an instance where they are able to manip-
ulate at all [17, 25].

Finally, without considering strategyproofness, there has been much work on probabilistic social
choice, making use of the models on which our results are based, especially in learning preferences
from data [11, 24, 10, 19].

2 Model

We begin by introducing the classic social model and then later describe relevant definitions for
social choice under uncertainty.

Classic social choice model. Let N = {1, . . . , n} be a set of n voters, and let A = {a1, . . . , am}
be a set of m alternatives. Let L be the set of rankings over A, where for σ ∈ L, σ(j) is the j’th
candidate in ranking σ and σ−1(a) is the ranking index of candidate a. We use the notation a ≻σ b
to denote that σ−1(a) < σ−1(b) and a ⪰σ b to denote σ−1(a) ≤ σ−1(b), i.e., a is strictly (or
weakly) preferred to b under σ. Additionally, instead of writing σ = a ≻ b ≻ c, when it is clear
from context, we will sometimes shorten this to σ = abc. Each voter i has a ranking σi ∈ L and the
tuple of these rankings σ = (σ1, . . . , σn) ∈ Ln is called the preference profile . We let σ−i ∈ Ln−1

denote the profile without voter i, and for a ranking σ′
i ∈ L, we let (σ−i, σ

′
i) be the profile with σi

replaced with σ′
i.

A voting rule is a function f that, given a profile σ, outputs a distribution over winning alternatives.
We define several voting rules of interest here. Our theoretical results will primarily focus on posi-
tional scoring rules [26]. A positional scoring rule f is parameterized by a vector of (s1, . . . , sm)
where each sj ∈ Z≥0 with s1 ≥ · · · ≥ sm and s1 > sm. On a profile σ, for each voter i, their
j’th candidate σi(j) is given sj points. The points are added up over all voters, and the winning
candidate is the one with the most points. More formally, for a ranking σ ∈ L and candidate c ∈ A,
we write SCf

c (σ) = sσ−1(c) for the points (or score) given to c by σ. For a profile σ, we write
SCf

c (σ) =
∑

i SCf
c (σi) to be the total points. When f is clear from context, we may drop it from

the notation. In deterministic settings, when there is a tie, a tie-breaking rule needs to be given (i.e.,
tie-break in favor of lower index candidates). Since we will be working in a probabilistic setting, it
will be more convenient to assume uniform random tie-breaking, so that if there is a tie among k
candidates, each wins with probability 1/k. However, our results would continue to hold even with
arbitrary deterministic choices. Two rules of particular interest are plurality, parameterized by the
vector (1, 0, . . . , 0), and Borda count, parameterized by the vector (m− 1,m− 2, . . . , 1, 0).

We consider two additional rules beyond positional scoring rules, Copeland and maximin. To define
them, for a profile σ we define the pairwise margin for two candidates a and b, Nab(σ) = |{i|a ≻i

b}|, i.e., the number of voters that prefer candidate a to candidate b.

For Copeland, we define the Copeland score for a candidate a as
∑

b ̸=a I[Nab(σ) > n/2] +

(1/2)I[Nab(σ) = n/2]. In words, the candidate gets one point for every other candidate they
pairwise beat and a half point for every other candidate they pairwise tie. The Copeland winners
are those with the highest Copeland scores (with uniform tie-breaking). For maximin, we define
the maximin score for a candidate a as minb̸=a Nab(σ), i.e., the smallest margin by which a beats
another candidate. Again, the maximin winners are those with the highest maximin scores (with
uniform tie-breaking).
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A voting rule f is called strategy-proof if for all profiles σ, all voters i, and all alternative manip-
ulations σ′

i ∈ L, f(σ) ⪰σi f(σ−i, σ
′
i). That is, no voter can ever improve the outcome of the

vote by misreporting. A rule is called onto if for all candidates a ∈ A, there is a profile σ where
f(σ) = a, and is called dictatorial if there is a voter i for which f(σ) = σi(1), i.e., voter i always
gets their top choice. The Gibbard-Satterthwaite Theorem states that any rule for m ≥ 3 candidates
that is strategy-proof and onto is necessarily dictatorial. Since “reasonable” rules must be onto and
nondictatorial, this eliminates the possibility of any being strategy-proof.

These notions can also be extended to randomized rules. A utility function u is a mapping from
candidates to real numbers. We say that u is consistent with a ranking σ if u(x) > u(y) ⇔ x ≻σ

y. A (randomized) voting rule f is called SD-strategy-proof if for all profiles σ, all voters i, all
manipulations σ′

i, and all utility functions u consistent with σi, E[u(f(σ))] ≥ E[u(f(σ−i, σ
′
i))].

This says that no matter what underlying utilities an agent has, as long as they are consistent with
their ranking, they cannot improve their expected utility by manipulation. An equivalent definition
can be given with respect to stochastic dominance (hence the SD in the name). For k ≤ m, let
Bk(σ) = {σ(1), . . . , σ(k)} be the set of the k best alternatives according to σ. Then, SD-strategy-
proofness can be rephrased as requiring that for all profiles σ, all voters i, all manipulations σ′

i, and
all k ≤ m, Pr[f(σ) ∈ Bk(σi)] ≥ Pr[f(σ−i, σ

′
i) ∈ Bk(σi)].

We say a rule f is unilateral if it depends only on a single voter, i.e., there is a voter i such that
for all σ and σ′, if σi = σ′

i, then f(σ) = f(σ′). A rule f is called a duple if its range is two
candidates, i.e., there is a pair of candidates a and b such that for all σ, f(σ) ∈ {a, b}. Gibbard
[9] extended the Gibbard-Satterthwaite theorem to randomized rules as follows: Any randomized
rule f that is strategyproof is a mixture over unilateral and duple rules. Since unilateral and duple
rules are seen as undesirable, this implies that finding a reasonable, strategy-proof voting rule, even
allowing randomization, is a hopeless endeavor.

Social choice under uncertainty. A belief for voter i is a probability measure Pi over the set of
profiles Ln (when the i is clear from context we will drop it from the notation). This describes
i’s prior probability over profiles before considering their own ranking. After observing their own
ranking σ̂i, the voter can update their posterior using the conditional distribution P[· | σi = σ̂i]. For
notational convenience, we will often shorten this to P[· | σ̂i].

In this model, we need a slightly different notion of strategyproofness. A voting rule is called ordi-
nally Bayesian incentive compatible (OBIC) with respect to a beliefs (P1, . . . ,Pn) if for all voters i,
all rankings σ̂i, all manipulations σ′

i, and all utility functions u consistent with σ̂i, E[u(f(σ−i, σ̂i)) |
σ̂i] ≥ E[u(f(σ−i, σ

′
i) | σ̂i]. This is the natural generalization of SD-strategyproofness to a Bayesian

setting. Just as with SD-strategyproofness, an equivalent definition is for all voters i, all rankings σ̂i,
all manipulations σ′

i, and all k ≤ m, P[f(σ−i, σ̂i) ∈ Bk(σ̂i) | σ̂i] ≥ P[f(σ−i, σ
′
i) ∈ Bk(σ̂i) | σ̂i].

We now present a few possible choices of “reasonable” priors based on well-known probabilistic
models of social choice. The first is based off of a Mallows Model [15]. This model is parameterized
by a ground truth ranking τ ∈ L and a dispersion quantity φ. We define the Kendall tau distance
between rankings d(σ1, σ2) = |{(a, b) ∈ A2|a ≻σ1

b ∧ b ≻σ2
a}|, i.e., the number of pairs

of candidates on which σ1 and σ2 disagree. In a Mallows Model, each voter’s ranking is drawn
independently with probability proportional to φd(σ,τ). More formally, the probability that a specific
ranking σ is drawn is equal to φd(σ,τ)

Z where Z =
∑

σ∈L φd(σ,τ) is the normalizing constant. One
can easily check that if we extend the notion of Kendall tau distance to operate on a profile and a
ranking, with d(σ, τ) =

∑
i d(σi, τ), then the probability of sampling a profile σ is proportional to

φd(σ,τ) (this time with a Zn normalizing constant).

We convert this model into a prior in two ways. The first we call a confident Mallows prior param-
eterized by φ. The agent assumes a ground truth τ is first drawn from some (arbitrary) distribution,
then, given this ground truth, σi = τ with probability 1 and the remainder of the profile σ−i is
drawn from a Mallows Model with a fixed φ using τ . Essentially, the agent believes that they cor-
rectly know the ground truth, but all others only approximate this truth using a Mallows Model.
The conditional distribution over the remainder of the profile σ−i given σ̂i then follows a standard
Mallows model with the ground truth equal to σ̂i, so P[σ−i | σ̂i] ∝ φd(σ−i,σ̂i).2

2This is equivalent to the Conditional Mallows Model of Mandal and Parkes [16].
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The second we call an unconfident Mallows prior. Here, the agent believes that the ground truth
τ is drawn uniformly at random, and then the entire profile (including their own ranking) is drawn
from a Mallows Model. Therefore, P[σ] = 1

m!

∑
τ∈L

φdkt(σ,τ)

Zn . Since for any σ̂i, by symmetry
Pr[σi = σ̂i] =

1
m! , we can write the conditional probability as

P[σ−i | σ̂i] =
∑
τ∈L

φd((σ−i,σ̂i),τ)

Zn
=
∑
τ∈L

φd(σ−i,τ)

Zn−1
· φ

d(σ̂i,τ)

Z
.

We will abuse notation slightly and write P[τ | σ̂i] =
φd(σ̂i,τ)

Z and P[σ−i | τ ] = φd(σ−i,τ)

Zn−1 , so that

P[σ−i | σ̂i] =
∑
τ∈L

P[σ−i | τ ] · P[τ | σ̂i].

We can interpret this as saying the voter has a posterior over ground truths, P[τ | σ̂i], and is using
this posterior to infer the probability of the rest of the profile. Intuitively, the agent is uncertain over
ground truths but, due to the observation of their ranking, places higher weight on ground truths that
are closer to their own ranking. This decomposition is possible because the rest of the profile σ−i is
conditionally independent of σ̂i given the ground truth τ .

The Thurstone-Mosteller model is defined with respect to underlying means µc for each candidate
c ∈ A. To sample a ranking, a value Xc ∼ N (µc, 1) is drawn independently for each candidate c
from a normal distribution with variance 1 around the mean. The resulting ranking is the order of
the Xc values from highest to lowest. The Placket-Luce model is defined with respect to underlying
weights wc > 0 for each candidate c ∈ A. To sample a ranking, we iteratively select a candidate c
from the remaining unchosen candidates P with probability wc∑

c′∈P w′
c
.

To convert these models to beliefs, we assume that the voter believes there are underlying distinct
means µ1 > · · · > µm (resp. weights w1 > · · · > wm) but is uncertain about which candidate has
which mean (resp. weight). To relate this to the Mallows belief, we will call this order τ , the ground
truth. In the confident version, the voter believes that their ranking is always equal to τ , but all
other votes are drawn from the corresponding model. In the unconfident version, the voter believes
a priori that τ is drawn uniformly at random, and then all voter rankings, including their own, are
drawn from the corresponding model. As with the Mallows beliefs, the voter can do a Bayesian
update to compute a posterior about which candidate was assigned to which weight. We can again
decompose

P[σ−i | σ̂i] =
∑
τ

P[σ−i | τ ] · P[τ | σ̂i],

where, by Bayes’ rule, P[τ | σ̂i] ∝ P[σ̂i|τ ], the probability of generating σ̂i under the model with
ground truth τ .

Note that to make this more general, it would also make sense for the voter to believe there is
a distribution over means or weights; our results continue to hold with this more general class;
however, for ease of presentation, we focus on the more restricted form.

3 Plurality is OBIC

We start by defining a class of beliefs that we call top-choice correlated. The class is similar in spirit
(although incomparable) to the class of top-set correlated beliefs introduced by Bhargava et al. [1].

To define the class, given a profile σ and a candidate c ∈ A, we let PLUc(σ) = |{i | σi(1) = c}|
be the plurality score of c, i.e., the number of voters that rank c first. Further, we let PLU(σ) be
the vector of plurality scores indexed by the candidates. A belief Pi is top-choice correlated if the
following holds. Fix a ranking σ̂i and let a = σ̂i(1). Then, for all candidates b ̸= a and all pairs
of plurality vectors r and r′ such that rc = r′c for all c ̸= a, b, ra = r′b, rb = r′a, and ra > rb,
P[PLU(σ−i) = r | σ̂i] ≥ P[PLU(σ−i) = r′ | σ̂i]. This says that if the voter is told the remaining
plurality scores of all other candidates except a and b, as well as possible scores for a and b, they
would think it is more likely that a (their top choice) has the higher score. In other words, all else
being equal, the voter’s top choice is more likely to perform better than other candidates.

We now claim that all of the specific beliefs we have introduced are top-choice correlated, suggesting
that this condition is quite weak.
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Lemma 1. The confident and unconfident versions of Mallows, Thurstone-Mosteller, and Placket-
Luce beliefs under any parameter settings are top-choice correlated.

The proof of Lemma 1 can be found in Appendix A. For confident versions of these beliefs, this is
relatively straightforward as the models directly place higher mass on the voter’s top choice being
chosen. For the unconfident versions, slightly more intricate analysis is necessary to show that more
mass is placed on ground truth rankings where the voter’s top choice is higher, and from this, we
can reach the same conclusion.

Despite the breadth of the class of top-choice correlated beliefs, it turns out that plurality is OBIC
for all beliefs in this class.

Lemma 2. Under any top-choice correlated beliefs, plurality is OBIC.

Proof. Let f be the plurality voting rule, i be an agent, and P be their top-choice correlated belief.
Suppose i observes σ̂i, and let u be an arbitrary utility function that is consistent with σ̂i. Let
a = σ̂i(1) be their top-ranked alternative.

Let σ′
i be a possible manipulation for voter i, and let b = σ′

i(1) be the top-ranked alternative. Notice
that if a = b, then the outcome under plurality is identical, and this manipulation cannot be an
improvement. Hence, from now on, we assume that b ̸= a.

For σ−i, let UG(σ−i) = E[u(f(σ−i, σ
′
i))]−E[u(f(σ−i, σ̂i))] be the expected utility gain of switch-

ing from σ̂i to σ′
i when others report σ−i. We wish to show that E[UG(σ−i)|σ̂i] ≤ 0, where the

expectation is over the belief P. To simplify notation, we will allow the utility function u to operate
on (nonempty) sets of candidates S as u(S) = 1

|S|
∑

c∈S u(c). Note that when the set of plurality
winners on a profile is S, the expected utility is u(S).

We now partition the possible σ−i based on their utility gain. Let C ⊆ A \
{a, b} be a (nonempty) set candidates not including a and b. For each set C, we de-
fine eight sets of profiles σ−i depending on the winners under (σ−i, σ̂i) and (σ−i, σ

′
i),

E1(C)a, E1(C)b, E2(C)a, E2(C)b, E3(C)a, E3(C)b, E4(C), E5(C). In each E(C) set, C will be
the set of candidates excluding a and b with the highest plurality score. We abuse notation slightly
and write PLU(C) for the (tied) plurality score of each of these candidates and PLU(a) and PLU(b)
for the plurality scores of a and b, respectively. The sets are otherwise defined by the set of plurality
winners in (σ−i, σ̂i) and (σ−i, σ

′
i). The definitions can be found in Table 1. One can check that

these (disjoint) sets collectively cover all possible σ−i where UG(σ−i) is nonzero.

We can now rewrite the expected utility gain in terms of these sets. For each set E(C), we write
UG(E(C)) for the expected utility gain for profiles σ−i ∈ E(C) (which will always be the same for
all σ−i ∈ E(C)). From this, we have

E[UG(σ−i)|σ̂i] =
∑

C⊆A\{a,b}
C ̸=∅

(
3∑

j=1

(
P[Ej(C)a|σ̂i]UG(Ej(C)a) + P[Ej(C)b|σ̂i]UG(Ej(C)b)

)

+ P[E4(C)|σ̂i]UG(E4(C)) + P[E5(C)|σ̂i]UG(E5(C))

)

Our goal, again, is to show that this expression is at most 0. Notice that for each C, UG(E4(C)) =
u(b) − u(a) < 0 and UG(E5(C)) = 1

|C| (u(b) − u(a)) < 0 because u(a) > u(c) for all other
candidates c. In what remains, we show that for all C and each j ≤ 3,

P[Ej(C)a]UG(Ej(C)a) + P[Ej(C)b]UG(Ej(C)b) ≤ 0. (1)

Fix an arbitrary C. To do this, we show that for each j, UG(Ej(C)a) ≤ 0, −UG(Ej(C)a) ≥
UG(Ej(C)b), and P[Ej(C)a] ≥ P[Ej(C)b]. Together, these imply (1).

We analyze the case of j = 1; the arguments for j = 2 and j = 3 are very similar. Notice that

UG(E1(C)a) = u(C ∪ {a})− u(a) =
|C|

|C|+ 1
(u(C)− u(a)),
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Set Condition (σ−i, σ̂i) Winners (σ−i, σ
′
i) Winners

E1(C)a PLU(a) = PLU(C) > PLU(b) + 1 a C ∪ {a}
E1(C)b PLU(b) = PLU(C) > PLU(a) + 1 C ∪ {b} b
E2(C)a PLU(a) = PLU(C) = PLU(b) + 1 a C ∪ {a, b}
E2(C)b PLU(b) = PLU(C) = PLU(a) + 1 C ∪ {a, b} b
E3(C)a PLU(C) = PLU(a) + 1 > PLU(b) + 1 C ∪ {a} C
E3(C)b PLU(C) = PLU(b) + 1 > PLU(a) + 1 C C ∪ {b}
E4(C) PLU(a) = PLU(b) ≥ PLU(C) a b
E5(C) PLU(C) = PLU(a) + 1 = PLU(b) + 1 C ∪ {a} C ∪ {b}

Table 1: Definition of the sets E1(C)a, E1(C)b, E2(C)a, E2(C)b, E3(C)a, E3(C)b, E4(C), and
E5(C). They contain all σ−i that satisfy the corresponding condition. In each set, the contained
σ−i all have the same winners in both (σ−i, σ̂i) and (σ−i, σ

′
i) as seen in the corresponding columns.

and symmetrically

UG(E1(C)b) = u(b)− u(C ∪ {b}) = |C|
|C|+ 1

(u(b)− u(C)).

Since u(a) is maximal, UG(E1(C)a) ≤ 0. Further,

−UG(E1(C)a)− UG(E1(C)b) =
|C|

|C|+ 1
(u(a)− u(b)) ≥ 0.

Finally, to show P[E1(C)a] ≥ P[E1(C)b], we consider the vectors of plurality scores (indexed by
candidates) ra and rb that lead a profile σ−i to end in up in E1(C)a and E1(C)b, respectively. Due
to the symmetry, there is a natural bijection between these two sets of vectors obtained by swapping
the a and b components. Further, by the definition of E1(C)a and E1(C)b, the a component of ra
is always strictly larger than the b component. Since P is top-choice correlated, for any two vectors
that differ by swapping the a and b components, P[·|σ̂i] always places higher mass on the vector in
ra. Therefore, P[E1(C)a|σ̂i] ≥ P[E1(C)b|σ̂i], as needed.

From these two lemmas, we immediately derive our main positive result.

Theorem 1. When voters have beliefs that are any of the confident or unconfident versions of Mal-
lows, Thurstone-Mosteller, or Placket-Luce under any parameter settings, plurality is OBIC.

4 Other Voting Rules Are Not OBIC

From the positive result about plurality, one might wonder whether satisfying OBIC with respect to
these beliefs is a relatively weak condition. If several rules satisfy it, this property is not useful for
a mechanism designer who is comparing between rules to implement. In this section, we show this
is not the case. Specifically, we focus on both the confident and unconfident variants of Mallows
beliefs. Our main theoretical negative result is that plurality is uniquely OBIC among positional
scoring rules in certain regimes of Mallows beliefs.

Theorem 2. Let f be a non-plurality positional scoring rule on three candidates. If a voter has
unconfident or confident Mallows beliefs with φ ≤ .988, for a sufficiently large n, f is not OBIC.

Below we provide a detailed proof sketch. However, we shunt some unwieldy technical derivations
into two lemmas relegated to the appendix.

Proof sketch of Theorem 2. Fix a non-plurality scoring vector (s1, s2, s3). Without loss of gener-
ality, we can translate and scale the vector such that s3 = 0 and s1 and s2 are relatively prime
integers with s2 > 0. Fix a voter i with unconfident Mallows beliefs P with parameter φ ≤ .988;
we will describe later how to extend it to a confident Mallow’s belief. Suppose they observe rank-
ing σ̂i = a ≻ b ≻ c. We will show that for sufficiently large n, it will be beneficial to switch to
σ′
i = a ≻ c ≻ b. More specifically, we will show that this manipulation increases the probability
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that candidate a wins, which means the rule cannot be OBIC with respect to these beliefs. Formally,
we will show that,

Pr[f(σ−i, σ
′
i) = a | σ̂i] > Pr[f(σ−i, σ̂i) = a | σ̂i],

or equivalently,
Pr[f(σ−i, σ

′
i) = a | σ̂i]− Pr[f(σ−i, σ̂i) = a | σ̂i] > 0.

Notice that since we are looking at the difference in probabilities of two events, we can ignore their
intersection when both reports lead to a as the winner. That is, the left-hand side is equal to3

Pr[f(σ−i, σ
′
i) = a ∧ f(σ−i, σ̂i) ̸= a | σ̂i]− Pr[f(σ−i, σ̂i) = a ∧ f(σ−i, σ

′
i) ̸= a | σ̂i].

To shorten notation, we will label the events of interest as Ecb = {f(σ−i, σ
′
i) = a ∧ f(σ−i, σ̂i) ̸=

a | σ̂i]} (i.e., ranking c above b causes a to win) and Ebc = {f(σ−i, σ̂i) = a∧f(σ−i, σ
′
i) ̸= a | σ̂i]}

(i.e., ranking b above c causes a to win), so we wish to show that

P[Ecb|σ̂i]− P[Ebc|σ̂i] > 0.

Using the definition of the Mallows belief model, we can expand the left-hand side using ground
truths to ∑

τ∈L

(
P[Ecb | τ ]− P[Ebc | τ ]

)
P[τ | σ̂i]. (2)

Consider the τ = a ≻ c ≻ b term. Notice that, by symmetry P[Ecb | a ≻ c ≻ b] = P[Ebc | a ≻ b ≻
c] and P[Ebc | a ≻ c ≻ b] = P[Ecb | a ≻ b ≻ c]. Further P[a ≻ c ≻ b | σ̂i] = φ · P[a ≻ b ≻ c | σ̂i]
as d(a ≻ c ≻ b, σ̂i) = d(a ≻ b ≻ c, σ̂i) + 1. Hence,(

P[Ecb | τ = a ≻ c ≻ b]− P[Ebc | τ = a ≻ c ≻ b]
)
P[a ≻ c ≻ b | σ̂i]

= −φ·
((
P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]

)
P[a ≻ b ≻ c | σ̂i]

)
,

or in words, the τ = a ≻ c ≻ b term is exactly equal to −φ times the τ = a ≻ b ≻ c term. In fact,
this same property holds for the other two pairs of ground truth rankings where a remains in the
same position and b is swapped with c, so b ≻ a ≻ c with c ≻ a ≻ b and b ≻ c ≻ a with c ≻ b ≻ a.
Hence, we can write the entire expression (2) as

(1− φ) ·
((

P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]
)
P[a ≻ b ≻ c | σ̂i]

+
(
P[Ecb | τ = b ≻ a ≻ c]− P[Ebc | τ = b ≻ a ≻ c]

)
P[b ≻ a ≻ c | σ̂i]

+
(
P[Ecb | τ = b ≻ c ≻ a]− P[Ebc | τ = b ≻ c ≻ a]

)
P[b ≻ c ≻ a | σ̂i]

)
.

Notice that since we wish to show this is strictly larger than 0 and 1 − φ > 0, we show only that
the sum of the probability terms is positive. Additionally, subbing in the values of P[τ | σ̂i] with the
corresponding Kendall tau distances, the above simplifies to(

P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]
)

+ φ
(
P[Ecb | τ = b ≻ a ≻ c]− P[Ebc | τ = b ≻ a ≻ c]

)
+ φ2

(
P[Ecb | τ = b ≻ c ≻ a]− P[Ebc | τ = b ≻ c ≻ a]

)
.

(3)

We will now show that for some c1 > c2 to be chosen later, the first positive term P[Ecb | τ = a ≻
b ≻ c] ∈ Ω(cn1 ) and each negative term P[Ebc | τ ] ∈ O(cn2 ), which implies that for sufficiently large
n, the entire sum is positive, as needed. In addition, for the result to hold with confident Mallows
rather than unconfident, it is only required that the first difference be positive, i.e.,

P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c] > 0.

This is also directly implied by showing the above bounds.

We relegate these arguments to the following two lemmas, established in Appendices B and C,
respectively.

3Note that since f is randomized, to make this precise, we would need to specify the joint distribution of its
outputs on different inputs. However, the remainder of the proof will not rely on how this is done, so the joint
distribution can be arbitrary.
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Lemma 3. P[Ebc | τ ] ∈ O(cn2 ) for c2 = e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .

Lemma 4. P[Ecb | τ = a ≻ b ≻ c] ∈ Ω(cn1 ) for c1 > e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .

Together, the two lemmas imply the desired result.

We now complement this result with some additional robustness checks. First, even though the
result is asymptotic, in special cases of interest, this is, in fact, not necessary.
Theorem 3. With three candidates, when a voter has unconfident or confident Mallows beliefs with
φ < 1, Borda Count is not OBIC for any n ≥ 2.

Notice that n = 1 is a degenerate case with no other voters, so n ≥ 2 is the strongest we can hope for.
The proof of Theorem 3 can be found in Appendix D. The beginning is nearly identical to the proof
sketch of Theorem 2, but they diverge after this point. While Lemmas 3 and 4 are asymptotic in
nature, the corresponding portion for Theorem 3 requires careful counting of the number of profiles
satisfying different conditions to ensure that for any fixed n, the inequalities hold.

In light of Theorem 3, it may seem plausible that Theorem 2 could be strengthened to hold for all n
rather than just asymptotically. However, we can give examples where this is not the case, suggesting
that a “sufficiently large n” requirement may be necessary. In particular, there are scoring rules that,
while not being plurality, are “close” to plurality in the sense that s2 is so tiny it only matters when
there is a tie among the plurality winners. For example, say we have the scoring rule (4, 1, 0) with
n = 3 voters. If any candidate receives two first-place votes, they immediately have 8 out of the 15
available points, so they necessarily win. Only when each candidate is ranked first by one voter is
there any difference. We show in Appendix E that such close-to-plurality rules, at least for n = 3,
are OBIC for confident Mallows beliefs with any φ < 1.

Finally, we consider other prominent non-scoring rules, namely Copeland and maximin. Note
that for explicitly-defined beliefs and a number of voters n, we can determine whether or not a
rule is OBIC by computing the probabilities of winners under all possible manipulations. We
do so for the aforementioned rules under both confident and unconfident Mallows beliefs with
φ = 0.25, 0.5, 0.75, n = 2, . . . , 50, and m = 3. The results can be found in Table 2. Although
slightly mixed in the sense that in a few specific cases, OBIC holds, the key takeaway is that none
of the rules considered are as consistently OBIC as plurality.

Copeland maximin with φ = 0.25, 0.5 maximin with φ = 0.75
confident Mallows even n n ̸= 3 n ̸= 3
unconfident Mallows all all n ̸= 6

Table 2: Scenarios where the Copeland and maximin rules fail to be OBIC with respect to Confident
and Unconfident Mallows beliefs with φ = 0.25, 0.50, 0.75, n = 2, . . . 50, and m = 3.

5 Discussion

In summary, we have considered the problem of strategic voting when voters have certain corre-
lated beliefs over others. We have singled out plurality as an auspicious choice, being incentive
compatible for a large class of beliefs, and have complemented this with negative results showing
other prominent voting rules do not satisfy this property. However, our work is certainly not the
final word on this topic. The current negative results are only for three candidates, and although
we believe they should extend to a larger number, the technical work in showing this seems to get
quite messy. Further, although we have checked many prominent voting rules, we have not ruled
out the existence of other “reasonable” rules that perform as well as plurality while simultaneously
satisfying other desiderata.

Finally, taking a more practical viewpoint, although OBIC is a theoretically compelling condition,
it is susceptible to common criticisms of models of voter behavior. As with many models of this
form, the utility difference of misreporting, or of choosing any vote for that matter, can be very low,
and it is debatable whether this is the driving force in how voters make decisions. It raises questions
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similar in spirit to the so-called Paradox of Voting [6]: why would any rational agent choose to vote
if the cost almost certainly outweighs the expected benefits? Despite these challenges, we do believe
that the exploration and refinement of models such as OBIC can lead to an improved understanding
of voter behavior and, ultimately, to the development of more effective voting systems.
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Appendix

A Proof of Lemma 1

Fix a voter i, ranking σ̂i, and let a = σ̂i(1) be their top choice. Fix an alternative b ̸= a and let
jb = σ̂−1

i (b) be b’s position in σ̂i. Let r be a vector of plurality scores with ra > rb and let r′ be the
same vector but with the a and b components swapped.

Let P be an unconfident Mallows, Placket-Luce, or Thurstone-Mosteller belief. We show later how
this proof directly implies it for the confident version as well. We abuse notation slightly, and write
P[r | σ̂i] to denote the probability of the event that σ−i has plurality vector r, and P[r | τ ] for the
same under ground truth τ . We wish to show that

∑
τ P[r | τ ] · P[τ | σ̂i] ≥

∑
τ P[r′ | τ ] · P[τ | σ̂i],

or equivalently, ∑
τ

(P[r | τ ]− P[r′ | τ ]) · P[τ | σ̂i] ≥ 0.

Let τ be an arbitrary ground truth ranking with a ≻τ b and let τ ′ be the same ranking, but with a and
b switched. Notice that by symmetry, P[r | τ ] = P[r′ | τ ′] and P[r′ | τ ] = P[r | τ ′]. Hence, in the
above sum we can combine these two terms to be (P[r | τ ]− P[r′ | τ ])(P[τ | σ̂i]− P[τ ′ | σ̂i]). We
prove for all such τ with a ≻τ b, both of these terms are positive. Note that this immediately implies
that this also holds for the confident version, as for that, we simply need to show P[r | τ ]− P[r′ | τ ]
for τ = σ̂i, and we have a ≻σ̂i b.

We begin by showing P[r | τ ] − P[r′ | τ ] ≥ 0 for all τ with a ≻τ b. Fix such a τ . Notice that,
conditioned on τ , all other rankings are drawn independently from the same distribution, namely,
the corresponding model with ground truth τ . Let pc be the probability that a ranking drawn from
the corresponding model has top choice c. We can directly compute P[r | τ ] =

(
n−1
r

)∏
c∈A prcc and

P[r′ | τ ] =
(
n−1
r′

)∏
c∈A p

r′c
c , where

(
n−1
r

)
and

(
n−1
r′

)
are the multinomial coefficients, i.e., (n−1)!∏

c∈A rc!
.

To show the P[r | τ ] ≥ P[r′ | τ ], observe that the two multinomial coefficients are equal as r and
r′ are the same up to swapping components. Further, since rc = r′c for all c ̸= a, b, the terms other
than a and b are equal. Hence, all we need to show is that praa prbb ≥ p

r′a
a p

r′b
b . This will be directly

implied by pa ≥ pb.

For Mallow’s, it is known that if c = τ(j), then the probability c is the highest rank is proportional to
φj . Hence, since τ−1(a) < τ−1(b), pa > pb. For Placket-Luce, observe that each pc is proportional
to wc. Hence, pa > pc.

For Thurstone-Mosteller, things are more technical. Let µa > µb be the corresponding means.
We condition on arbitrary samples xc for c ̸= a, b, and show that even conditioned on this, the
probability Xa is largest is greater than the probability that Xb is largest. Since the conditioning was
arbitrary, the law of total probability tells us that this is true in general.

Let xmax
c = maxc̸=a,b xc. Then, integrating over the standard normal PDF, the probability that Xa

is the largest is exactly∫ ∞

−∞

∫ ∞

−∞

1

2π
e−

1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > max(y, xmax
c )] dx dy.

We can break up this integral depending on whether Xb ≥ xmax
c or not, to get that this is equal to

1

2π

(∫ xmax
c

−∞

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

dx dy

+

∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy

)
.

The same can be done symmetrically for Xb. To show the probability is larger for Xa, we show that
each of the terms is bigger, i.e.,∫ xmax

c

−∞

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

dx dy ≥
∫ xmax

c

−∞

∫ ∞

xmax
c

e−
1
2 (x−µb)

2

e−
1
2 (y−µa)

2

dx dy
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and ∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy

≥
∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µb)

2

e−
1
2 (y−µa)

2

I[x > y] dx dy.

Both of these inequalities are implied by the fact that for all fixed x > y,

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

> e−
1
2 (x−µb)

2

e−
1
2 (y−µb)

2

.

Note that this is equivalent to showing

−1

2
(x− µa)

2 +−1

2
(y − µb)

2 ≥ −1

2
(x− µb)

2 +−1

2
(y − µb)

2.

Indeed, we have that

−1

2
((x− µa)

2 + (y − µb)
2) +

1

2
((x− µb)

2 + (y − µb)
2) = xµa + yµb − xµb − yµa

= (x− y)(µa − µb).

Since x > y and µa > µb, this is positive, as needed.

Next, we wish to show P[τ | σ̂i] ≥ P[τ ′ | σ̂i]. Recall that by Baye’s rule, these are each proportional
to P[σ̂i | τ ] and P[σ̂i | τ ′], where these are the probabilities of drawing σ̂i from the corresponding
model with ground truth τ and τ ′. In the Mallows model, note d(σ̂i, τ) < d(σ̂i, τ

′) because a ≻σ̂i
b,

so swapping them can only increase the distance. Hence, P[σ̂i | τ ] ≥ P[σ̂i | τ ′]. For Placket-Luce,
observe that the probability of generating a ranking σ is

m∏
j=1

wσ(j)∑
j′≥j wσ(j′)

.

Notice that even reordering the weights w, the product of the numerators is always
∏

c∈A wc. How-
ever, the denominators can change. Let wa and wb be the weights of a and b under τ , so wa > wb.
The only difference between the denominators are those in terms with j = 2, . . . jb. Under τ these
denominators include wb while under τ ′, this is replaced with wa. Hence, under τ ′, all the denomi-
nators are at least as large, and hence the overall probability is less.

Finally, we handle Thurstone-Mosteller. Notice that under both ground truths τ and τ ′, Xc for
c ̸= a, b follow the same distributions. Hence, as before, we condition on values xc for c ̸= a, b.
If we show conditioned on any values, it is more likely to generate σ̂i under τ then τ ′, then we
are done. We first restrict to xc such that their order matches σ̂i, as otherwise, the probability of
generating σ̂i is 0. Again, let xmax

c = maxc xc. We now split into two cases based on if jb = 2 or
if jb > 2. If jb = 2. Then, the probability of generating σ̂i under τ is∫ ∞

xmax
c

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy.

Under τ ′, it is the same with µa and µb swapped. Similarly, when jb > 2, then let cu = σ̂i(j
b − 1)

and let cℓ = σ̂i(j
b+1) be the candidates appearing directly before and after b in σ̂i. The probability

here of generating σ̂i under τ is∫ xcu

x
cℓ

∫ ∞

xmax
c

e−
1
2 (x−µa)

2

e−
1
2 (y−µb)

2

I[x > y] dx dy.

Under τ ′, it is again the same with µa and µb swapped. The proof that the τ versions are larger than
the τ ′ follow the identical argument to the earlier ones showing pa > pb.

B Proof of Lemma 3

Recall that Ebc is the event that a wins in (σ−i, σ̂i) but not (σ−i, σ
′
i) where σ̂i = abc and σ′

i = acb.
Notice that in terms of scores, the only change when swapping from σ′

i to σ̂i is that b has increased
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by r1 while c has decreased by r1. We claim that a necessary condition on σ−i such that the
probability of a winning increases under this switch is that both SCc(σ−i, σ

′
i) ≥ SCa(σ−i, σ

′
i)

and SCa(σ−i, σ̂i) ≥ SCb(σ−i, σ̂i). Indeed, if SCc(σ−i, σ
′
i) < SCc(σ−i, σ

′
i), then even before the

switch, c was not a winning candidate, so decreasing their score and increasing b’s cannot improve
a’s chances. Further, if SCa(σ−i, σ̂i) < SCb(σ−i, σ̂i), then a is winning with probability 0 on
(σ−i, σ̂i), so this cannot be an increase. Writing this only as a function of σ−i, we have that a
necessary condition is that SCc(σ−i)+ r2 ≥ SCa(σ−i)+ r1, SCa(σ−i)+ r1 ≥ SCb(σ−i)+ r2, and
(transitively from the previous two) SCc(σ−i) ≥ SCb(σ−i).

We will show that for any τ = xyz, P[SCz(σ−i) ≥ SCx(σ−i) | τ ] ∈ O(cn2 ) (for c2 to be chosen
later). The above necessary conditions imply that this upper bounds each P[Ebc | τ ] term.

To upperbound P[SCz(σ−i) ≥ SCx(σ−i) | τ ], we will use a Chernoff bound. We begin by rewriting
it as

P[SCz(σ−i)− SCx(σ−i) ≥ 0 | τ ] = P

∑
j ̸=i

SCz(σj)− SCx(σj) ≥ 0

∣∣∣∣∣ τ
 .

Notice that conditioned on a ground truth τ , each σj (for j ̸= i) is sampled independently from a
Mallow’s distribution around τ . Hence, if we write Xj = SCz(σj)− scx(σj), this is now the sum of
independent random variables. To apply Chernoff, we will need that these are bounded between 0

and 1. As they are currently bounded in [−r1, r1], we define Yj =
Xj

2r1
+1/2, which is now bounded

in [0, 1]. Hence, we wish to upperbound

P

 1

n− 1

∑
j ̸=i

Yj ≥ 1/2

∣∣∣∣∣ τ


To compute E[Yj ], we first compute E[Xj ]:

E[Xj ] =
∑

σ∈{xyz,xzy,yxz,zxy,yzx,zyx}

(SCz(σ)− SCx(σ))φ
d(σ,τ)

=
(0− r1) · 1 + (r2 − r1) · φ+ (0− r2) · φ+ (r1 − r2) · φ2 + (r2 − 0) · φ2 + (r1 − 0) · φ3

1 + 2φ+ 2φ2 + φ3

=
(−1− φ+ φ2 + φ3)r1 + (φ− φ− φ2 + φ2)r2

1 + 2φ+ 2φ2 + φ3

= r1 ·
(1 + φ)(φ2 − 1)

(1 + φ)(1 + φ+ φ2)
= r1 ·

φ2 − 1

1 + φ+ φ2
.

From this we have that

E[Yj ] =
1

2r1
E[Xj ] + 1/2 =

φ2 − 1 + (1 + φ+ φ2)

2(1 + φ+ φ2)
=

φ(1 + 2φ)

2(1 + φ+ φ2)
.

We will use the form of the Chernoff bound that states that if each W1, . . .Wk is i.i.d. drawn from a
distribution supported on [0, 1] with E[Wj ] = µ, then

Pr

1
k

∑
j

Wj ≥ (1 + δ)µ

 ≤
(

eδ

(1 + δ)1+δ

)kµ

=

(
e(1+δ)µ−µ

(
µ

(1 + δ)µ

)(1+δ)µ
)k

. (4)

Notice that in our case, k = n − 1, µ = φ(1+φ)
2(1+φ+φ2) , and (1 + δ)µ = 1/2. Hence, plugging in our

values, we get that this is at most(
e

1−φ2

2(1+φ+φ2)

√
φ(1 + 2φ)

1 + φ+ φ2

)n−1

.

Therefore, this quantity is O(cn2 ) for c2 = e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .
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C Proof of Lemma 4

To lower bound P[Ecb | τ = abc], our strategy will be the following. First, we call a vector
h = (hσ)σ∈L of integers indexed by L a histogram, and we will say that a profile σ has histogram
h if |{i | σi = σ}| = hσ . For all sufficiently large n, we will find histograms (hσ)σ∈L with∑

σ∈L hσ = n − 1 such that on profiles (σ−i, σi) with histogram h, a is tied with b for the largest
score, while on (σ−i, σ

′
i), a is the unique winner. This implies that the probability a wins for

such profiles increases by at least 1/2. We will then show that the probability that σ−i has the
corresponding histogram hσ is lower bounded by Ω(cn1 ).

To do this, we first must understand how likely it is to sample a profile with specific histogram
h. Let pσ = φd(σ,a≻b≻c)/Z be the probability of sampling σ from the Mallow’s distribution.
Notice that sampling σ−i and considering the counts |{i ∈ σ−i | σi = σ}| is equivalent to draw-
ing from a multinomial distribution over the alphabet L with probabilities (pσ)σ∈L of size n − 1.
If we write qσ = hσ/(n − 1) as the proportion of voters with σ, it is known that the probabil-

ity of observing (hσ)σ∈L (with each hσ > 0) is at least
(∏

σ

(
pσ

qσ

)qσ
− o(1)

)n−1

. Note that∏
σ

(
pσ

qσ

)qσ
= 1/eDKL(p∥q) where DKL is the KL-divergence and p and q are treated as proba-

bility distributions over L. This is essentially (without uniform convergence) an immediate conse-
quence of the tightness of Sanov’s theorem [21], although it can easily be derived by known bounds
on multinomial coefficients [4].

With this property in hand, we now wish to find profiles satisfying the tie conditions such that(
pσ

qσ

)qσ
is bounded away from e

1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 . To that end, we now show the following:

Lemma 5. For all φ ≤ .988 and positional scoring rules (r1, r2, 0), there exists real numbers
(qσ)σ∈L such that:

1. They are valid proportions:
∑

σ qσ = 1 and each qσ > 0.

2. Candidates a and b are tied in score:
∑

σ SCa(σ)qσ =
∑

σ scb(σ)qσ .

3. Candidate c is not beating a and b:
∑

σ SCa(σ)qσ ≥
∑

σ scc(σ)qσ .

4. The objective of these q’s are large
∏

σ

(
pσ

qσ

)qσ
> e

1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 .

Proof. We first handle the case where φ ≤ 0.1. Under this assumption of φ, we can explicitly
choose qσ as follows.

qabc = qbac =

√
pabcpbac

2(
√
pabcpbac +

√
pacbpbca +

√
pcabpcba)

qacb = qbca =

√
pacbpbca

2(
√
pabcpbac +

√
pacbpbca +

√
pcabpcba)

qcab = qcba =

√
pcabpcba

2(
√
pabcpbac +

√
pacbpbca +

√
pcabpcba)

.

Since all pσ are positive, each qσ is positive. Further, they are explicitly chosen to add up to one. In
addition, due to the symmetry between a and b (they appear in each position at the same frequency),
their corresponding scores are equal. Finally, since pabc > pbac ≥ pacb > pbca ≥ pcab > pcba, it
follows that qabc = qbac > qacb = qbca > qcab = qcba, so the score of c is strictly less than the score

of a. It remains to be shown that
∏

σ

(
pσ

qσ

)qσ
> e

1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 . Let d = 2(

√
pabcpbac +

√
pacbpbca+

√
pcabpcba) be the denominator in each of the q values. Let us consider the contribution

to the product of the abc and bac terms. We have,(
pabc
qabc

)qabc

·
(
pbac
qbac

)qbac

=

(
dpabc√
pabcpbca

)qabc

·
(

dpbac√
pabcpbca

)qbac

= dqabc+qbac ·
(

pabc√
pabcpbca

· pbac√
pabcpbca

)qabc
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= dqabc+qbca · 1
The same argument holds for the other two pairs, which implies that∏

σ

(
pσ
qσ

)qσ

= d
∑

σ qσ = d.

Expanding the value of d,

2

(√
φ0 · φ1

Z2
+

√
φ1 · φ2

Z2
+

√
φ2 · φ3

Z2

)
=

2
√
φ(1 + φ+ φ2)

Z

=
2
√
φ(1 + φ+ φ2)

1 + 2φ+ 2φ2 + φ3

=
2
√
φ

1 + φ
.

Finally, using the assumption that φ ≤ .1, we have
2
√
φ

1 + φ
≥

2
√
φ

1.1

=
√
e · 1.2 · √φ

≥ e1/2 ·
√

φ(1 + 2φ)

> (e1/2)
1−φ2

1+φ+φ2 · 1√
1 + φ+ φ2

·
√

φ(1 + 2φ)

= e
1−φ2

2(1+φ+φ2)

√
φ(1 + 2φ)

1 + φ+ φ2
,

where the second inequality uses the fact that 2/1.1 ≈ 1.82 >
√
1.2e ≈ 1.81.

Next, we consider φ > 0.1. We formalize finding valid qs in the following form. Notice first that
we can rescale the scoring vector to be of the form (1, α, 0) where α = r2/r1 ∈ [0, 1]. We will use
SCα

x(σ) to denote the score of candidate x on ranking σ with the positional scoring rule (1, α, 0). Let
Qα be the set of vectors q (indexed by L), which satisfy the constraints for a specific α. Expanding

the objective in terms of φ, let dσ = d(σ, a ≻ b ≻ c), f(φ,q) = 1
1+2φ+2φ2+φ3

∏
σ

(
φdσ

qσ

)qσ
,

and ℓ(φ) = e
1−φ2

2(1+φ+φ2)

√
φ(1+2φ)
1+φ+φ2 . Let g(φ,q) = f(φ,q) − ℓ(φ). Our goal is to show that for all

φ ∈ (.1, .99] and for all α ∈ [0, 1], there is a q ∈ Qα such that g(φ,q) > 0. When q satisfies this,
we will say that q is a solution for φ and α.

To that end, we will first show using the smoothness of g and the Qα sets that as long as a solution q
for a specific φ and α satisfies reasonable conditions, then that will imply the existence of solutions
for nearby φ and α. We will then present several solutions found using a computational search that
cover the α and φ region, implying the existence of solutions for all necessary values.

Fix α, φ, and suppose we have a corresponding solution q. Fix some ε > 0, we now find sufficient
conditions such that for all φ′ ∈ [φ − ε, φ + ε] and α′ ∈ [α − ε, α + ε], there exists a solution q′

for φ′ and ε′. We begin by extending it to the same α, but for φ′ ∈ [φ − ε, φ + ε]. We first show
that ℓ is an increasing function on [0, 1] which implies (as long as φ+ ε ≤ 1), on [φ− ε, φ+ ε], it
is upper bounded by ℓ(φ+ ε).

Indeed, notice that µ (from (4)) is equal to φ+2φ2

2(1+φ+φ2) = 1/2 − 1−φ2

2(1+φ+φ2)and its derivative with

respect to φ is φ2+4φ+1
(φ2+φ+1)2 > 0. Therefore, it is an increasing function of φ bounded in [0, 1/2].

As a function of µ, ℓ(φ) is equal to (e/2)1/2e−µ√µ. The derivative of this with respect to µ is
(e/2)1/2e−µ(1 − 2µ)/(2

√
µ), positive for µ ∈ [0, 1/2). Therefore, as the composition of two

increasing functions, ℓ(φ) is increasing on [0, 1].

Next, we wish to lower bound f(φ′,q). To do this, suppose the derivative ∂f
∂φ (φ

′,q) for φ′ ∈
[φ − ε, φ + ε] lower bounded by B ≤ 0. Notice that −B upper bounds the rate at which f can
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decrease, so we get that f(φ′,q) ≥ f(φ − ε,q) + 2εB. To compute such a B, we first compute
∂f
∂φ (φ

′,q). We will use the fact that ∂f
∂φ (φ

′,q) = ∂ log(f)
∂φ (φ′,q) · f(φ′,q). Since log(f(φ′,q)) =∑

σ qσ(dσ log(φ
′)− qσ)− log(1 + 2φ′ + 2φ′2 + φ′3), we have that

∂f

∂φ
(φ′,q) =

(∑
σ qσdσ
φ′ − 2 + 4φ′ + 3φ′2

1 + 2φ′ + 2φ′2 + φ′3

)
· f(φ′,q).

Notice that
∑

σ qσdσ

φ′ is decreasing in φ′. Further, we can also show that 2+4φ′+3φ′2

1+2φ′+2φ′2+φ′3 is decreas-
ing, as its derivative is

−φ′(3φ′3 + 8φ′2 + 8φ′ + 2)

(φ′3 + 2φ′2 + 2φ′ + 1)2
,

negative for all positive values of φ′. Finally, notice that f is defined as 1/eDKL(q∥p) and DKL is
nonnegative, f is upperbounded by 1. Hence, for all φ′ ∈ [φ− ε, φ+ ε],

∂f

∂φ
(φ′,q) ≥ min

(∑
σ qσdσ
φ+ ε

− 2 + 4(φ− ε) + 3(φ− ε)2

1 + 2(φ− ε) + 2(φ− ε)2 + (φ− ε)3
, 0

)
.

Let B(φ,q, ε) = min
(∑

σ qσdσ

φ+ε − 2+4(φ−ε)+3(φ−ε)2

1+2(φ−ε)+2(φ−ε)2+(φ−ε)3 , 0
)

. We then have that for all φ′ ∈
[φ− ε, φ+ ε], g(φ′, q) ≥ f(φ− ε,q) + 2εB(φ,q, ε)− ℓ(φ+ ε,q).

Next, we consider modifying α to α′ ∈ [α − ε, α + ε]. Let β = α′ − α. Notice that the current
q may not be an element of Qα′ . Although

∑
σ qσ = 1, and each qσ > 0, it may not be the

case
∑

σ SCα′

b (σ)qσ =
∑

σ SCα′

a (σ)qσ . Instead, we have that
∑

σ SCα′

b (σ)qσ + β(qabc + qcba) =∑
σ SCα′

a (σ)qσ + β(qbac + qcab). Let r = qabc + qcba − qbac − qcab; this is the current amount b
is beating a by (it may be negative). Notice that we can find a q′ ∈ Qα′ by simply shifting r/2 · β
mass from qacb to qbca. This will result in a valid q′ as long as qacb > r/2 ·β when r/2 ·β is positive
or qbca > −r/2 · β when it is negative. A sufficient condition for this is that both qacb > |rε/2| and
qbca > |rε/2|. Under this assumption, we now consider the effect on the solution value g(φ,q′). To
do this, we can consider the directional derivative of g with respect to increasing qacb and decreasing
qbca. We have that for each σ,

∂g

∂qσ
= f(φ,q) ·

(
log

(
φdσ

qσ

)
− 1

)
.

Therefore, the derivative with respect the the vector of increasing qacb and dcreasing qbca is

∂g

∂qacb
− ∂g

∂qbca
= f(φ,q)·

(
log(φdacb−dbca) + log

(
qbca
qacb

))
= f(φ,q)·

(
log

(
qbca
qacb

)
− log(φ)

)
.

We will now upperbound the magnitude of this. Recall that f is upper bounded by 1. Further, for
any φ′ ∈ [φ+ ε, φ− ε] and q′ constructed by shifting at most rε/2 mass between qacb and qbca,

log

(
qbca − |rε/2|
qacb + |rε/2|

)
− log(φ+ ε) ≤ log

(
qbca
qacb

)
− log(φ) ≤ log

(
qbca + |rε/2|
qacb − |rε/2|

)
− log(φ− ε).

Hence, the magnitude of the derivative is always at most:

max

(∣∣∣∣log(qbca − |rε/2|
qacb + |rε/2|

)
− log(φ+ ε)

∣∣∣∣ , ∣∣∣∣log(qbca + |rε/2|
qacb − |rε/2|

)
− log(φ− ε)

∣∣∣∣) .

Let m(φ,q, ε) be this value. Then, from shifting the at most rε/2 mass between qacb and qbca, this
decreases g(φ,q) by at most rε/2 ·m(φ,q, ε). Hence, putting this all together, we have that for any
vector q, as long as both qacb, qbca > rε/2, and as long as

f(φ− ε,q) + 2εB(φ,q, ε)− ℓ(φ+ ε,q)− rε

2
m(φ,q, ε) > 0,

then this implies that for all φ′ ∈ [φ− ε, φ+ ε] and α′ ∈ [α− ε, α+ ε], there exists a solution q′.

Finally, for all 0.1 ≤ φ ≤ .988 and 0 ≤ α ≤ 1 that are multiples of 1/1000, we compute corre-
sponding q that satisfy the above conditions with ε = 1/2000. Together, these cover the space of
φ and α, which implies that the lemma holds. This can be done (approximately enough) using a
convex program to find q that maximizes f given φ and α. The computed values can be found in
the supplementary material.
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Notice that the solutions (qσ)σ∈L from Lemma 5 need not be rational which would be necessary
for a valid profile with corresponding (hσ)σ∈L to be sampled. However, we claim that given a non-
rational solution, we can always find a rational one, so it is without loss of generality to assume they
are. Notice that since the strict inequalities are all continuous functions of q, so there must be an
ε > 0 such that all q vectors in an ε-ball around these qs (in R6) satisfy the strict inequalities. In
addition, the linear equalities form an affine subspace. Since all coefficients are rational, all-rational
vectors are dense within this subspace. Hence, there are rational (q′σ)σ∈L within ε of (qσ)σ∈L that
satisfies the equalities and is, therefore, a rational solution to the four properties.

Using rational q, we can find a corresponding integral h such that on profiles with ranking counts
equal to h, a and b are tied for winning. Let s =

∑
σ hσ be the number of rankings in h. For

a ranking σ, let eσ be the unit vector with 1 in the σ coordinate and 0 elsewhere. Notice that if
n− 1 = ks+ 1 for some integer k and σ−i has ranking counts equal to kh+ ebac, then it is indeed
the case that on (σ−i, a ≻ b ≻ c), a is tied with b, while on (σ−i, a ≻ c ≻ b), a is the unique
winner.

To handle cases where n− 2 is not a multiple of s, suppose we write n− 1 = k · h+ 1 + r where
2 ≤ r ≤ s+1. If r is odd, we can first add a cycle eabc + ebca + ecab which does not affect relative
scores. After doing this, we can add r/2 (or (r − 3)/2 if r was odd) copies of eabc + ecab which
again keeps a and b at the same relative scores and only pushes c down. By doing this, we can get a
histogram of arbitrary size where (σ−i, a ≻ b ≻ c) has a tied with b and (σ−i, a ≻ c ≻ b) has a as
a unique winner. Finally, notice that as n grows large, the proportion of this histogram approaches
q. Hence, for sufficiently large n, the probability of sampling this histogram will be Ω(cn1 ) for any

c1 <
∏

σ

(
pσ

qσ

)qσ
. Since

∏
σ

(
pσ

qσ

)qσ
> c2, we can choose c1 > c2. This completes the proof.

D Proof of Theorem 3

Consider the Borda scoring rule (2, 1, 0), and a voter i with unconfident Mallows belief P with
φ < 1. As usual, we will describe how to extend it to confident Mallows later. The proof begins
identically to Theorem 2, up to the point of needing to show (3) is nonnegative. We restate (3) here
for convenience.

(
P[Ecb | τ = a ≻ b ≻ c]− P[Ebc | τ = a ≻ b ≻ c]

)
+ φ

(
P[Ecb | τ = b ≻ a ≻ c]− P[Ebc | τ = b ≻ a ≻ c]

)
+ φ2

(
P[Ecb | τ = b ≻ c ≻ a]− P[Ebc | τ = b ≻ c ≻ a]

)
.

Here, we show each of the probability differences are nonnegative, and the first is strictly positive.
This also implies that the result holds for confident Mallows where only the first strict inequality is
necessary.

To do this, we provide an equivalent way of computing P[Ecb | τ ]− P[Ebc | τ ]. Let us consider the
profiles σ−i where swapping from a ≻ b ≻ c to a ≻ c ≻ b leads to an increase in the probability a
wins. Notice that the swap decreases the score of b by 1 and increases the score of c by 1. For this to
help a win, b must have been one of the winners before. Therefore, one of the following must hold.

1. On (σ−i, σi), a was tied with b with c being at least two behind them. Then, after the swap,
a wins outright, an increase in winning probability of 1/2.

2. On (σ−i, σi), b was winning outright, a was one point behind, and c was more than one
point behind a, then, after the swap, a and b are tied winners, an increase in winning
probability of 1/2.

3. On (σ−i, σi), b was winning outright, a was one point behind, and c was one point behind
a, then, after the swap, all three are tied, an increase of winning probability of 1/3.

We define sets A1, A2, A3 of profiles σ−i that correspond to these three events. More formally,

A1 = {σ−i | SCb(σ−i) = SCa(σ−i) + 1 ≥ SCc(σ−i) + 1},
A2 = {σ−i | SCb(σ−i) = SCa(σ−i) + 2 ≥ SCc(σ−i) + 2},
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A3 = {σ−i | SCb(σ−i) = SCa(σ−i) + 2 = SCc(σ−i) + 1}.

We can analogously define B1, B2, and B3 with b and c swapped, which correspond to profiles
where swapping causes the probability of a winning to decrease. From this, we get that

P [Ecb | τ ]− P[Ebc | τ ] =1

2
P[A1 | τ ] + 1

2
P[A2 | τ ] + 1

3
P[A3 | τ ]

−
(
1

2
P[B1 | τ ] + 1

2
P[B2 | τ ] + 1

3
P[B3 | τ ]

)
Further, notice that there is a natural bijection π between the sets of profiles Ak and Bk for k ≤ 3,
namely, swapping every occurrence of b with c and vice-versa.

To prove a weak inequality, we will show that for each k and each τ , P[Ak | τ ] ≥ P[Bk | τ ].
Notice that this is simply a statement about draws of profiles from a Mallows model; voter i and
their report do not have an impact. To make calculations less messy we will simply refer to these
profiles without i as σ instead of σ−i and refer to the set of voters V as the ones without i, and the
size of these profiles as n (even though this is technically n − 1). This means that our assumption
now is that n ≥ 1.

Next, as a simplifying step, fix an arbitrary partition of the voters K1,K2,K3, i.e., V = K1 ⊔K2 ⊔
K3. Let

AK1,K2,K3

k = {σ−i ∈ Ak | σj(1) = a,∀j ∈ K1 ∧ σj(2) = a,∀j ∈ K2 ∧ σj(3) = a∀j ∈ K3}.

In words AK1,K2,K3

k is the subset of Ak such that the voters in K1 rank a first, voters in K2 rank
a second, and voters in K3 rank a third. We define this analogously for the Bk sets. We will show
for all partitions K1,K2,K3, P[AK1,K2,K3

k | τ ] ≥ P[BK1,K2,K3

k | τ ] which implies it holds for the
original sets.

Fix an arbitrary K1,K2,K3 and k ≤ 3. Writing this out more explicitly and using the π bijection,
we see that it suffices to show for each τ ,∑

σ∈A
K1,K2,K3
k

(φd(σ,τ) − φd(π(σ),τ)) ≥ 0. (5)

We assume now that AK1,K2,K3

k ̸= ∅ as otherwise this inequality trivially holds.

Notice that for all σ ∈ AK1,K2,K3

k ,

SCa(σ) = 2|K1|+ |K2| (6)

In other words, the score of a on all profiles in AK1,K2,K3

k is constant. From this, we can derive the
scores of the other candidates.

SCb(σ) = SCa(σ) + κ = 2|K1|+ |K2|+ κ. (7)

where κ = 1, 2 depending on whether k = 1 or k ∈ {2, 3}. Finally, for all σ, SCa(σ) + SCb(σ) +
SCc(σ) = 3n. Therefore,

SCa(σ) = 3n− SC(a)− sc(b) = 3n− 4|K1| − 2|K2| − κ. (8)

Further, these equations are an equivalent condition for defining AK1,K2,K3

k , a profile σ ∈
AK1,K2,K3

k if and only if the voters in each of K1,K2, and K3 rank a accordingly and Equations (6)
to (8) are all satisfied.

Additionally, we have that for any σ ∈ A1 ∪ A2 ∪ A3, SCc(σ) ≤ SCb(σ) − 1. Therefore, by the
assumption that AK1,K2,K3

k was nonempty, we can derive some constraints on |K1|, |K2|, and |K3|.
Namely, for any σ ∈ AK1,K2,K3

k ,

3(|K1|+ |K2|+ |K3|) = 3n

= SCa(σ) + SCb(σ) + SCc(σ)
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= SCa(σ) + 2SCb(σ)− 1

= 6|K1|+ 3|K2|+ 2κ− 1.

Therefore,

|K1| ≥ |K3| −
2κ− 1

3
. (9)

Recall that for a pair of candidates x and y, Nxy(σ) = |{i|x ≻i y}|. Note that Nbc(σ) = n −
Nbc(π(σ)) since all occurrences of b and c are swapped. It can be shown that for Borda scores,

SCx(σ) =
∑
y ̸=x

Nxy(σ) (10)

In addition, by the definition of the Kendall tau distance,

d(σ, xyz) = Nyx(σ) +Nzx(σ) +Nzy(σ), (11)

as this counts the total number of swapped pairs.

We now handle the cases of each τ ∈ {abc, bac, cba} separately.

Case 1: τ = abc. By Equations (10) and (11), we have that

d(σ, abc) = Nba(σ) +Nca(σ) +Ncb(σ)

= n−Nab(σ) + n−Nac(σ) + n−Nbc(σ)

= 2n− SCa(σ) + (n−Nbc(σ))

and

d(π(σ), abc) = Nba(π(σ)) +Nca(π(σ)) +Ncb(π(σ))

= 2n− SCa(π(σ)) + (n−Nbc(π(σ))

= 2n− SCa(σ) +Nbc(σ).

Substituting this into the left-hand side of (5), we have∑
σ∈A

K1,K2,K3
k

φd(σ,abc) − φd(π(σ),abc)

=
∑

σ∈A
K1,K2,K3
k

φ2n−SCa(σ)+n−Nbc(σ) − φ2n−SCa(σ)+Nbc(σ)

=
∑

σ∈A
K1,K2,K3
k

φ2n−2|K1|−|K2|
(
φn−Nbc(σ) − φNbc(σ)

)
Note that the term in front is always nonnegative and constant for fixed K1,K2,K3, so it is sufficient
to show ∑

σ∈A
K1,K2,K3
k

(
φn−Nbc(σ) − φNbc(σ)

)
≥ 0. (12)

Notice that these terms depend only on Nbc(σ) which must take on a value in {0, . . . , n}. Hence,
we can instead consider counting the number of profiles σ ∈ AK1,K2,K3

k with a specific Nbc(σ).
More formally, let Qj = |{σ ∈ AK1,K2,K3

k |Nbc(σ) = j}| for j ∈ {0, . . . , n}. We can now write∑
σ∈A

K1,K2,K3
k

(
φn−Nbc(σ) − φNbc(σ)

)
=

n∑
j=0

Qj

(
φn−j − φj

)
.

Notice that for each Qj(φ
n−j−φj) term in the sum, there is a corresponding term Qn−j(φ

j−φn−j).
Pairing up these opposite terms, we can rewrite the sum as

⌊(n−1)/2⌋∑
j=0

(Qn−j −Qj)
(
φj − φn−j

)

20



The ⌊(n − 1)/2⌋ expression is simply the largest integer strictly less than n/2 (we exclude the
j = n/2 term since this is 0 if it exists). Note that (φj − φn−j) > 0 for j < n/2, so we have
reduced the problem to counting the number of profiles σ with a specific value of Nbc(σ). More
formally, Inequality (12) to show for j < n/2,

Qj ≤ Qn−j . (13)

Fix a j < n/2. For a profile σ ∈ AK1,K2,K3

k , define

t(σ) = {i ∈ K2|b ≻i c}
o(σ) = {i ∈ K1 ∪K3|b ≻i c},

In words, t(σ) is the number of voters in K2 that prefer b to c and o(σ) is the number of voters in
K1 ∪K3 that prefer b to c. This is useful for us because these values allow us to calculate SCb(σ).
Voters in |K3| give a minimum of one point to b. For all voters counted in o(σ), an additional one
point is given versus those not counted. For all voters counted in t(σ) an additional two points are
given versus those not counted. Hence,

SCb(σ) = |K3|+ 2t(σ) + o(σ).

When σ ∈ AK1,K2,K3

k , we know that SCb(σ) = SCa(σ) + κ, so we have that

2t(σ) + o(σ) = 2|K2|+ |K1|+ κ− |K3| (14)

Further,
t(σ) + o(σ) = Nbc(σ)

as it is simply a different way of counting the number of voters with b ≻ c.

Observe that if σ is counted toward Qj , both Equation (14) must hold and t(σ) + o(σ) = j. These
are two independent linear equations on t(σ) and o(σ) and hence there is exactly one solution for
t(σ) and o(σ) that satisfies them. Further, notice that this is a necessary and sufficient condition:
σ ∈ AK1,K2,K3

k is counted toward Qj if and only if it satisfies both Equation (14) and t(σ)+o(σ) =
j (along with the K1,K2,K3 constraint).

Let t and o be the solutions satisfying the above equations for Qj with 0 ≤ t ≤ |K2| and 0 ≤ o ≤
|K1| + |K3|. Note that if t or o are not integers or do not satisfy the inequalities then Qj = 0, so
Qj ≤ Qn−j as Qn−j is necessarily nonnegative. For t and o satisfying the inequalities, we have
that

Qj =

(
|K2|
t

)(
|K1|+ |K3|

o

)
since we choose t voters in |K2| and o voters in |K1 ∪ |K3| to rank b ≻ c. We first claim that
t′ := t− n+ 2j and o′ := o+ 2n− 4j are solutions for Qn−j since

2t′ + o′ = 2(t− n+ 2j) + (o+ 2n− 4j) = 2t+ o = 2|K2|+ |K1|+ κ− |K3|
t′ + o′ = t− n+ 2j + o+ 2n− 4j = t+ o+ n− 2j = j + n− 2j = n− j

Since t and o were integers, so are t′ and o′. We want to show

Qj =

(
|K2|
t

)(
|K1|+ |K3|

o

)
≤
(
|K2|
t′

)(
|K1|+ |K3|

o′

)
= Qn−j

We will show individually that
(|K2|

t′

)
≥
(|K2|

t

)
and

(|K1|+|K3|
o′

)
≥
(|K1|+|K3|

o

)
. Notice that t′ ≤ t

and o′ ≥ o, so this is implied by showing that t′ ≥ |K2| − t and o′ ≤ |K1|+ |K3| − o. Both rely on
the inequality 2(2t+ o) > n+ |K2|, which follows from

2(2t+ o) = 2(2|K1|+ |K2|+ κ− |K3|)
= 4|K1|+ 2|K2| − 2|K3|+ 2κ

≥ |K1|+ 2|K2|+ 3|K3| − 2|K3|+ 2κ− (2κ− 1) (|K1| ≥ |K3| − 2κ−1
3 )

≥ n+ |K2| (|K1|+ |K2|+ |K3| = n)

Using the derived inequality, we have

t′ = t− n+ 2j
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= t− n+ 2(t+ o)

= 3t+ 2o− n

= 2(2t+ o)− n− t

≥ n+ |K2| − n− t

= |K2| − t

and

o′ = o+ 2n− 4N

= o+ 2n− 4(o+ t)

= 2n− 3o− 4t

= 2n− 2(o+ 2t)− o

≤ 2n− (n− |K2|)− o

= n− |K2| − o

= |K1|+ |K3| − o, (|K1|+ |K2|+ |K3| = n)

Therefore, Inequality (13) holds, as needed.

Case 2: τ = bca. Again, by Equations (10) and (11), we have that

d(σ, bca) = Nab(σ) +Nac(σ) +Ncb(σ)

= SCa(σ) + n−Nbc(σ)

and

d(π(σ), bca) = Nab(π(σ)) +Nac(π(σ)) +Ncb(π(σ))

= SCa(π(σ)) + (n−Nbc(π(σ))

= SCa(σ) +Nbc(σ).

Substituting this into the left-hand side of (5), we have,∑
σ∈A

K1,K2,K3
k

φd(σ,bca) − φd(π(σ),bca) =
∑

σ∈A
K1,K2,K3
k

φSCa(σ)+(n−Nbc(σ)) − φSCa(σ)+Nbc(σ)

=
∑

σ∈A
K1,K2,K3
k

φ2|K1|+|K2|
(
φn−Nbc(σ) − φNbc(σ)

)
.

Again we notice that the term in front is always nonnegative and constant for fixed K1,K2,K3, so,
it is sufficient to show ∑

σ∈A
K1,K2,K3
k

(
φn−Nbc(σ) − φNbc(σ)

)
≥ 0,

which we already proved in the last case.

Case 3: τ = bac. Using Equations (10) and (11), we have

d(σ, bac) = Nab(σ) +Nca(σ) +Ncb(σ)

= (n−Nba(σ)) + (n−Nac(σ)) + (n−Nbc(σ))

+ (n−Nab(σ)−Nba(σ))︸ ︷︷ ︸
0

+(Nbc(σ)−Nbc(σ)︸ ︷︷ ︸
0

= 4n− SCa(σ)− 2SCb(σ) +Nbc(σ)

= 4n− 6|K1| − 3|K2| − 2κ+Nbc(σ)

= (−2|K1|+ |K2|+ 4|K3| − 2κ) +Nbc(σ)

Similarly,

d(π(σ), bac) = Nab(π(σ)) +Nca(π(σ)) +Ncb(π(σ))

= (n−Nab(σ)) + (n−Nca(σ)) + (n−Ncb(σ))
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= 3n− d(σ, bac)

= 3n− (−2|K1|+ |K2|+ 4|K3| − 2κ)−Nbc(σ)

Let C = (−2|K1|+ |K2|+ 4|K3| − 2κ). Substituting this into the left-hand side of (5), we have .∑
σ∈A

K1,K2,K3
k

φd(σ,bac) − φd(π(σ),cab) =
∑

σ∈A
K1,K2,K3
k

φC+Nbc(σ) − φ3n−C−Nbc(σ)

=

n∑
j=0

Qj

(
φC+j − φ3n−C−j

)
.

Observe that
(
φC+j − φ3n−C−j

)
is negative only for j > 3n

2 − C. Additionally, for each of these
terms, there is a corresponding positive term in the sum for j′ = 3n− 2C − j < 3n

2 − C, where

(
φC+j′ − φ3n−C−j′

)
=
(
φC+3n−2C−j − φ3n−C−3n+2C+j

)
= −

(
φC+j − φ3n−C−j

)
.

Thus, it suffices to show for j > 3n
2 − C that Qj ≤ Qj′ where j′ = 3n− 2C − j.

As before, let t and o be solutions for Qj . Then we have the following solutions for Qj′

t′ = t+ (j − j′)

o′ = o− 2(j − j′)

since

t′ + o′ = t+ (j − j′) + o− 2(j − j′) = j′

2t′ + o′ = 2t+ 2(j + j′)o− 2(j − j′) = 2t+ o.

Recall that

Qj =

(
|K2|
t

)(
|K1|+ |K3|

o

)
and Qj′ =

(
|K2|
t′

)(
|K1|+ |K3|

o′

)
.

We will show that
(|K2|

t

)
≤
(|K2|

t′

)
and

(|K1|+|K3|
o

)
≤
(|K1|+|K3|

o′

)
. Note that t′ ≥ t and o′ ≤ o, so it

suffices to show that t′ ≤ |K2| − t and o′ ≥ |K1|+ |K3| − o. Let us directly consider

t′ = t+ (j − j′)

= t+ (2j − 3n+ 2C)

= t+ (2(t+ o)− 3n+ 2C)

= 2(2t+ o)− 3n+ 2C − t

= 2(2|K1|+ |K2|+ κ− |K3|)− 3n+ 2(−2|K1|+ |K2|+ 4|K3| − 2κ)− t

= −3n+ 4|K2|+ 6|K3| − 2κ− t

= −3|K1|+ 3|K3| − 2κ+ |K2| − t

< |K2| − t.

We also have that

o′ = o− 2(j − j′)

= o− 2(2j − 3n+ 2C)

= o− 2(2(t+ o)− 3n+ 2C)

= −2(2t+ o) + 6n− 4C − o

= −2(2|K1|+ |K2|+ κ− |K3|) + 6n− 4(−2|K1|+ |K2|+ 4|K3| − 2κ)− o

= 6n+ 4|K1| − 6|K2| − 14|K3|+ 6κ− o

= 10|K1| − 8|K3|+ 6κ− o

= 9|K1| − 9|K3|+ 6κ+ |K1|+ |K3| − o

> |K1|+ |K3| − o.
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Report Probability a wins
abc 1φ0 + 4φ1 + 7φ2 + 8φ3 + 8/3φ4 + 0φ5 + 0φ6

bac 1φ0 + 2φ1 + 3φ2 + 2φ3 + 2/3φ4 + 0φ5 + 0φ6

acb 1φ0 + 4φ1 + 7φ2 + 8φ3 + 8/3φ4 + 0φ5 + 0φ6

bca 1φ0 + 2φ1 + 5/3φ2 + 0φ3 + 0φ4 + 0φ5 + 0φ6

cab 1φ0 + 4φ1 + 11/3φ2 + 0φ3 + 0φ4 + 0φ5 + 0φ6

cba 1φ0 + 2φ1 + 5/3φ2 + 0φ3 + 0φ4 + 0φ5 + 0φ6

Report Probability c wins
abc 0φ0 + 0φ1 + 0φ2 + 0φ3 + 5/3φ4 + 2φ5 + 1φ6

bac 0φ0 + 0φ1 + 0φ2 + 0φ3 + 5/3φ4 + 2φ5 + 1φ6

acb 0φ0 + 0φ1 + 0φ2 + 0φ3 + 11/3φ4 + 4φ5 + 1φ6

bca 0φ0 + 0φ1 + 2/3φ2 + 2φ3 + 3φ4 + 2φ5 + 1φ6

cab 0φ0 + 0φ1 + 8/3φ2 + 8φ3 + 7φ4 + 4φ5 + 1φ6

cba 0φ0 + 0φ1 + 8/3φ2 + 8φ3 + 7φ4 + 4φ5 + 1φ6

Table 3: Probability that a and c each win under different reports for voter i. This assumes their
observed ranking was abc.

This completes the proof for the weak inequality.

To show that the first inequality is strict, observe that in case 1, all of the inequalities about Qj ≤
Qn−j can be shown to be strict. Hence, all we need to show is that there is some k such that Ak

is nonempty. Fix some arbitrary n. If n is even, we can take a profile σ where n/2 + 1 voters
have the ranking bac and n/2 − 1 have abc. Such a profile is always an element of A2 since
SCb(σ) = SCa(σ) + 2 and SCa(σ) ≥ SCc(σ). Similarly, if n is odd, we can take a profile σ where
⌈n/2⌋ voters have the ranking bac and ⌊n/2⌋ have the ranking acb. Such a profile is always an
element of A1 since SCb(σ) = SCa(σ) + 1 and SCa(σ) ≥ SCc(σ).

E OBIC Positional Scoring Rule Example

Let f be a scoring rule (r1, r2, 0) such that r2/r1 < 1/3. Note that on three voters, all these rules
coincide. Indeed, if there is a strict plurality winner, that candidate is necessarily the winner. If not,
this means each candidate appeared first exactly once. I some candidate appears in second twice,
then that candidate is the winner. Finally, if no candidate appears in second twice, they all appear
in second once, and therefore all appear in third once, so there is a three-way tie. Under such rules
with a confident Mallows prior with a fixed φ, we can explicitly compute the probability that each
candidate wins as a function of φ. This assumes, without loss of generality, that the voter’s observed
ranking is abc. The probability that a and c each win under possible reports are shown in Table 3.
One can check that reporting anything other than abc neither increases the probability that a wins or
decreases the probability that c wins, which means the rule is OBIC.
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