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The distortion of a voting rule measures how bad (in terms of social welfare) the winning candidate or

alternative can be due to limited information about utilities. Without any further assumptions, unbounded

distortion is inevitable. We argue, however, that it is reasonable to assume that some information about the

stakes of voters is known, where someone with high stakes stands to gain or lose a lot, depending on the

outcome. We develop a general framework that captures this idea through the notion of stakes-proportionality,

whereby voters are reweighted according to their stakes. Using this framework, we derive tight bounds on

achievable distortion under stakes-proportionality, when perfect information about stakes is available. When

stakes can only be estimated, we show that our distortion bounds hold approximately, implying that even a

coarse estimate of stakes can bring about a large reduction in distortion. Finally, for the setting where stakes

are completely unknown, we develop a proof-of-concept mechanism that ties together multiple elections so

that the behavior of voters reveals their stakes, leading to bounded distortion in each election.

Manuscript submitted for review to the 25th ACM Conference on Economics & Computation (EC'24).
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1 INTRODUCTION

In the standard model of voting, voters express their ordinal preferences by ranking a set of

alternatives. It is reasonable to assume, however, that there exist cardinal utilities that voters

associate with alternatives, and a voter’s ranking is consistent with those latent utilities. From this

viewpoint, a natural goal for a voting rule—which aggregates the given rankings—would be to

select a good alternative in terms of utilitarian social welfare (the sum of utilities), despite having

access only to ordinal information. The notion of distortion [Procaccia and Rosenschein, 2006]

measures how far a given voting rule is from achieving this goal. It is the worst-case ratio between

the social welfare of the optimal alternative and the social welfare of the alternative selected by the

rule, where the worst case is taken over utilities.

Without any additional assumptions, any deterministic voting rule must have unbounded distor-

tion. Intuitively, even in an election with two voters, one preferring 𝑎 to 𝑏 and the other preferring

𝑏 to 𝑎, it could be the case that one voter has arbitrarily high utility for their preferred alternative

whereas the other has low utility for both alternatives, but it is impossible to differentiate between

𝑎 and 𝑏 based on the ordinal information alone. To circumvent this obstacle, the rich literature on

distortion has explored several approaches, one of which is to assume access to limited cardinal

information (see Section 1.2 for details). Our work is inspired by this approach; we are interested in

a specific and very natural type of cardinal information: stakes.

To motivate the idea of stakes, let us consider a concrete example. Cambridge, Massachusetts, like

many US cities, seeks public input on the questions surrounding affordable housing. In past years,

the city has proposed to permit building taller buildings— a move that would increase affordable

housing, but would change the skyline of Cambridge and potentially cast shadows over existing

homes. City Councilor Burhan Azeem, who proposed the amendments, said “I understand that tall

buildings are something that people are sensitive to, but this comes down to which should we care

more about. How tall a building is? Or the people who don’t have stable housing?” [Brinker, 2023].

Councilor Azeem is pointing out a contrast of stakes: while both homeowners and those who don’t

have stable housing are affected by the decision of whether to permit taller buildings, the latter

group is far more affected.

Now, suppose the decision is put to public referendum; placing this example in the utility model

above (using numbers to illustrate the intuition), suppose that 10% of residents are renters who are

at risk of losing their home due to rising rental prices, and 90% are homeowners who are worried

that affordable housing would lead to a decrease in the value of their property. Let the former

group have utility 100 for accepting the proposal and utility 0 for rejecting it; let the latter group

have utility 1 for rejecting the proposal and utility 0 for accepting it. Based on their utilities, 90% of

residents will vote to reject the proposal, and any majority-consistent voting rule must confirm

their choice. This is a severely suboptimal outcome, as the social welfare of accepting the proposal

is more than 10 times that of rejecting it.

Notice that, in the foregoing example, the chosen numbers do not matter much: the key problem

is that a minority of residents have disproportionately high stakes, but they lack the voting power

to sway the election. By contrast, the majority stands to gain little, so when they get their way,

little value is generated for the population. It is not hard to think of salient examples of real

political decisions with this property: consider masking requirements and immunocompromised

populations, accessibility features (e.g., wheelchair ramps) and those who rely on them, or the design

of public transit and those who cannot afford private transportation. Although the impossibility

that all deterministic rules have unbounded distortion is often thought of as a theoretical one,

these examples make the issue seem practically pressing: given that people are likely to have
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disparate stakes in real issues— and sometimes minority groups have much higher stakes than the

majority— these examples suggest that such welfare loss can occur in real elections.

Motivated by this problem, we pursue bounded distortion by assuming that voters’ stakes are

known, at least approximately, to the voting rule. Unlike a significant branch of the distortion

literature that assumes voters’ utilities are normalized, we will allow voters’ utilities to be arbitrary

and unknown to ensure that our model captures the problematic examples above. One may wonder

whether it is plausible to know stakes information but not precise utilities. To see why knowing

stakes is far easier, consider the affordable housing example: conceptually, stakes captured how

affected each voter is relative to other voters. Stakes information, then, is just a single number

measuring the extent to which a voter can gain or lose depending on the decision outcome, relative

to other voters in the election. As the number of alternatives in an election grows, the gap in difficulty

widens between the doing a coarse-grained assessment of how relatively affected a voter is (which

in the examples above is not hard to do) versus understanding individuals’ fine-grained preferences

over all alternatives. As we discuss below, our results permit having just approximate stakes

information; going further, we then initiate a study of how voters’ stakes can be revealed in their

behavior, potentially permitting our positive results to hold even in cases where legitimate estimates

of voters’ stakes are unavailable.

1.1 Approach and contributions

How should we measure stakes? (Section 2). First, we must embed a model of stakes in the

standard model of voting with latent utilities. The affordable housing example illustrates that, intu-

itively, a voter’s stakes are captured in their utility vector — that is, their utilities across alternatives.

In that example, it seems natural to measure voters’ stakes as the difference between their utilities

(so the respective stakes of renters and homeowners would be 100 and 1). However, how to measure

stakes becomes less obvious when𝑚 > 2. (Consider the utility vectors (1, 1, 0) and (1, 0, 0). Which

reflects higher stakes?) We thus define and study general stakes functions 𝑠: any mapping from a

voter’s utility vector to a scalar measure of their stakes in the election.

What can we do with perfect stakes information? (Section 3). In the affordable housing

example, an intuitive idea for addressing high distortion would have been to re-weight votes

according to voters’ stakes. Taking this approach, we characterize the distortion possible, across

stakes functions 𝑠 , by any deterministic or randomized rule when votes are re-weighted in a

stakes-proportional way.

Deterministic rules. Here we find that knowing stakes information— even according to a surpris-

ingly simple stakes function— can drop the distortion from ∞ to the number of alternatives𝑚. We

first prove a lower bound showing that no deterministic voting rule, when reweighted by any stakes

function 𝑠 according to any reweighting scheme, can achieve distortion lower than𝑚 (Theorem 3.1).

We then prove a general upper bound on the distortion of any deterministic voting rule, when

votes are reweighted proportionally via any stakes function 𝑠 (Theorem 3.4). We use this bound to

identify a stakes function, voting rule pair that matches our lower bound: we show that the rule

Plurality achieves optimal distortion𝑚 when reweighted according to the stakes as measured

by maximum utility or the difference between maximum and minimum utilities (Proposition 3.7).

We henceforth refer to these stakes functions as 𝑠 = max and 𝑠 = range, respectively. This bound
further implies proportional re-weighting is sufficient to achieve optimality. Beyond Plurality,

we surprisingly find that among deterministic voting rules, most are not helped by knowledge of

stakes— a result which has both positive and negative interpretations.

Randomized rules (plus, an independently interesting lemma). We repeat this analysis for ran-

domized rules, showing that if a stakes-reweighted voting rule is permitted to be randomized,
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the distortion can be as low as 𝑂 (
√
𝑚). We show that the rule Stable Lottery [Ebadian et al.,

2022] achieves 𝑂 (
√
𝑚) distortion when given stakes measured by 𝑠 = max, 𝑠 = range, or 𝑠 = sum

(the sum of a voter’s utilities) (Theorem 3.12). The lemma used to prove this upper bound may be

of independent interest, as it shows a surprising and technically useful connection between our

setting and the popular setting of distortion assuming unit-normalized utilities (i.e., where voters’

utilities are assumed to sum to 1). We observe, first, that assuming voters’ utilities sum to 1 is akin

to assuming they have identical stakes, as measured by the stakes function 𝑠 = sum. Then, we show

that this assumption is equivalent, from a distortion perspective, to permitting arbitrary utilities

but reweighting votes by stakes measured by 𝑠 = sum. In fact, we show this equivalence holds

for any 1-homogeneous stakes function (Lemma 3.13). This result establishes a formal link— and

permits the transfer of bounds— between two key assumption classes in the distortion literature:

unit-normalized utilities and queries of cardinal information (our setting). Finally, we conclude our

analysis with a lower bound proving that Stable Lottery’s distortion is within a log𝑚 factor of

optimal across randomized rules and stakes functions (Theorem 3.11).

What if we just have stakes information in orders of magnitude? (Section 4). In the mo-

tivating examples above, we can identify one or more population groups who are substantially

disproportionately affected by the decision. However, assigning any single number to the extent

to which their stakes are higher is difficult; in reality, people’s stakes may be observable (or even

fundamentally measurable) only at the resolution of orders of magnitude. Fortunately, in Section 4

we find that even very approximate stakes information can help: we give an instance-wise upper

bound showing that for any 1-homogeneous stakes function 𝑠 (a natural class encompassing all 𝑠

discussed so far), if our stakes information is 𝛿-approximately correct (and adversarially-designed

otherwise), the distortion of any rule 𝑓 scales simply by 𝛿 (Theorem 4.1). Given that the distortion of

deterministic voting is otherwise unbounded, this result means that even just coarsely accounting

for voters’ differing stakes can offer substantial improvements in distortion.

What if we don’t have any stakes information at all? (Section 5). In some cases, we may not

even be able to guess voters’ stakes at the resolution of orders of magnitude— or, even more likely,

one may encounter cases where it is not possible to make a publicly acceptable case that a certain

group should receive disproportionate representation in a given democratic decision. However,

in many such cases, it is still desirable to account for stakes; this is an extremely sticky problem,

which merits more exploration than we can do in a single paper. We present an initial study of

this problem in Section 5, where we propose and explore a class of mechanisms that aims to reveal

voters’ information in their behavior and, in the process, accounts for stakes automatically. This

class of mechanisms, called multi-issue mechanisms, is based on a simple idea: it requires voters

to decide how to allocate a total allotment of voting power across elections. In forcing voters to

make such trade-offs, this class of mechanisms exploits a special property of stakes information:

unlike other kinds of cardinal utility information, stakes-information is action-relevant, describing,

roughly, how much a voter may care about the outcome of a given election.

After defining this class of mechanisms, we perform a proof-of-concept analysis of a mechanism

in this class. This example illustrates mathematically how voters’ stakes can be revealed in their

behavior, and how our results from the previous sections can be applied to analyze such amechanism.

Our distortion analysis of this mechanism shows that although any election run individually within

the mechanism could have unbounded distortion, the distortion of each election in our mechanism

is at most 𝛿𝑚2
, where 𝛿 corresponds to the extent to which voters have the same total stakes across

the issues we place on the multi-issue ballot (Theorem 5.4).
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1.2 Related work

The literature on distortion is quite rich; for an overview, we refer the reader to the survey by

Anshelevich et al. [2021]. At a high level, there are at least three avenues to achieving meaningful

bounds on distortion. The first (and by far the most common) is to restrict the utilities, e.g., by

assuming that voters have the same sum of utilities [Boutilier et al., 2015, Procaccia and Rosenschein,

2006], or by assuming that the utilities are induced by an underlying metric space [Anshelevich

et al., 2018]. The second is to consider public spirit, in the sense that voters seek to optimize social

welfare in addition to their own utilities [Flanigan et al., 2023]. And the third, which is most relevant

to our work, is to assume the availability of limited cardinal information.

In the context of the last approach, the work of Amanatidis et al. [2021] is most closely related

to ours. They study deterministic voting rules with access to one of two kinds of queries: value

queries, where the voting mechanism can directly ask agents about any one of their utilities;

and comparison queries, where the voting mechanism can ask agents: “for alternatives 𝑎 and 𝑏,

is your utility for 𝑎 at least 𝜏 times your utility for 𝑏?” Among other results, they prove that

constant distortion is achievable using 𝑂 (log
2𝑚) queries per voter, where 𝑚 is the number of

alternatives. To achieve their upper bounds, they construct an approximate utility profile via the

queries and maximize social welfare with respect to these estimated utilities. This is conceptually

very different from our approach of employing common voting rules and accounting for stakes

through stakes-proportionality. Nevertheless, there are a few technical connections between the

work of Amanatidis et al. [2021] and ours, which comment on below.

Another (more distantly) related paper in the same vein is that of Abramowitz et al. [2019].

Their main results pertain to a setting where answers to the above comparisons queries are given

for every pair of alternatives, either with respect to a single fixed threshold 𝜏 or multiple fixed

thresholds; their distortion bounds are parameterized by these thresholds. They additionally assume

an underlying metric space and therefore their results are technically incomparable to ours.

Although standard social choice mechanisms do not account for stakes,
1
the concept has been

conceived of in multiple disciplines. From the social sciences, there is the philosophical notion of

proportionality— the idea that “power should be distributed in proportion to people’s stakes in the

decision under consideration” [Brighouse and Fleurbaey, 2010]. In the context of binary decisions,

Azrieli [2018] explores the welfare cost of treating agents symmetrically when they have different

stakes, and the results of Fleurbaey [2008] suggest that accounting for stakes can help: they show

that in elections over two alternatives, reweighting each voter’s vote by the difference of their

utilities— a measurement of their “stakes”— increases the welfare of majority voting. Our work

can be seen as generalizing the latter analysis substantially, permitting𝑚 alternatives, any stakes

function 𝑠 , any stakes-reweighting scheme, and any voting rule.

The idea that those with higher stakes in a decision should have greater political influence

arises in many other theories in political science as well, such as the principle of affected interests

[Fung, 2013]; the concept of empowered inclusion [Beauvais and Warren, 2019, Warren, 2017]; and

the concept of precarity [Näsström and Kalm, 2015], which describes the idea that socially or

economically vulnerable populations may be more affected by political issues due to their inability

to adjust to decisions that are sub-optimal for them. Our work can be seen as a technical companion

to this literature in three ways: it (1) offers a formal framework for modeling stakes, (2) explores

the impact of accounting for stakes as proposed by these theories, and (3) identifies a class of

mechanisms which can be explored further as a method for accounting for stakes.

1
We know of two social choice papers that use the term “stakes” [Andersen et al., 2014, Kahng and Kehne, 2022]; both use

the term differently and explore unrelated questions.
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Our mechanism design approach requires assumptions about how voters will engage with the

mechanism, which can be informed by existing social science research on how voter behavior

depends on preference intensity [Downs, 1957, Feddersen and Pesendorfer, 1996]. Moreover, our

proposed class of mechanisms relates to (but is not encompassed by) two existing voting mech-

anisms, quadratic voting [Posner and Weyl, 2015] and storable votes [Casella, 2005]. We defer a

detailed discussion of these connections to Sections 5 and 6.1, where we can establish them more

concretely in comparison to the mechanisms we study.

2 MODEL

We introduce the model in two parts. Section 2.1 establishes the standard voting model; Section 2.2

embeds our model of voters’ stakes within it. Throughout the paper, we use the shorthand 1ℓ0ℓ ′
to mean a vector containing ℓ ones followed by a string of ℓ ′ zeros. We let I(·) be the indicator
function.

2.1 The voting model

In an election, there are 𝑛 voters and𝑚 alternatives. We let voters 𝑖 ∈ [𝑛] and alternatives 𝑎 ∈ [𝑚]
have some fixed numbering. Voters’ underlying preferences over [𝑚] are modeled with utilities:

each voter 𝑖 has a utility 𝑢𝑖 (𝑎) ∈ R≥0 for each alternative 𝑎 ∈ [𝑚]. Let u𝑖 = (𝑢𝑖 (𝑎) |𝑎 ∈ [𝑚]) be 𝑖’s
utility vector, and let u be a generic utility vector. We summarize all voters’ utilities in a utility

matrix 𝑈 ∈ R𝑛×𝑚≥0
.

The voting process. Each voter 𝑖 expresses their preferences via a complete ranking over (i.e.,

permutation of) [𝑚]. Letting 𝑆𝑚 be the set of all permutations of [𝑚], a generic ranking is 𝜋 ∈ 𝑆𝑚 .
We use 𝑎 ≻𝜋 𝑎′ to denote that 𝑎 precedes 𝑎′ in 𝜋 , reflecting that 𝑎 is preferred over 𝑎′. Abusing
notation slightly, we let 𝜋 ( 𝑗) denote the alternative ranked in the 𝑗-th position in ranking 𝜋 . When

voter 𝑖 “votes”, they submit a ranking 𝜋𝑖 . This ranking is determined by u𝑖 : 𝑖 ranks alternatives in
decreasing order of their utilities, so that 𝑢𝑖 (𝑎) > 𝑢𝑖 (𝑎′) =⇒ 𝑎 ≻𝜋𝑖 𝑎′ for all 𝑎, 𝑎′ ∈ [𝑚].2
A collection of 𝑛 voters’ rankings is called a preference profile 𝝅 . As in prior work such as that

of Xia [2020], instead of working with profiles 𝝅 , we will work with histograms, which summarize

collections of rankings by their frequencies. A generic preference histogram is a vector indexed

by rankings, h = (ℎ𝜋 |𝜋 ∈ 𝑆𝑚), where ℎ𝜋 ∈ [0, 1] is the fraction of rankings in a given collection

equal to 𝜋 . As such, ∥h∥1 = 1. The space of all possible preference histograms is thus the simplex of

all valid distributions over 𝑆𝑚 , which we call Δ(𝑆𝑚) :=
{
h ∈ [0, 1]𝑆𝑚 :

∑
𝜋∈𝑆𝑚 ℎ𝜋 = 1

}
. Connecting

profiles and histograms, we say 𝝅 is consistent with h if each 𝜋 ∈ 𝑆𝑚 appears in 𝝅 exactly 𝑛 · ℎ𝜋
times. Let Πh

be the set of all profiles consistent with a histogram h. Note that Πh
is non-empty iff

all entries of h are rational.

Since voters’ rankings are fully implied by 𝑈 , we let 𝑈 constitute an instance. We denote the

histogram implied by𝑈 as hist(𝑈 ), whose 𝜋-th entry is given by

hist𝜋 (𝑈 ) := 1/𝑛∑𝑖∈[𝑛] I{𝜋𝑖 = 𝜋}, for all 𝜋 ∈ 𝑆𝑚 .
Voting rules. Let Δ( [𝑚]) denote the set of all probability distributions over the alternatives [𝑚].
Then, a voting rule is a function 𝑓 : Δ(𝑆𝑚) → Δ( [𝑚]) that maps a preference histogram to a

distribution over winning alternatives.
3
We refer to this class of functions as randomized rules

to distinguish them from their sub-class, deterministic voting rules, which map a histogram to a

distribution with singleton support. Among deterministic rules, the only specific rule we study is

2
For simplicity of our lower bounds, we will assume worst-case rankings when 𝑢𝑖 (𝑎) = 𝑢𝑖 (𝑎′ ) ; one could instead tie-break

explicitly by perturbing the utilities by arbitrarily small amounts.

3
Histograms are inherently anonymized, so we study only anonymous voting rules (encompassing all common voting

rules).
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Plurality, whose winner is the alternative that is ranked first by the most voters. Among random-

ized rules, we consider the Stable Lottery rule [Ebadian et al., 2022], which draws a winner either

at random or from a stable lottery—a distribution over a subset of [𝑚] that is preferred by voters to
other such subsets. We will not apply this rule’s precise definition, so we defer it to Appendix B.9.

Distortion. Let an alternative 𝑎’s utilitarian social welfare be sw(𝑎,𝑈 ) :=
∑
𝑖∈[𝑛] 𝑢𝑖 (𝑎).We bench-

mark the social welfare of the winner against that of 𝑎∗ := argmax𝑎∈[𝑚] sw(𝑎,𝑈 ), the highest-
welfare alternative. For any rule 𝑓 , the value of this approximation ratio in instance 𝑈 is called the

instance-specific distortion, defined as

dist𝑈 (𝑓 ) :=
sw(𝑎∗,𝑈 )

E[sw(𝑓 (hist(𝑈 )),𝑈 )] ,

where the expectation is over the draw of the winner from the distribution 𝑓 (hist(𝑈 )). As is
standard, we evaluate 𝑓 via its overall distortion, dist(𝑓 ), which is the worst-case approximation

ratio over all possible instances𝑈 :

dist(𝑓 ) := sup𝑛≥1
sup𝑈 dist𝑈 (𝑓 ).

The supremum over 𝑛 is just to more conveniently deal with the fact that in worst-case instances,

𝑛 must be large enough relative to 𝑚 to realize utility matrices with 𝑚-dependent fractional

compositions. We consider the distortion to be a function of𝑚, as is standard in the literature.

2.2 A stakes framework within the voting model

Measuring stakes via stakes functions. A stakes function is any function 𝑠 : R𝑚≥0
→ R that maps

a utility vector to a scalar measure of the stake it reflects. Intuitively, a voter’s stake should depend

on the relative magnitudes of their utilities, but not which alternatives they prefer; we thus restrict

to functions 𝑠 which are permutation invariant. For example, utility vectors (0, 1) and (1, 0) reflect
the same stake. We often apply this invariance to evaluate voters’ stakes on a sorted version of

their utility vector.

In some results, we restrict our consideration to stakes functions that are 1-homogeneous, i.e., for

all scalars 𝛼 , 𝑠 (𝛼u) = 𝛼𝑠 (u). This applies to 𝛼 = 0, implying that for all 1-homogeneous 𝑠 , 𝑠 (0) = 0.

This restriction on 𝑠 is natural in that it makes our notion of accounting for stakes, formalized below,

invariant to rescaling𝑈 . Although many of our results apply for generic stakes functions, three in

particular will come up frequently, so we define shorthand for them:

range(u) := max𝑎 𝑢 (𝑎) − min𝑎 𝑢 (𝑎), max(u) := max𝑎 𝑢 (𝑎), sum(u) :=
∑
𝑎 𝑢 (𝑎)

Stakes-reweighting of votes. Colloquially, we say that a voting process “accounts for stakes” if it

grants voters representation to an extent that depends on their relative stakes. We can think of this

as a form of stakes-dependent reweighting: instead of voter 𝑖’s ranking contributing to the 𝜋𝑖-th

entry of the histogram with weight 1/𝑛, its contribution is additionally weighted by some function

of 𝑠 (u𝑖 ). We can also think of this as recomposing the electorate, by effectively duplicating voters

in proportion to some function of 𝑠 (u𝑖 ). For convenience of intuition and notation, we adopt the

second interpretation. Formally, let 𝑟 : R≥0 → R≥0 be a generic recomposition function. Then, the

(𝑟, 𝑠)-recomposed histogram arising from𝑈 has 𝜋-th entry

hist𝑟◦𝑠𝜋 (𝑈 ) =
∑
𝑖∈[𝑛] 𝑟 (𝑠 (u𝑖 )) · I(𝜋𝑖 = 𝜋)∑

𝑖∈[𝑛] 𝑟 (𝑠 (u𝑖 ))
∀𝜋 ∈ 𝑆𝑚,

representing the fraction of voters in the (𝑟, 𝑠)-recomposed electorate with ranking 𝜋 . In this

recomposed histogram, each voter 𝑖’s ranking is represented with weight 𝑟 (𝑠 (u𝑖 ))/
∑
𝑖∈[𝑛] 𝑟 (𝑠 (u𝑖 )).
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Proportional stakes-reweighting of votes. In this paper, we will focus on perhaps the sim-

plest reweighting scheme: stakes-proportionality, where 𝑟 is the identity function 𝐼 . In the 𝑠-

proportional histogram hist𝐼◦𝑠 (𝑈 ), voters’ votes are reweighted in proportion to their stakes, i.e., by

𝑠 (u𝑖 )/
∑
𝑖∈[𝑛] 𝑠 (u𝑖 ). For notational simplicity, we will shorten the name of hist𝐼◦𝑠 to hist𝑠 henceforth.

We will use stakes proportionality (or 𝑠-proportionality) to refer to the condition under which votes

are reweighted in this way.

Distortion under stakes-proportionality. In a given instance, reweighting an electorate to be

stakes-proportionate will potentially change the distortion. We define the 𝑠-distortion of 𝑓 as its

distortion in hist𝑠 (𝑈 ), the 𝑠-proportional electorate arising from𝑈 :

dist𝑠𝑈 (𝑓 ) :=
max𝑎∈[𝑚] sw(𝑎,𝑈 )
E[sw(𝑓 (hist𝑠 (𝑈 )),𝑈 )] , and dist𝑠 (𝑓 ) := sup

𝑛≥1

sup

𝑈

dist𝑠𝑈 (𝑓 ).

3 WHAT IF WE HAVE PERFECT STAKES INFORMATION?

3.1 Deterministic voting rules

We begin by analyzing deterministic voting rules, which without stakes information have infinite

distortion (the proof is essentially the housing example in Section 1; for a formal proof, see

Appendix B.1). Motivated by this impossibility, we will study what 𝑠-distortion is possible across

deterministic rules and stakes functions.

3.1.1 Lower bound for all 𝑓 , 𝑠 . Our first result is a lower bound that shows that the best possible

𝑠-distortion achievable by any deterministic rule 𝑓 , given stakes information according to any

stakes function 𝑠 , is at least𝑚 − 1.

Theorem 3.1 (lower bound). For all 𝑠 and deterministic 𝑓 ,

dists (𝑓 ) ≥ 𝑚 − 1.

Proof sketch. Our approach is to define two instances,𝑈 and𝑈 ′
, and show that all deterministic

rules 𝑓 must have at least𝑚 − 1 distortion in one of these two instances. To construct𝑈 , 𝑈 ′
, first

set aside one alternative 𝑎′; let the remaining alternatives be 𝑎1 . . . 𝑎𝑚−1. For any ℓ ∈ [𝑚 − 1],
define 𝐴ℓ = {𝑎 𝑗 | 𝑗 ∈ [𝑚] \ {ℓ}}. When we write 𝐴ℓ in a ranking, it represents a ranking over all

the alternatives within it in increasing order of index. Now, we define voters’ rankings 𝝅 and two

possible underlying utilities𝑈 and𝑈 ′
. Divide voters in into𝑚 − 1 groups, and consider a voter 𝑖 in

group ℓ . Let them rank alternatives as 𝜋𝑖 = 𝑎ℓ ≻ 𝑎′ ≻ 𝐴ℓ . Their underlying utility vectors as given

by𝑈 and𝑈 ′
, called u𝑖 and u′𝑖 , are defined below:

alternative: 𝑎ℓ ≻ 𝑎′ ≻ 𝐴ℓ
u𝑖 for 𝑖 ∈ group ℓ : 1 1 0 . . . 0

u′𝑖 for 𝑖 ∈ group ℓ : 1 0 0 . . . 0

With this construction, the proof follows from three observations. Observation 1: First, because

both 𝑈 and 𝑈 ′
result in the same ranking for each voter 𝑖 , hist(𝑈 ) ≡ hist(𝑈 ′), and these two

underlying utility matrices are indistinguishable to any voting rule. Observation 2: Within each

utility matrix, all voters have the same ordered utility vector, and thus have the same stakes;

formally, hist𝑠 (𝑈 ) ≡ hist(𝑈 ) and hist𝑠 (𝑈 ′) ≡ hist(𝑈 ′). Observation 3: In both 𝑈 and 𝑈 ′
, the social

welfare of any 𝑎ℓ is equal to 𝑛/(𝑚 − 1); however, in 𝑈 , 𝑎′ has high social welfare (sw(𝑎′,𝑈 ) = 𝑛)
while in𝑈 ′

, 𝑎′ has low social welfare (sw(𝑎′,𝑈 ′) = 0).

Now, when a voting rule 𝑓 receives the profile 𝝅 , either 𝑓 (𝝅) = 𝑎′ or 𝑓 (𝝅) = 𝑎ℓ for some

ℓ ∈ [𝑚 − 1]. If the former is true, Observations 1-3 imply that for any 𝑠 , dist𝑠
𝑈 ′ (𝑓 ) = 𝑛/(𝑚−1)

0
= ∞. If
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the latter is true, Observations 1-3 imply that for any 𝑠 , dist𝑠
𝑈 ′ (𝑓 ) = 𝑛

𝑛/(𝑚−1) =𝑚 − 1. We spell out

this argument in full formality in Appendix B.2. □

Remark 3.2 (Extension to arbitrary recomposition functions). In the instance giving Theorem 3.1,

either utility matrix gave all voters identical stakes. If 𝑠 (u𝑖 ) is equal across voters, then for any

recomposition function 𝑟 , 𝑟 (𝑠 (u𝑖 )) will be equal across voters. Observation 2 still holds, and the

lower bound applies. Given that we will find this lower bound to be tight, it implies that in the

worst case, applying a recomposition function other than the identity function will not improve

the 𝑠-distortion of any deterministic voting rule, for any stakes function 𝑠 .

Remark 3.3 (Connection to existing results). Theorem 7 of Amanatidis et al. [2021] shows that any

single value query of utilities (where the voting mechanism can directly ask agents about any one

of their utilities) can enable at best Ω(𝑚) distortion. Our lower bound in Theorem 3.1 generalizes

this lower bound, showing that any system of queries yielding the value of a scalar-valued stakes

function, when paired with a deterministic voting rule, can achieve at best Ω(𝑚) distortion.4

3.1.2 Upper bound for all 𝑓 , 𝑠 . Now, we will prove upper bound on the 𝑠-distortion of any deter-

ministic voting rule 𝑓 , for any stakes function 𝑠 . To reason about all voting rules 𝑓 and stakes

functions 𝑠 at once, we must determine: Given any pair of 𝑠, 𝑓 , what properties of 𝑠 and 𝑓 will lead to

low distortion? We now introduce two such properties. First, 𝛽𝑓 is the minimum fraction of voters

that must rank the winner by 𝑓 in first position:

𝛽𝑓 := minh∈Δ(𝑆𝑚 )
∑
𝜋∈𝑆𝑚 ℎ𝜋 · I{𝜋 (1) = 𝑓 (h)}.

Second, 𝜅-upper(𝑠) and 𝜅-lower(𝑠) measure the extent to which 𝑠 can over- or under-estimate

max(u), respectively:
𝜅-upper := supu

𝑠 (u)
max(u) , 𝜅-lower(𝑠) := infu

𝑠 (u)
max(u) .

While bounds in terms of other properties of 𝑠, 𝑓 are conceivable, these quantities will permit

optimal upper bounds.

In terms of these quantities, Theorem 3.4 gives an upper bound on the 𝑠-distortion for any 𝑠 and

any deterministic 𝑓 . The proof relies on the insight that 𝛽𝑓 and the 𝜅 values are linked: 𝛽𝑓 lower

bounds how often the winner is ranked first, while the 𝜅’s links the stakes and maximum utility of

any voter who ranks the winner first. This connection implies a lower-bound on the social welfare

of the winner.

Theorem 3.4 (upper bound). For all 𝑠 and deterministic 𝑓 ,

dists (𝑓 ) ≤ 𝛽−1

𝑓
· 𝜅-upper(𝑠) /𝜅-lower(𝑠).

Proof. Fix an instance𝑈 , a stakes function 𝑠 , and a deterministic rule 𝑓 . Let 𝑎′ = 𝑓 (hist𝑠 (𝑈 )) be
the winner of the 𝑠-proportional election. First, we have that the social welfare of any alternative 𝑎

is upper-bounded:

sw(𝑎,𝑈 ) ≤
∑︁
𝑖∈[𝑛]

max(u𝑖 ) ≤
∑︁
𝑖∈[𝑛]

𝑠 (u𝑖 ) /𝜅-lower(𝑠). (1)

Now, let 𝑁𝑎′ be the set of voters who rank 𝑎′ first. All 𝑖 ∈ 𝑁𝑎′ must have at least some utility for 𝑎′:

𝑢𝑖 (𝑎′) = max

𝑎
𝑢𝑖 (𝑎) ≥ 𝑠 (u𝑖 )/𝜅-upper(𝑠). (2)

Also, since 𝑎′ is the winner, 𝑁𝑎′ composes at least a 𝛽𝑓 fraction of the stakes-proportional electorate:∑
𝑖∈𝑁𝑎′ 𝑠 (u𝑖 ) /

∑
𝑖∈[𝑛] 𝑠 (u𝑖 ) ≥ 𝛽𝑓 .

4
Note: a necessary step in showing that our lower bound subsumes theirs is arguing that our lower bound actually applies

to any stakes-dependent electoral recomposition, not just proportional recomposition, which we do.
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This fact, combined with Equation (2), gives that

sw(𝑎′,𝑈 ) ≥
∑︁
𝑖∈𝑁𝑎′

𝑢𝑖 (𝑎′) ≥
∑︁
𝑖∈𝑁𝑎′

𝑠 (u𝑖 ) /𝜅-upper(𝑠) ≥ 𝛽𝑓

∑︁
𝑖∈[𝑛]

𝑠 (u𝑖 ) /𝜅-upper(𝑠).

Combining this with Equation (1) and denoting the maximum welfare alternative by 𝑎∗, we obtain
that

dist𝑠𝑈 (𝑓 ) =
sw(𝑎∗,𝑈 )
sw(𝑎′,𝑈 ) ≤ 𝛽−1

𝑓
· 𝜅-upper(𝑠)
𝜅-lower(𝑠) . □

Remark 3.5. Theorem 3.4 also holds if in the definitions of 𝜅-upper(𝑠) and 𝜅-lower(𝑠), max is
replaced with range. This is because the worst-case distortion can always be realized by instances

where every voter has minimum utility 0, in which casemax = range. We prove this in Appendix B.3.

3.1.3 Optimality of Plurality and 𝑠 =max. In our first extension of these results, we identify a

voting rule-stakes function pair that attains the best possible 𝑠-distortion𝑚, matching our lower

bound in Theorem 3.1. We do this by minimizing the upper bound in Theorem 3.4, which amounts

to choosing 𝑠 and 𝑓 to minimize both 𝜅-upper(𝑠)/𝜅-lower(𝑠) and 𝛽−1

𝑓
.

It is easy to see that 𝑠 = max achieves the minimal value 𝜅-upper(𝑠)/𝜅-lower(𝑠) = 1. For 𝛽𝑓 ,

the answer is more subtle; in Appendix B.4, we prove the following lemma, which shows that the

maximal attainable value is 𝛽𝑓 = 1/𝑚, and that this maximum is achieved by Plurality.

Lemma 3.6. For any deterministic voting rule 𝑓 , 𝛽𝑓 ≤ 1/𝑚, and 𝛽Plurality = 1/𝑚.

With this lemma in hand, we now apply Theorem 3.4 to conclude the following upper bound,

which matches the lower bound in Theorem 3.1.

Proposition 3.7. dist
max (Plurality) ≤ 𝑚.

The above result suggests using Pluralitywith 𝑠 = max as a promising choice. However, in some

motivating contexts — e.g., where stakes-proportionality arises from voters’ behavior—we may not

be able to control which stakes function is used. To characterize the 𝑠-distortion of Plurality, we

show that it is essentially tight with respect to Theorem 3.4 for all 𝑠 , except that 𝜅-lower is replaced

with �̃�-lower, in which the supremum is taken over only utility vectors u with the same first and

second entry. See Appendix B.5 for the formal definition of �̃�-lower and subsequent proof.

Proposition 3.8. For all 𝑠 , dists (Plurality) ≥ (𝑚 − 1) · 𝜅-upper(𝑠 )
�̃�-lower(𝑠 ) .

Remark 3.9 (Connection to existing results). Theorem 1 of Amanatidis et al. [2021] shows that

their voting mechanism 1-PRV—which is equivalent to Plurality under stakes-proportionality

with respect to max—gives distortion 𝑂 (𝑚). This result corresponds to our upper bound on the

max-distortion of Plurality, proven via Proposition 3.7.

3.1.4 Beyond Plurality. To understand the 𝑠-distortion of other deterministic voting rules 𝑓 ,

we first observe that when 𝛽𝑓 = 0, there is an unbounded gap between the lower bound in

Theorem 3.1 and the upper bound in Theorem 3.4. Unfortunately, the 𝑠-distortion for such 𝑓 is

indeed unbounded— a finding that is practically significant because, as we prove in Appendix B.6,

most popular voting rules have 𝛽𝑓 = 0.

Proposition 3.10. For all stakes functions 𝑠 and all deterministic rules 𝑓 with 𝛽𝑓 = 0, dist
𝑠 (𝑓 ) = ∞.

Proof. Let 𝑓 satisfy 𝛽𝑓 = 0, and fix a histogram h in which the winner 𝑓 (h) is never ranked first.
Then, set the underlying𝑈 to realize this histogram while setting each voter’s ordered utility vector

to 110𝑚−1. Since the winner is never ranked first, it must get 0 average utility. Since each voter gives

their respective first-ranked alternative utility 1, at least one alternative must have at least 1/𝑚
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average utility; thus, dist𝑈 (𝑓 ) = ∞ is unbounded. Because all voters have identical utility vectors,

for all 𝑠 , hist(𝑈 ) = hist𝑠 (𝑈 ) =⇒ 𝑓 (hist(𝑈 )) = 𝑓 (hist𝑠 (𝑈 )) =⇒ dist𝑈 (𝑓 ) = dist𝑠
𝑈
(𝑓 ) = ∞. □

Proposition 3.7 and Proposition 3.10 together point to Plurality-like rules as uniquely promising

when stakes are accounted for. This may seem strange, as Plurality is often considered a “bad rule”

due to its lack of expressiveness. One positive interpretation of this finding is that Plurality, when

stakes are accounted for, actually accounts for the most critical information; this is good news,

as Plurality-like voting methods are widely used. Another possibility is that the ranking-based

ballot format is insufficiently expressive; as we discuss in Section 6, our model and approach extend

easily to richer ballot formats.

It is also important to acknowledge that although 𝛽𝑓 = 0 for many non-Plurality voting rules,

this is a worst case result. It could very well be that in typical instances, the winners chosen by other

voting rules are often ranked first by many voters. In this case, our impossibility in Proposition 3.10

would be quite pessimistic. This possibility motivates beyond-worst-case analysis, and/or simple

sufficient conditions under which a broader range of voting rules canmake use of stakes information.

We leave these directions to future work.

3.2 Randomized voting rules

Next, we give an analogous but brief analysis of randomized rules. First, we lower-bound the 𝑠-

distortion across all 𝑓 and all 1-homogeneous 𝑠 , characterizingwhat 𝑠-distortion stakes-proportionality

will permit. For comparison, randomized rules have at best Ω(𝑚) distortion without accounting

for stakes (see Appendix B.10 for details).

Theorem 3.11 (lower bound). For all 1-homogeneous 𝑠 , randomized 𝑓 , dist𝑠 (𝑓 ) ≥
√
𝑚

10+3 log𝑚
.

Proof sketch. The construction of this lower bound is rather intricate, and its full proof is

deferred to Appendix B.7. The main idea is to identify indices of the utility vector over which large

gaps in utilities have the smallest effects on the stakes. More formally, we try to identify a small

𝑧 ∈ [𝑚] such that the following quantity is upper-bounded:

𝑠 (1𝑧+10𝑚−(𝑧+1) )
𝑠 (1𝑧0𝑚−𝑧)

.

Then, we can exploit this lack of sensitivity of the stakes function to drive large gaps in alternatives’

utilities over this index. If such a small 𝑧 doesn’t exist, we know that placing utility gaps over

all early indices of a utility vector will create a lower-bounded gap in stakes, which we can then

exploit via a different construction. As in previous lower bounds, in the instance we design, all

voters have identical stakes. □

Our next result proves that a known randomized rule, Stable Lottery, paired with one of a

few stakes functions 𝑠 , achieves 𝑂 (
√
𝑚) 𝑠-distortion, matching our lower bound up to a log factor.

This rule was originally introduced with the goal of achieving low distortion in the distinct setting

assuming normalized utilities; there, Stable Lottery was shown to achieve distortion 𝑂 (
√
𝑚)

when utilities were restricted to have have unit sum, i.e.,

∑
𝑎∈[𝑚] 𝑢𝑖 (𝑎) = 1 for all 𝑖 [Ebadian et al.,

2022]. The theorem is proven via Lemma 3.13, which shows a connection between our model and

the popular normalized utilities model that may be of independent interest.

Theorem 3.12 (upper bound). For 𝑠 ∈ {sum,max, range}, dist𝑠 (Stable Lottery) ∈ 𝑂 (
√
𝑚).

Proof. We prove this upper bound by connecting stakes information to the popular normalized

utility model, in which it is assumed that voters’ utilities are normalized to sum to 1 [Caragiannis

et al., 2017, Caragiannis and Procaccia, 2011, Procaccia and Rosenschein, 2006] (or, in recent
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work, have maximum utility 1 [Ebadian et al., 2022]). Placed within our model, observe that such

assumptions amount to assuming that voters have identical stakes as measured by sum (resp. max).5

Of course, one could assume this normalization with respect to any stakes function 𝑠; we call this

general class of assumptions 𝑠-unit-stakes assumptions.

We now show a surprising equivalence: Assuming sum-unit stakes is equivalent, from a distortion

perspective, to the sum-distortion (i.e., the distortion achievable under 𝑠-proportionality when

𝑠 = sum). In fact, we show this correspondence to hold for any 1-homogeneous stakes function, as

stated informally in Lemma 3.13.

Lemma 3.13 (informal). For all 1-homogeneous 𝑠 , the distortion of 𝑓 under the 𝑠-unit-stakes assump-

tion is equivalent to its 𝑠-distortion.

The bidirectional reduction that proves this lemma is pictured in Figure 1. We prove it formally

over two theorems in Appendix B.8: Theorem B.5 handles rational-valued histograms, and The-

orem B.7 extends the claim to real-valued histograms (at the cost of a mild technical condition

on the voting rule). With this reduction in hand, we can now transfer lower and upper bounds

 satisfying -unit stakes assumption 
profile histogram 

U s
𝗁𝗂𝗌𝗍(U)

unrestricted , 
profile histogram 

U′ 

𝗁𝗂𝗌𝗍s(U′ )
Construct  from  as follows: 

1. For all , scale  by  
2. Duplicate  in proportion to 

U U′ 

i u′ i 1/s(u′ i)
i s(u′ i)

Set .U′ =U

 = ; alternatives’ social welfares are preserved;  satisfies -unit stakes assumptionhist(U) 𝗁𝗂𝗌𝗍s(U′ ) U 𝗌𝗎𝗆

  (since all voters have same unit stakes); alternatives’ social welfares are preserved 𝗁𝗂𝗌𝗍s(U′ )= hist(U)

-proportionalitys-unit-stakes assumptions

Fig. 1. Constructions for reducing between the 𝑠-unit stakes assumption (existingmodel) and 𝑠-proportionality
(our model).

between the 𝑠-unit stakes setting and ours. We conclude the proof of Theorem 3.12 by transferring

bounds on Stable Lottery proven under the sum-, max-unit stakes assumptions [Ebadian et al.,

2022, Theorem 3.4]. The case of range requires a minor technical extension— see Appendix B.9 for

details. □

Implications for the 𝑠-unit stakes literature. This reduction proves a formal connection be-

tween two distinct branches of the literature: distortion under normalized utilities, and distortion

with auxiliary utility information. Using the fact that this reduction permits transferring bounds

across these settings, in Appendix A.1 we illustrate how our results recover— and even sometimes

strengthen— existing results, often via simpler arguments.

Beyond existing results, we can also use our reduction to immediately derive new results for the

𝑠-unit stakes assumption setting. Although there is a vast space of possible 𝑠-unit-stakes assumptions

(one per possible stakes function 𝑠), the literature has explored few; to our knowledge, only max
and sum. This inspires the open question: would assuming unit stakes with respect to a different

stakes function permit better distortion bounds? Our results immediately close this question for

deterministic rules:

Corollary 3.14 (of Lemma 3.13). For all 1-homogeneous stakes functions 𝑠 and all deterministic

voting rules 𝑓 , the best achievable distortion of any 𝑓 under any 𝑠-unit stakes assumption is𝑚 − 1

5
This interpretation is already informative, as it raises substantive questions about whether these widely-used restrictions

on the utilities are likely to hold in practice, where people may have dramatically differing stakes.
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(Theorem 3.1), and this is achieved by assuming max-unit stakes or range-unit stakes and using the

rule Plurality (Proposition 3.7, Remark 3.5).

Our results also close this question within a factor of log(𝑚) for randomized rules:

Corollary 3.15 (of Lemma 3.13). For all 1-homogeneous stakes functions 𝑠 and all randomized

voting rules 𝑓 , the best achievable distortion of any 𝑓 under any 𝑠-unit stakes assumption is at least

Ω(
√
𝑚/log(𝑚)) (Theorem 3.11), and this distortion is achieved within a log(𝑚) factor by assuming max-

unit stakes, range-unit stakes, or sum-unit stakes and using the rule Stable Lottery (Theorem 3.12).

4 WHAT IF WE HAVE APPROXIMATE STAKES INFORMATION?

In many cases, we may know voters’ stakes only coarsely, at the level of orders of magnitude. To

understand what is possible in this case, we now extend our results from previous sections to the

case where our estimates of voters’ stakes are incorrect.

Let us formally define these errors. Suppose we achieve 𝑠-proportionality according to an

incorrect estimate of each voter 𝑖’s stakes 𝑠 (u𝑖 ) := 𝛿𝑖 𝑠 (u𝑖 ), where 𝛿𝑖 ≥ 1 is the factor by which we

overestimate 𝑖’s stakes.6 Let 𝜹 := (𝛿𝑖 |𝑖 ∈ [𝑛]) be the vector of all such errors. Given𝑈 and 𝜹 , we
denote the 𝜹-approximately stakes-proportional histogram as hist𝜹,𝑠𝜋 (𝑈 ), with 𝜋-th entry

hist𝜹,𝑠𝜋 (𝑈 ) :=

∑
𝑖∈[𝑛] 𝑠 (u𝑖 ) · I(𝜋𝑖 = 𝜋)∑

𝑖∈[𝑛] 𝑠 (u𝑖 )
.

For 𝛿 := max𝑖 𝛿𝑖 , the 𝛿, 𝑠-distortion of 𝑓 is then given as

dist𝛿,𝑠 (𝑓 ) = sup𝑛≥1, 𝑈 , 𝜹∈[1,𝛿 ]𝑛
max𝑎 sw(𝑎,𝑈 )

E[sw(𝑓 (hist𝜹,𝑠 (𝑈 ),𝑈 ) ] .

Note that for fixed 𝛿 , by this definition, 𝜹 ∈ [1, 𝛿]𝑛 is chosen adversarially. We now prove strong,

instance-wise robustness to such errors.

Theorem 4.1. For all 𝑓 , 1-homogeneous 𝑠 ,𝑈 , and 𝛿 ≥ 1, dist𝛿,𝑠
𝑈

(𝑓 ) ≤ 𝛿 dist𝑠
𝑈
(𝑓 ).

The intuition is simple: since 𝑠 is 1-homogeneous, mis-estimating 𝑖’s stakes by up to 𝛿 is the

same as overestimating voters’ utilities by up to 𝛿 . Such overestimates can change the distortion by

at most a 𝛿 factor. We now formalize this intuition.

Proof of Theorem 4.1. Fix a utility matrix𝑈 , a 1-homogeneous stakes function 𝑠 , and an error

vector 𝜹 ∈ [1, 𝛿]𝑛 . Let �̃� be the utility matrix where voter 𝑖’s utility vector is scaled by a factor

of 𝛿𝑖 , i.e., ũ𝑖 = 𝛿𝑖u𝑖 . Then, since 𝑠 is 1-homogeneous, we have that 𝑠 (ũ𝑖 ) = 𝛿𝑖𝑠 (u𝑖 ), and therefore

hist𝑠 (�̃� ) ≡ hist𝜹,𝑠 (𝑈 ), directly implying that 𝑓 (hist𝑠 (�̃� )) ≡ 𝑓 (hist𝜹,𝑠 (𝑈 )). Moreover, for every

alternative 𝑎, it holds that sw(𝑎, �̃� ) ∈ [sw(𝑎,𝑈 ), 𝛿sw(𝑎,𝑈 )]. It follows that

E[sw(𝑓 (hist𝒔 (�̃� )), �̃� )] ≤ 𝛿 · E[sw(𝑓 (hist𝜹,𝑠 (𝑈 )),𝑈 )],

from which we deduce that

max𝑎 sw(𝑎,𝑈 )
E[sw(𝑓 (hist𝜹,𝑠 (𝑈 )),𝑈 )]

≤ 𝛿 max𝑎 sw(𝑎,𝑈 )
E[sw(𝑓 (hist𝑠 (�̃� )), �̃� )]

=
max𝑎 sw(𝑎,𝑈 )
max𝑎 sw(𝑎, �̃� )

· 𝛿 · max𝑎 sw(𝑎, �̃� )
E[sw(𝑓 (hist𝑠 (�̃� ), �̃� )]

≤ 𝛿 · dist𝑠 (𝑓 ).

Taking suprema on the left hand side then completes the proof. □

6
We can realize any type of errors with 𝛿 ≥ 1, because the weighting of the resulting electorate is relative.
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5 WHAT IF WE HAVE NO STAKES INFORMATION?

In this section, we are interesed in the case where voters may have extremely different stakes (in

which case our results dictate that accounting for them is important), but either (1) we cannot

even coarsely guess them, or (2) we cannot explicitly re-weight votes without public backlash.

In this section, we propose a mechanism design concept for revealing voters’ stakes through their

behavior. We propose a class of mechanisms, called multi-issue mechanisms, based on a simple idea:

if voters must decide how to allocate voting power over multiple entire elections, they will exert

influence in the decisions that most affect them, thereby revealing their stakes. We define this class

of mechanisms here, where (MD) indicates a decision by the mechanism designer:

Multi-issue mechanisms:

Setup. Each voter 𝑖 ∈ [𝑛] is presented with a slate of 𝑘 entire elections (MD), where each election ℓ

is over its own set of alternatives 𝐴ℓ . Voter 𝑖 has utility vector uℓ𝑖 in election ℓ .

Voting. To vote, each voter 𝑖 submits to each election two things: a ballot of some format (MD), and

a scalar weight 𝑤 ℓ
𝑖 ∈ [0, 1] describing the weight 𝑖 wishes to place on election ℓ . These weights are

restricted such that

∑
ℓ 𝑐 (𝑤 ℓ

𝑖 ) ≤ 1 for all 𝑖 , where 𝑐 : R → R+ is a cost function (MD) describing

how much a voter is charged per unit of weight placed on an election.

Aggregation. Each voter 𝑖’s ballot in each election ℓ is weighted by𝑤 ℓ
𝑖 , and a voting rule (MD) is

then used to aggregate these weighted ballots into a winner.

We next perform a proof-of-concept analysis of a multi-issue mechanism. We emphasize that

this analysis is meant to build intuition rather than to be the final word on the design of multi-issue

mechanisms. In particular, the analysis will illustrate (1) how voters’ individual incentives can

reveal their stakes according to a natural stakes function, (2) what assumptions are required for

analyzing such a mechanism, and (3) how our results from Section 3 and Section 4 can be applied

to bound the distortion of such a mechanism. Then, with the intuition from this analysis in hand,

in Section 6.1, we will discuss generalizations of this mechanism and connections to the existing

mechanisms storable votes [Casella, 2005] and quadratic voting [Posner and Weyl, 2015], which use

similar types of trade-offs to elicit richer utility information.

To fully define our multi-issue mechanism, we must instantiate the four aspects left up to the

mechanism designer (those flagged with (MD)): the elections to be included, the ballot format, the

cost function, and and the voting rule.

Elections to be included. We allow the inclusion of an arbitrary number of elections 𝑘 ≥ 2. For ease

of exposition, we assume each election ℓ contains the same number of alternatives𝑚 (this can

easily be achieved by simply adding dummy alternatives).

Ballot format. Voters “vote” by submitting complete rankings as was assumed throughout the paper,

in order to apply our results to analyze the mechanism.

Cost function. We let 𝑐 : R𝑘 ↦→ R be quadratic,
7
so that given x := (𝑥𝑖 |𝑖 ∈ [𝑘]), 𝑐 (x) = ∑

𝑖∈[𝑘 ] 𝑥
2

𝑖 .

Voting rule.We will aggregate votes via Plurality, guided by our results showing its optimality

among deterministic rules.

For the purposes of analyzing our mechanism, we must also define with what motives— and

based on what information—voters translate their utilities into actions (votes). Our assumptions

prioritize simplicity.

7
One may wonder if there is a correspondence between this mechanism and Quadratic Voting (QV). Technically, the cost

quadraticity serves the same purpose, but our mechanism is overmultiple elections, while QV occurs within a single election.
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Assumption 5.1. We assume that voters satisfy the following properties.

– Honest: voters will submit rankings that are true to their underlying utilities.

– Oblivious: voters have uniform priors over all sets of 𝑛 − 1 other rankings in every election,

i.e., they make the impartial culture assumption [Gehrlein, 2002].

– Not mathematicians: voters believe their probability of pivotality in election ℓ increases

linearly in𝑤 ℓ
𝑖 , the weight they place on their vote in that election.

8

– Utility-maximizing: voters submit weights across elections to maximize their total expected

individual utility (where the expectation is over the randomness of others’ votes).

Finally, we need to introduce formal notation that will allow us to analyzemulti-issuemechanisms.

In each election ℓ ∈ [𝑘], the underlying 𝑛 ×𝑚 utility matrix is denoted𝑈 ℓ
; correspondingly, voters’

utility vectors are uℓ𝑖 and individual utilities are𝑢
ℓ
𝑖 (𝑎). For a given stakes function 𝑠 , we use shorthand

𝒔𝑖 := 𝑠 (uℓ𝑖 )ℓ∈[𝑘 ] to summarize 𝑖’s stakes across all 𝑘 elections.

Because we use Plurality, we are concerned only with each voter’s first-ranked alternative,

so we will consider histograms that are indexed by 𝑎 ∈ 𝑚 rather than 𝜋 ∈ 𝑆𝑚 . Let 𝑏
ℓ
𝑖 ∈ [𝑚]

be 𝑖’s first-ranked alternative in election ℓ ; abusing notation, we will represent 𝑖’s vote in this

election using 𝒆𝑏ℓ
𝑖
, the 𝑚-length alternative-indexed basis vector with a 1 at the 𝑏ℓ𝑖 -th index.

We can then represent 𝑖’s weighted vote in election ℓ as the weighted basis vector 𝑤 ℓ
𝑖 𝒆𝑏ℓ𝑖 . Let

𝒘𝑖 := (𝑤 ℓ
𝑖 |ℓ ∈ [𝑘]) be the weights 𝑖 submits across elections. We let the resulting histogram in

election ℓ be hℓ :=
∑
𝑖∈[𝑛] 𝑤

ℓ
𝑖 𝒆𝑏ℓ𝑖 /

∑
𝑖∈[𝑛] 𝑤

ℓ
𝑖 . Let h

ℓ
−𝑖 be the histogram not including 𝑖’s vote, i.e.,

hℓ−𝑖 :=
∑
𝑖∈[𝑛]\{𝑖 } 𝑤

ℓ
𝑖 𝒆𝑏ℓ𝑖 /

∑
𝑖∈[𝑛] 𝑤

ℓ
𝑖 . We write h ∼ I to denote a histogram that reflects a profile

drawn from the Impartial Culture model.

Now, we apply results from Sections 3 and 4 to show that although any election encompassed by

the mechanism, if run in isolation, could have had unbounded distortion, within this mechanism

all elections are guaranteed to have distortion at most order𝑚2
(Theorem 5.4). This analysis pro-

ceeds in 3 steps. In Step 1, we show how voters’ stakes are revealed in how they allocate weights

across elections, and we characterize the particular stakes function that arises from their behavior.

Then, in Step 2, we show that this stakes function is quite natural, and per our previous results,

behaves similarly enough to range to permit near optimal distortion when paired with Plural-

ity. Finally, in Step 3, we characterize the distortion of each election in the mechanism, which

reveals an important feature of our choice of the𝑘 elections around which we design the mechanism.

Step 1: A natural stakes function 𝑠∗ arises from voter behavior. First, we show that the stakes

function arising from voters’ utility-maximizing behavior is simple and intuitive:

𝑠∗ (u) := max(u) − sum(u) − max(u)
𝑚 − 1

,

the gap between their maximum utility and their average utility for the other alternatives.

Lemma 5.2. In each election ℓ , each voter 𝑖 weights their vote by �̂� ℓ
𝑖 = 𝑠

∗ (uℓ𝑖 ) / ∥𝒔∗𝑖 ∥2.

Proof. Fix an 𝑖 , whose behavior in the mechanism we will analyze. Let the alternatives in each

election ℓ be 𝐴ℓ , and for all ℓ ∈ [𝑘], let 𝑏ℓ𝑖 be 𝑖’s favorite alternative in the ℓ-th election. Now, define

the following events, some which depend on𝒘𝑖 :

8
While this is technically inconsistent with their uniform priors over others’ votes, we see it as at least as reasonable as

assuming voters compute their precise probabilities of pivotality: even under uniform priors, computing the exact marginal

increase in probability of pivotality per unit of weight is a combinatorial calculation that we cannot expect voters to do. In

light of this, linearity is a natural assumption.
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• 𝑋 ℓ : 𝑏ℓ𝑖 wins among only the votes in hℓ−𝑖 (and thus also wins with 𝑖’s ranking weighted by

𝑤 ℓ
𝑖 added to the profile).

• 𝑍 ℓ (𝒘𝑖 ): Some 𝑎 ≠ 𝑏ℓ𝑖 wins among only the votes in hℓ−𝑖 by a margin small enough that 𝑖’s

vote for 𝑏ℓ𝑖 is pivotal.

• ¬𝑋 ℓ ∧ ¬𝑍 ℓ (𝒘𝑖 ): Some alternative 𝑎 ≠ 𝑏ℓ wins among the votes in hℓ−𝑖 +𝑤 ℓ
𝑖 𝒆𝑏ℓ𝑖 (i.e., regardless

of whether 𝑖 votes for 𝑏ℓ𝑖 with weight𝑤 ℓ
𝑖 ).

Note that these events are mutually exclusive. Now, we compute voter 𝑖’s expected reward in terms

of these quantities:

Eh−𝑖∼I


∑︁
ℓ∈[𝑘 ]

𝑢𝑖 (Plurality(h−𝑖 +𝑤 ℓ
𝑖 𝒆𝑏ℓ𝑖 ))


=

∑︁
ℓ∈[𝑘 ]

©­«
(
Pr[𝑋 ℓ ] + Pr

[
𝑍 ℓ (𝒘𝑖 )

] )
· 𝑢𝑖 (𝑏ℓ𝑖 ) + 𝑃𝑟

[
¬𝑋 ℓ ∧ ¬𝑍 ℓ (𝒘𝑖 )

]
·

∑︁
𝑎∈𝐴ℓ \{𝑏ℓ

𝑖
}

𝑢𝑖 (𝑎)
𝑚 − 1

ª®¬
Unpacking this expression, if either event 𝑋 ℓ or 𝑍 ℓ occurs, 𝑖 gets the utility associated with 𝑏ℓ𝑖 . If

neither occurs, 𝑖 expects some other alternative to win, and has uniform priors over other voters’

rankings; thus their expected utility in this event is the average of all alternatives in 𝐴ℓ \ {𝑏ℓ𝑖 }.
Again using 𝑖’s uniform priors over other voters’ behavior, 𝑃𝑟 [𝑋 ℓ ] = 1/𝑚. Simplifying,

=
∑︁
ℓ∈[𝑘 ]

©­«
(
1/𝑚 + Pr[𝑍 ℓ (𝒘𝑖 )]

)
𝑢𝑖 (𝑏ℓ𝑖 ) +

(
1 − 1/𝑚 − 𝑃𝑟 [𝑍 ℓ (𝒘𝑖 )]

)
·

∑︁
𝑎∈𝐴ℓ \{𝑏ℓ

𝑖
}

𝑢𝑖 (𝑎)
𝑚 − 1

ª®¬
=

∑︁
ℓ∈[𝑘 ]

©­«
∑︁
𝑎∈𝐴ℓ

𝑢𝑖 (𝑎)
𝑚

+ 𝑃𝑟 [𝑍 ℓ (𝒘𝑖 )] ©­«𝑢𝑖 (𝑏ℓ𝑖 ) −
∑︁

𝑎∈𝐴ℓ \{𝑏ℓ
𝑖
}

𝑢𝑖 (𝑎)
𝑚 − 1

ª®¬ª®¬ .
The first term of the summand is fixed in the instance, so it is not decision relevant. Then, we have

deduced that

max

𝒘𝑖

Eh−𝑖∼I


∑︁
ℓ∈[𝑘 ]

𝑢𝑖 (Plurality(h−𝑖 +𝑤 ℓ
𝑖 𝒆𝑏ℓ𝑖 ))


= max

𝒘𝑖

∑︁
ℓ∈[𝑘 ]

𝑃𝑟 [𝑍 ℓ (𝒘𝑖 )]
©­«𝑢𝑖 (𝑏ℓ𝑖 ) −

∑︁
𝑎∈𝐴ℓ \{𝑏ℓ

𝑖
}

𝑢𝑖 (𝑎)
𝑚 − 1

ª®¬
= max

𝒘𝑖

∑︁
ℓ∈[𝑘 ]

𝑃𝑟 [𝑍 ℓ (𝒘𝑖 )]
(
max(uℓ𝑖 ) −

sum(uℓ𝑖 ) − max(uℓ𝑖 )
𝑚 − 1

)
= max

𝒘𝑖

∑︁
ℓ∈[𝑘 ]

𝑃𝑟 [𝑍 ℓ (𝒘𝑖 )] · 𝑠∗ (uℓ𝑖 )

Finally, by Assumption 5.1, voters act as though their probability of pivotality increases linearly

with each additional unit of weight placed behind their vote. Applying this assumption,

= max

𝒘𝑖

∑︁
ℓ∈[𝑘 ]

𝑤 ℓ
𝑖 · 𝑠∗ (uℓ𝑖 ).
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Then, subject to to the constraint that each voter has total weight 1, the final problem voters are

solving is as follows, where �̂�𝑖 describes their optimal weighting across elections:

�̂�𝑖 := argmax

𝒘𝑖

∑︁
ℓ∈[𝑘 ]

𝑤 ℓ
𝑖 · 𝑠∗ (uℓ𝑖 ) s.t.

∑︁
ℓ∈[𝑘 ]

(𝑤 ℓ
𝑖 )2 ≤ 1. (3)

We can compute the optimizer of this program by simply projecting the vector 𝒔∗𝑖 onto the unit

sphere, concluding that

�̂�𝑖 =
𝒔∗𝑖

∥𝒔∗
𝑖
∥2

. □

Step 2: This stakes function 𝑠∗ is nearly optimal. Next, using our previous distortion bounds,

we find that 𝑠∗ is nearly optimal across all stakes functions when paired with Plurality:

Lemma 5.3. dist𝑠
∗ (Plurality) ≤ 𝑚2

.

Proof. We will use the alternative definitions of 𝜅-upper and 𝜅-lower from Remark 3.5, where

max is replaced with range. Characterizing these 𝜅 values, 𝜅-upper(𝑠∗) = 1, realized by the vector

u = 110𝑚−1, and 𝜅-lower(𝑠∗) = 1/(𝑚−1), realized by the vector u = 1𝑚−101. Using that 𝛽Plurality =

1/𝑚 (Lemma 3.6), Theorem 3.4 gives us that dist𝑠
∗ (Plurality) ≤ 𝑚 · 1

1/(𝑚−1) ≤ 𝑚2
. □

Step 3: Bounding the distortion of the mechanism. Finally, we bound the distortion in each

election within the mechanism. The remaining issue to deal with is that although each individual

voter will spread their votes across elections in proportion to their stakes (Lemma 5.2), if some

voters have substantially higher total stakes across the 𝑘 elections, the uniform budgets across voters

will under-count these voters’ stakes. It may seem that we are back where we started—where

uniform voting power fundamentally cannot account for stakes. However, unlike before, we have

another lever at our disposal: the design of our slate of 𝑘 elections. Specifically, we can choose this

slate of elections such that all voters are affected to a relatively high degree by at least one election.

While we cannot hope for this approach to perfectly equalize voters’ total stakes, it may bring them

closer, e.g., within a factor of 𝛿 . Then, per Theorem 4.1, all elections in our mechanism will have

distortion at most 𝛿𝑚2
.

Theorem 5.4. Fix a 𝛿 ≥ 1 such that for all pairs of voters 𝑖, 𝑖′ ∈ [𝑛], ∥𝒔∗𝑖 ∥2 / ∥𝒔∗𝑖′ ∥2 ≤ 𝛿 . Then, for
all ℓ ∈ [𝑘],

dist𝑠
∗

𝑈 ℓ (Plurality) ≤ 𝛿𝑚2.

Proof. Let 𝛼 := max𝑖∈[𝑛] ∥𝒔∗𝑖 ∥2 be the maximum total stakes of any voter. Fix an ℓ ∈ [𝑘]. Then,
per Lemma 5.2, for all 𝑖 , and for some 𝛿𝑖 ∈ [1, 𝛿], we have that𝑤∗ℓ

𝑖 = 𝑠∗ (uℓ𝑖 ) / ∥𝒔∗𝑖 ∥2 = 𝛿𝑖 · 𝑠∗ (uℓ𝑖 )/𝛼.
Since 𝛼 is constant across voters, we get 𝑠∗-proportionality in election ℓ with respect to the mis-

estimate of 𝑖’s stakes 𝑠∗ (uℓ ) = 𝛿𝑖 · 𝑠∗ (uℓ ). This is the precondition of Theorem 4.1; using this and

Lemma 5.3,

dist𝛿,𝑠
∗

𝑈 ℓ (Plurality) ≤ 𝛿 dist𝑠∗
𝑈 ℓ (Plurality) ≤ 𝛿𝑚2 . □

6 DISCUSSION

We conclude with an in-depth discussion of questions raised by multi-issue mechanisms, followed

by opportunities for accounting for stakes in emerging democratic paradigms.
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6.1 The multi-issue mechanism design space & connections to other mechanisms

While we focused on ranking-based voting, the same mechanistic approach we introduced for

multi-issue mechanisms could be used with essentially any election format: simply place multiple

elections on the same ballot, across which voters must trade off a total allotment of voting power.

In fact, there is a known mechanism that roughly does this: storable votes [Casella, 2005], which

allows voters to save up votes over a sequence of elections and spend them on the later elections

they care about most. Like the mechanism above, storable votes is just one within a massive de-

sign space, whose many levers we explore below. As we go, we point out a wealth of open questions.

Slate of issues.As captured by 𝛿 in our analysis above, the performance of a multi-issue mechanism

relies on choosing a slate of issues that roughly balance voters’ total stakes. In some cases this will

not be hard: consider a case where we want to decide a design aspect of our public transit systems,

and want to ensure we sufficiently account for the interests of those who cannot afford cars. We

might choose our second issue to be where to fix potholes— a decision that will primarily affect

those who drive. In this case, voters who do/do not have cars will have high stakes in opposite

elections, getting closer to balanced total stakes than in either election alone.

However, this gets complicated quickly when we want to consider more than two groups of

stakeholders. For example, suppose there is a third group in our example above— people who drive,

but also live by candidate transit stops. These people may have high stakes in both decisions, due

to their potential to avoid pothole damage to their cars and their potential to be affected by loud

public transportation outside their house. To balance stakes across these voters too, we need a third

issue, which may in turn imbalance the stakes of the first two groups.

To state this question of issue design formally: Suppose there is a universe of potential elections

𝐿 and a set of voters [𝑛], where for each election ℓ ∈ 𝐿, each voter 𝑖 has stakes 𝑠 (uℓ𝑖 ). For any
given 𝐾 ⊆ 𝐿, let 𝒔𝐾𝑖 := (𝑠 (uℓ𝑖 ) |ℓ ∈ 𝐾). Then, for any given 𝛿 ≥ 1, we want to know: what is the

smallest slate of elections 𝐾 that ensures that for all 𝑖, 𝑖′ ∈ [𝑛], ∥𝒔∗𝑖 ∥2 / ∥𝒔∗𝑖′ ∥2 ≤ 𝛿? As illustrated by

our analysis above, the precise stakes function and method of totaling stakes for which we want to

achieve this bound is mechanism-dependent.

Ballot format. In our paper, we assumed voters submit their preferences as complete rankings.

However, there are many other ballot formats that could reveal richer information about voters’

utilities. One promising candidate is the ballots used in Quadratic Voting (QV) [Posner and Weyl,

2015], where a voter has a budget of total voting power to allocate over the alternatives in a single

election, and they are charged quadratically per unit of weight they place on a given alternative.

For example, in an election over alternatives 𝑎, 𝑏, 𝑐 where each voter has 10 votes total, they could

place 3 on alternative 𝑎, 1 on 𝑏, and 0 on 𝑐 to spend their total budget of 3
2 + 1

2 + 0
2 = 10.

Notice that this is different from how we use quadraticity in our mechanism: we charge voters

quadratically for power allocated toward a given election, while QV considers a single election and

charges voters for power allocated toward a single alternative. However, the quadraticity works

for the same reason, encouraging voters to spread their power over elections or alternatives in

proportion to their stakes or relative utilities, respectively. In summary, QV ballots — at least under

the (strong) assumptions made by Posner andWeyl [2015]— allow the recovery of information about

voters’ relative utilities (i.e., 𝑖 likes 𝑎 3 times as much as 𝑏), while rankings lose this information,

thereby losing𝑚 distortion even when stakes are known. To design a multi-issue mechansim using

QV ballots, then, one must answer: how can we set up voting budgets to recover stakes-proportionality

when voters are charged quadratically per unit of votes for a single alternative and weight toward a

single election?
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Designing new ballots will open up the possible space of voting rules— an enticing prospect,

given that with ranking-based ballots, our results show that the space of rules where stakes infor-

mation is helpful is very limited.

Voter model. Ultimately, the success of a multi-issue mechanism depends on how voters will

behave within it. This depends on several things, including (1) voters’ beliefs about their chances of

pivotality across elections—whether they believe some elections are close whereas they have no

chance of swaying others, (2) how voters may strategize in misreporting their preferences, and

most importantly, (3) how voters’ preference intensities relate to both their ability and their desire

to vote in a given election. A more holistic mechanism design approach here would build on the

wealth of empirical evidence on these topics [Downs, 1957, Feddersen and Pesendorfer, 1996].

6.1.1 Other kinds of trade-offs. In a multi-issue mechanism, voters’ stakes are revealed in how

they make trade-offs between voting power in election ℓ with voting power in a different election.

However, one could also imagine designing amechanism inwhich votersmust trade off voting power

in election ℓ with some other resource. One natural option, from a mechanism design perspective,

would be currency (or something with similar external economic value). This is precisely the

proposal of quadratic voting, which in its theoretical conception requires voters to purchase votes

with money, thereby revealing voters’ stakes in how many votes they buy [Posner and Weyl, 2015].

However, we emphasize that such monetary mechanisms may not recover stakes at all — to do so,

they require voters convert their value for voting power to their value for money at the same rate,

when in reality, less wealthy voters may have higher marginal value for money, in which case they

will purchase fewer votes and their stakes will be underestimated.

6.2 Stakes in liquid and deliberative democracy

Our model of stakes functions applies in any voting model with latent utilities, and while we only

formally define the reweighting of ranking-based ballots, our model can easily be extended to study

the impact of stakes-dependent reweighting under other ballot formats or decision mechanisms.

One extension where studying stakes may especially be of interest is liquid democracy [Gölz et al.,

2021], where each voter receives one unit of voting power but may delegate it to others. Conceivably,

voters might naturally delegate their votes to others in ways that at least partially depend on stakes;

in the extreme, one could imagine a pro-social society in which voters delegate their votes to those

with the highest stakes, out of a belief that they deserve the most influence. In this case, we might

not need to reweight votes explicitly, motivating an interesting question: if voters delegate their

votes in a way that accounts for others’ stakes, does the outcome have better distortion?

One can also conceive of accounting for stakes in ways that go beyond asking who receives the

most voting power. For example, there is a growing body of work in computer science studying

sortition, the random process of selecting a “representative” body of citizens to deliberate and make

a collective policy recommendation on a given issue [Flanigan et al., 2021]. Although in practice

“representation” is typically designed to be proportional to population composition, one could

instead implement progressive representation, where representation targets for population groups

are at least in part determined by their stakes. In fact, this is already being tried: in a deliberative

poll in Australia on how to facilitate reconciliation between Indigenous and non-Indigenous groups,

Indigenous people— a very small fraction of the overall population, but affected by this decision to

an outsize degree—were intentionally over-represented in some deliberation groups [Karpowitz

and Raphael, 2016]. More generally, on the topic of representation in the deliberative context, the

idea of accounting for the interests of highly affected groups in how representation is decided is

already being discussed and advocated [Karpowitz and Raphael, 2016].
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A SUPPLEMENTAL MATERIALS FROM SECTION 1.2

A.1 Connections to existing results

We connect our results to those in three papers. The first two study distortion under the 𝑠-unit

stakes assumption, and the third assumes utility queries.

Caragiannis et al. [2017] (𝑠-unit stakes, deterministic rules)

This paper assumes sum-unit-stakes. Although this paper proves distortion bounds for both de-

terministic and randomized rules, we do not discuss their analysis of randomized rules, as such

bounds are more directly addressed in later work, described next. Another similarity between our

bounds: 𝛽𝑓 that our bounds depend on is similar to the dependency of their analysis on alternatives’

plurality score.

Upper bounds (deterministic rules): Theorem 1 of their paper proves an 𝑂 (𝑚2) upper bound on the

distortion of Plurality under sum-unit-stakes (i.e., unit-sum utilities). We can recover this bound

via our Theorem 3.4: First observe that 𝜅-upper(sum) =𝑚 and 𝜅-lower(sum) = 1 (given by utility

vectors 1 and 110𝑚−1, respectively). Recall also that 𝛽Plurality = 1/𝑚. By Theorem 3.4, it follows

that distsum (Plurality) ≤ 𝑚2
.

Lower bounds (deterministic rules): Theorem 1 of their paper proves an Ω(𝑚2) lower bound on the

distortion of any voting rule under sum-unit stakes (unit-sum utilities). We do show a lower-bound

on the distortion of all deterministic voting rules, but due to its is general across any stakes function

(not just sum), our (tight) lower bound is Ω(𝑚) (Theorem 3.1). However, we can recover the Ω(𝑚2)
bound specifically for 𝑠 = sum for most voting rules by combining two of our results. First, by

Appendix B.6, many voting rules have unbounded distortion under 𝑠-unit stakes with respect to any

𝑠 , including sum. Among the remaining rules with 𝛽𝑓 > 0, we can recover a lower bound of Ω(𝑚2)
(with tighter constants) for Plurality via Proposition B.3: We have 𝜅-upper(sum) from above, and

�̃�-lower(sum) = 2, given by 120𝑚−2. Then, by Proposition B.3, distsum (Plurality) ≥ (𝑚 − 1)𝑚/2.

Our bounds here are tighter, improving upon the gap from a factor of 8 to a factor of 2.

Ebadian et al. [2022] (𝑠-unit-stakes, randomized rules)

This paper studies only randomized rules, under both the sum-unit stakes assumption and the

max-unit stakes assumption (which they call “range”).

Upper bounds (randomized rules): As discussed in Section 3.2, we use our reduction in Appendix B.8

to directly apply their upper bounds on the distortion of Stable Lottery under the sum- and
max-unit stakes assumptions (their Theorem 3.4) to prove our upper bound in Theorem 3.11.

Lower bounds (randomized rules): In Theorem 3.7 of their paper, they show a lower bound of Ω(
√
𝑚)

on the distortion of any randomized rule under max-unit-stakes. This complements a previously-

known bound by Boutilier et al. [2012] of Ω(
√
𝑚) on the distortion of any randomized rule under

sum-unit stakes. Our lower bound in Theorem 3.11 is weaker than these bounds by a log(𝑚) factor,
but it applies to 𝑠-unit stakes for any 1-homogeneous 𝑠 (which includes both sum and max). We

suspect our lower bound can be tightened to Ω(
√
𝑚), which would make it a strict generalization

of the existing bound.

Amanatidis et al. [2021] (utility queries, deterministic rules) This paper considers deter-

ministic voting rules with access to one of two kinds of queries: value queries, where the voting

mechanism can directly ask agents about any one of their utilities; and comparison queries, where

the voting mechanism can ask agents: “for alternatives 𝑎 and 𝑏, is your utility for 𝑎 at least 𝑑 times

your utility for 𝑏?” Stakes information according to an arbitrary 𝑠 can be recovered by some number

of either type of these queries (trivially,𝑚 value queries, but in many cases, far less). Determining

the optimal set of queries of these types to recover a given stakes function is outside the scope of
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this appendix. Thus, when thinking about upper bounds, we will restrict our consideration here to

the stakes functions max, which can be recovered by 1 value query. Similar reasoning applies for

range. Finally, we remark that their permission of noisy queries (i.e., queries within a constant factor

of the truth) are related to our robustness results in Theorem 4.1, though due to the generality

of our class of stakes functions (and the fact that errors are occurring on stakes functions’ output

rather than utilities directly) requires us to handle additional technicalities.

Upper bounds (deterministic rules): Their upper bound in Theorem 1 shows that their mechanism

1-PRV—equivalent to Plurality under stakes-proportionality with respect to max—gives dis-

tortion 𝑂 (𝑚). This result corresponds to our upper bound on the distortion of plurality under

max-proportionality, proven via Theorem 3.4.

Lower bounds (deterministic rules): Their Theorem 7 shows that any single-value query can enable

at best Ω(𝑚) distortion. Our lower bound in Theorem 3.1 generalizes this lower bound, showing

that any system of queries yielding the value of a scalar-valued stakes function, when paired with a

deterministic voting rule, can achieve at best Ω(𝑚) distortion.9 Of course, this is not to say that we

generalize all their lower bounds— they prove several other lower bounds for their setting, which

are incomparable to ours.

9
A necessary step in showing that our lower bound subsumes theirs is arguing that our lower bound actually applies to any

stakes-dependent electoral recomposition, not just proportional recomposition, which we do in the body of the paper.
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B SUPPLEMENTAL MATERIALS FROM SECTION 3

B.1 All deterministic rules have unbounded distortion

Proposition B.1. For all deterministic rules 𝑓 , dist(𝑓 ) = ∞.

Proof. Fix an arbitrary deterministic voting rule 𝑓 . Consider an election with 𝑛 voters and𝑚 = 2

alternatives. For 𝜖 > 0, let 𝑛/2 voters have utility vector (𝜖, 0) and let the other half have (0, 1). Then,
half of voters will vote for 𝑎 and the other half for 𝑏. In this example, 𝑎 or 𝑏 are indistinguishable to

𝑓 ; suppose it chooses 𝑎. Then, the distortion in this instance is
𝑛/2

𝜖𝑛/2
→ ∞ as 𝜖 → 0. □

B.2 Proof of Theorem 3.1

Theorem 3.1 (lower bound). For all 𝑠 and deterministic 𝑓 ,

dists (𝑓 ) ≥ 𝑚 − 1.

Proof. We will define two instances, 𝑈 and 𝑈 ′
, and show that all 𝑓 must have at least𝑚 − 1

distortion in one of these two instances. We will construct𝑈 ,𝑈 ′
in the following way: first, set aside

one alternative 𝑎′, and let the remaining alternatives be 𝐴ℓ = {𝑎 𝑗 | 𝑗 ∈ [𝑚] \ {ℓ}}. For all ℓ , when we

write 𝐴ℓ in a ranking it represents a ranking over all the alternatives within it, in increasing order

of index. Divide voters in into𝑚 − 1 groups, and consider a voter 𝑖 in group ℓ : we will assign utility

vectors to these voters so that their ranking 𝜋𝑖 = 𝑎ℓ ≻ 𝑎′ ≻ 𝐴ℓ . We display 𝑖’s utility vectors u𝑖 and
u′𝑖 , as given by𝑈 and𝑈 ′

respectively, in sorted order, to emphasize how their utilities correspond

to their resulting ranking:

alternative: 𝑎ℓ ≻ 𝑎′ ≻ 𝐴ℓ
sorted u𝑖 for 𝑖 ∈ group ℓ : 1 1 0 . . . 0

sorted u′𝑖 for 𝑖 ∈ group ℓ : 1 0 0 . . . 0

We now make three observations:

(1) hist(𝑈 ) ≡ hist(𝑈 ′)— that is, the utility matrices induce the same preference histogram. This

is true because for every ℓ , voters in the ℓ-th group of𝑈 and𝑈 ′
have the same ranking.

(2) hist𝑠 (𝑈 ) ≡ hist(𝑈 ) and hist𝑠 (𝑈 ′) ≡ hist(𝑈 ′)— that is, the 𝑠-proportional profiles are identical

to the standard profiles for both utility matrices. This is because within each utility matrix,

all voters have the same ordered utility vector and thus have the same stakes.

(3) sw(𝑎′,𝑈 ) = 𝑛 while sw(𝑎′,𝑈 ′) = 0. Moreover, sw(𝑎ℓ ,𝑈 ) = sw(𝑎ℓ ,𝑈 ′) = 𝑛/(𝑚 − 1) for all
ℓ ∈ [𝑚 − 1].

We distinguish between two cases, depending on whether 𝑓 (hist(𝑈 )) = 𝑎′ or 𝑓 (hist(𝑈 )) ≠ 𝑎′.
If 𝑓 (hist(𝑈 )) = 𝑎′, by (1), we also have that 𝑓 (hist(𝑈 ′)) = 𝑎′. Then, since sw(𝑎′,𝑈 ′) = 0,

dist𝑠𝑈 ′ (𝑓 )
(2)

= dist𝑈 ′ (𝑓 ) = sw(𝑎1,𝑈
′)

sw(𝑎′,𝑈 ′)
(3)

=
𝑛/(𝑚 − 1)

0

= ∞.

If 𝑓 (hist(𝑈 )) ≠ 𝑎′, then there must exist some ℓ ∈ [𝑚 − 1] such that 𝑓 (hist(u)) = 𝑎ℓ . Then, fixing
this ℓ ,

dists𝑈 (𝑓 )
(2)

= dist𝑈 (𝑓 ) =
sw(𝑎′,𝑈 )
sw(𝑎ℓ ,𝑈 )

(3)

=
1

1/(𝑚 − 1) =𝑚 − 1. □

B.3 Theorem 3.4 holds when 𝜅’s are defined with range instead of max

Observation B.2. The bound in Theorem 3.4 remains true also for a slightly different definition of

the coefficients 𝜅-lower(𝑠), 𝜅-upper(𝑠) where max(·) is replaced by range(·),

𝜅-upper(𝑠) := sup

u∈R𝑚≥0

𝑠 (u)
range(u) , and 𝜅-lower(𝑠) := inf

u∈R𝑚≥0

𝑠 (u)
range(u) .
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Proof. Let 𝑈 ∈ R𝑚×𝑛
≥0

be any utility matrix. Then, let �̃� denote the utility matrix in which each

agent 𝑖′𝑠 utility vector u𝑖 is altered by

�̃�𝑖 (𝑎) = 𝑢𝑖 (𝑎) − min

𝑎∈[𝑚]
𝑢𝑖 (𝑎),

i.e., the utilities are shifted down such that each voter’s minimum utility is 0. Then, letting 𝑐 :=∑
𝑖∈[𝑁 ] min𝑎 𝑢𝑖 (𝑎), we obtain that

sw(𝑎∗,𝑈 )
sw(𝑎′,𝑈 ) ≤ sw(𝑎∗,𝑈 ) − 𝑐

sw(𝑎′,𝑈 ) − 𝑐 =
sw(𝑎∗, �̃� )
sw(𝑎, �̃� )

.

Then, we may restrict the arguments in the proof of Theorem 3.4 to utility vectors with zero

minimum entry. This leads to a bound where we may use, instead of 𝜅-upper(𝑠) and 𝜅-lower(𝑠)

sup

u∈R𝑚≥0
:min𝑎∈ [𝑚] 𝑢 (𝑎)=0

𝑠 (u)
max(u) and inf

u∈R𝑚≥0
:min𝑎∈ [𝑚] 𝑢 (𝑎)=0

𝑠 (u)
max(u)

in place of 𝜅-upper(𝑠) and 𝜅-lower(𝑠). We may further upper and lower bound these last two

quantities, respectively, by

sup

u∈R𝑚≥0
:min𝑎 𝑢 (𝑎)=0

𝑠 (u)
max(u) = sup

u∈R𝑚≥0
:min𝑎 𝑢 (𝑎)=0

𝑠 (u)
range(u) ≤ sup

u∈R𝑚≥0

𝑠 (u)
range(u) ,

inf

u∈R𝑚≥0
:min𝑎 𝑢 (𝑎)=0

𝑠 (u)
max(u) = inf

u∈R𝑚≥0
:min𝑎 𝑢 (𝑎)=0

𝑠 (u)
range(u) ≥ inf

u∈R𝑚≥0

𝑠 (u)
range(u) ,

and we then in particular obtain a distortion upper bound with the two expressions on the right

hand side in place of 𝜅-upper(𝑠) and 𝜅-lower(𝑠). □

B.4 Proof of Lemma 3.6

Proof. Fix any deterministic voting rule 𝑓 , and define the quantity

𝜅𝑓 = min

h∈Δ(𝑆𝑚 )
min

𝑎≠𝑓 (h)

∑︁
𝜋∈𝑆𝑚

ℎ𝜋 I(𝑓 (h) ≻𝜋 𝑎),

which captures the minimum fraction of people by whom the winner 𝑓 (𝝅) ranked ahead of any

other given alternative 𝑎. In [Flanigan et al., 2023], it is shown that for any voting rule 𝑓 , we have

that

𝜅𝑓 ≤ 𝜅Minimax = 1/𝑚,
whereMinimax is the voting rule which chooses the alternative 𝑎 that suffers the least severe worst

pairwise defeat; see [Flanigan et al., 2023] for details. Moreover, we have that for any histogram

profile h and any alternative 𝑎 ≠ 𝑓 (h),∑︁
𝜋∈𝑆𝑚

ℎ𝜋 I(𝜋−1 (𝑓 (h)) = 1) ≤
∑︁
𝜋∈𝑆𝑚

ℎ𝜋 I(𝑓 (h) ≻𝜋 𝑎)

It follows that 𝛽𝑓 ≤ 𝜅𝑓 ≤ 1/𝑚, which proves the first part of the claim.

Now, for the second part of the claim: the fact that 𝛽Plurality ≥ 1/𝑚 follows immediately its

definition: there always exists an alternative which is first-ranked in at least a 1/𝑚 fraction of the

population – therefore, the Plurality winner also has to rank first at least in a 1/𝑚 fraction of the

population. □
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B.5 Proof of Proposition B.3

Proposition B.3. For all 𝑠 ,

dists (Plurality) ≥ (𝑚 − 1) · 𝜅-upper(𝑠)/�̃�-lower(𝑠).

Proof. Formally, we define �̃� lower as

�̃� lower = inf

𝑢∈U

𝑠 (𝑢)
max u

, U :=
{
𝑢 ∈ R𝑚≥0

: 𝑢1 = 𝑢2 ≥ · · · ≥ 𝑢𝑚 = 0

}
. (4)

We will construct an instance which exhibits distortion of the desired order.

Step 1: Designing the ordered utilities. There are two population groups: one high-stake popu-

lation group which we call 𝐺1 and on low-stake population group which we call 𝐺2. We denote the

proportional group size of 𝐺1 by 𝑝 = |𝐺1 |/𝑛 ∈ (0, 1), 1 − 𝑝 = |𝐺2 |/𝑛. The exact value of 𝑝 will be

determined later in Step 3 of this proof.

Since we are considering proportional recomposition, we may assume without loss of generality

that across agents, their maximal utility is equal to 1. Suppose that 𝑢upper is an ordered utility

vector which maximizes the supremum in 𝜅-upper, such that max𝑎∈[𝑚] 𝑢
upper (𝑎) = 1. Similarly, let

𝑢 lower denote the utility vector inU that minimizes the infimum in (4). Now, we assign to 𝐺1 the

ordered utility vector 𝑢upper, and to 𝐺2 the ordered utility vector 𝑢 lower. Then, agents in these two

population groups have respective stakes of

𝑠 (𝑢upper) = 𝜅-upper, 𝑠 (𝑢 lower) = �̃� lower .
Step 2: Designing the rankings.

• In group𝐺1, we first-rank an alternative 𝑎′ – this alternative, by appropriate choice of 𝑝 , will

later turn out to be the winner of the plurality election. The second to last ranked alternatives

in group 𝐺1 can be chosen arbitrarily.

• In group 𝐺2, the first-rank positions are divided up equally between the remaining𝑚 − 1

alternatives in [𝑚] \ {𝑎′}. Out of those𝑚 − 1 alternatives, we choose an arbitrary alternative

which we will make the highest-welfare alternative, called 𝑎∗. This alternative 𝑎∗ is ranked
second throughout the group 𝐺2, whenever it does not rank first.

• Finally, we also specify that the alternative 𝑎′ is ranked last throughout group 𝐺2. The

remaining places in 𝐺2’s preference profile may be filled arbitrarily.

Step 3: Specifying the group size 𝑝. It remains to calculate 𝑝 . Since 𝐺1 has stakes 𝜅-upper and

𝐺2 has stakes �̃�
lower

, the stakes-weighted plurality score obtained by 𝑎′ is 𝑝𝜅-upper. Any other

alternative 𝑎 ≠ 𝑎′ obtains a stakes-weighted plurality score of (1 − 𝑝)�̃� lower/(𝑚 − 1). Thus, 𝑎′
winning the election amounts to the inequality

𝑝𝜅-upper ≥ 1 − 𝑝
𝑚 − 1

�̃� lower ⇐⇒ 𝑝 (𝜅-upper+ �̃�
lower

𝑚 − 1

) ≥ �̃� lower

𝑚 − 1

⇐⇒ 𝑝 ≥ �̃� lower

�̃� lower + (𝑚 − 1)𝜅-upper
.

Thus, let us set 𝑝 to be equal to the last expression, i.e.

𝑝 =
|𝐺1 |
𝑛

=
�̃� lower

�̃� lower + (𝑚 − 1)𝜅-upper
.

With this choice of 𝑝 , we notice that

sw(𝑎′,𝑈 )
𝑛

= 𝑝, and

sw(𝑎∗,𝑈 )
𝑛

≥ 1

𝑛

∑︁
𝑖∈𝐺2

𝑢𝑖 (𝑎∗) = 1 − 𝑝,

since agents in 𝐺2 have utility 1 for 𝑎∗, and agents in 𝐺1 may have positive utility for 𝑎∗. In
conclusion, the distortion in this instance is lower bounded by
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sw(𝑎∗,𝑈 )
sw(𝑎′,𝑈 ) ≥ 1 − 𝑝

𝑝
=

(𝑚−1)𝜅-upper
�̃� lower+(𝑚−1)𝜅-upper

�̃� lower

�̃� lower+(𝑚−1)𝜅-upper

=
(𝑚 − 1)𝜅-upper

�̃� lower
.

□

B.6 Proof: 𝛽𝑓 = 0 for many established voting rules

Observation B.4. 𝛽𝑓 = 0 for many established voting rules.

This observation is shown via a simple instance. Before presenting this instance, we define the

voting rules we will address.

Voting rules. Borda Count and Veto are positional scoring rules, which are rules defined by

a scoring vector 𝑤 ∈ [0, 1]𝑚 with 𝑗-th entry 𝑤 𝑗 . In these scoring rules, an alternative receives

𝑤 𝑗 points for each voter who ranks it 𝑗-th, and the winner in a given profile is the alternative

with the most points. Borda Count is defined by the linearly-decreasing scoring vector w =

(1, (𝑚 − 2)/(𝑚 − 1), . . . , 1/(𝑚 − 1), 0), and Veto is defined by w = 1𝑚−101. We also consider the

entire class of Condorcet-consistent rules. To define this class, we say that 𝑎 pairwise-dominates 𝑎′ in
h if 𝑎 is ranked ahead of 𝑎′ in at least half of the electorate. We say that h has a Condorcet winner 𝑎

if 𝑎 pairwise-dominates all other alternatives. A Condorcet-consistent rule is one which 𝑓 (h) will
be the Condorcet winner on all profiles h in which a Condorcet winner exists. We will consider

this large class of voting rules as a whole, but will not consider any specific rule in this class.

Instance. Indeed, consider the following instance with 4 alternatives, 𝑎, 𝑏, 𝑐, 𝑑 :

• 1 voter has 𝑐 ≻ 𝑎 ≻ 𝑑 ≻ 𝑏
• 𝑛/3 − 1 voters have 𝑐 ≻ 𝑎 ≻ 𝑏 ≻ 𝑑
• 𝑛/3 voters have 𝑏 ≻ 𝑎 ≻ 𝑐 ≻ 𝑑
• 𝑛/3 voters have 𝑑 ≻ 𝑎 ≻ 𝑏 ≻ 𝑐

Then, 𝑎 is ranked ahead of any other alternative by 2/3 of voters, and is the Condorcet winner; it

will also be the Borda winner, and the Veto winner. Yet, it is never ranked first.

B.7 Proof of Theorem 3.11

Theorem 3.11 (lower bound). For all 1-homogeneous 𝑠 , randomized 𝑓 , dist𝑠 (𝑓 ) ≥
√
𝑚

10+3 log𝑚
.

Proof. Define the vector 1𝑧0𝑧′ to be the vector consisting of 𝑧 ones followed by 𝑧′ zeroes.

Case 1: Suppose that there exists some 𝑧 ≤ (log𝑚) − 1 such that 𝑠 (1𝑧+10𝑚−𝑧−1)/𝑠 (1𝑧0𝑚−𝑧) ≤ 𝑒.

Fix this 𝑧. We now design a utility instance and associated preference histogram which exhibits a

distortion of the order

√︁
𝑚/log𝑚.

Step 1: Designing the rankings. We begin by designing the preference histogram. We divide the

population into𝑚/log𝑚 groups

𝐺1, ...𝐺𝑚/log𝑚 .

Let alternatives 1, ...,𝑚/log𝑚 occupy the first positions in each of the groups𝐺1, ...𝐺𝑚/log𝑚 , respec-

tively. Similarly, we occupy the second to 𝑧-th rank of those groups by following alternatives:

Rank: 1 2 . . . z

Group 𝐺1: 1 𝑚/log𝑚 + 1 . . . (𝑧 − 1)𝑚/log𝑚 + 1

...
...

Group 𝐺𝑚/log𝑚 : 𝑚/log𝑚 2𝑚/log𝑚 . . . 𝑧𝑚/log𝑚.
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Next, we also divide the population into

√
𝑚 parts 𝐻1, ..., 𝐻√

𝑚 of equal size, based on which

alternatives occupy the (𝑧 + 1)-the position. We may design this partition in a way such that

∀𝑘 ∈ [
√
𝑚] :

��{𝑙 ∈ [𝑚/log𝑚] : 𝐻𝑘 ∩𝐺𝑙 ≠ ∅}
�� ≤ √

𝑚

log𝑚
+ 2.

Intuitively, this is because the groups 𝐻𝑘 are larger by a factor of

√
𝑚/log𝑚 than the groups𝐺𝑙 . We

may thus pick the partition into 𝐻𝑘 such that each 𝐻𝑘 overlaps with at most

√
𝑚/log𝑚 + 2 many

groups 𝐺𝑙 . For each 𝑘 ∈ [
√
𝑚], we assign the (𝑧 + 1)-th position in group 𝐻𝑘 to be occupied by the

alternative 𝑧𝑚/log𝑚 + 𝑘 . Finally, we fill the rest of the positions in the preference histogram – i.e.

the (𝑧 + 2)-th to last ranks – arbitrarily.

Step 2: Designing the utilities. Amongst the

√
𝑚 alternatives which are ranked in the (𝑧 + 1)-th

position, there must exist one alternative which we call 𝑎 which is chosen by the voting rule 𝑓 with

probability at most 1/
√
𝑚. That is, if h denotes the preference histogram constructed in Step 1, then

𝑓𝑎 (h) ≤ 1/
√
𝑚.

Let 𝐻 ¯𝑘 be the unique group which ranks 𝑎 in the (𝑧 + 1)-th position. Now, we assign utilities as

follows. Define the following ratio of stakes:

𝑐𝑧 :=
𝑠 (1𝑧+10𝑚−𝑧−1)
𝑠 (1𝑧0𝑚−𝑧)

≤ 𝑒.

• Group 𝐻 ¯𝑘 .We assign to agents in 𝐻𝑘 the ranked utilities 𝑠 (1𝑧+10𝑚−𝑧−1).
• Remainder. In the remaining population 𝐻𝑐

𝑘
, we assign the ranked utilities 𝑐𝑧 · 𝑠 (1𝑧0𝑚−𝑧).

These ordered utilities, together with the rankings designed in Step 1, determine a utility matrix

which we call𝑈 .

(1) The alternative 𝑎 has average utility sw(𝑎,𝑈 ) = 1/
√
𝑚.

(2) All other alternatives 𝑎 ≠ 𝑎 have average utility at most sw(𝑎,𝑈 ) = 𝑐𝑧 log𝑚/𝑚 ≤ 𝑒 log𝑚/𝑚.

(3) By the homogeneity of the stakes function 𝑠 (·), all voters have equal stakes. Therefore, we
have that hist𝑠 (𝑈 ) = hist(𝑈 ) = h, and thus also

𝑓 (hist𝑠 (𝑈 )) = 𝑓 (h).
In particular, 𝑎 is chosen by the voting rule with probability at most 1/

√
𝑚 in 𝑓 (hist𝑠 (𝑈 )).

Together, these observations yield that

E
[
sw(𝑓 (hist𝑠 (𝑈 )))

]
≤ 𝑒 log𝑚

𝑚
+ 1

√
𝑚

1

√
𝑚

=
𝑒 log𝑚 + 1

𝑚
,

and thus the 𝑓 in Case 1 is at least

max𝑎 sw(𝑎,𝑈 )
E
[
sw(𝑓 (hist𝑠 (𝑈 )))

] ≥ 1/
√
𝑚

(1 + 𝑒 log𝑚)/𝑚 =

√
𝑚

1 + 𝑒 log𝑚
.

Case 2: It remains to treat the case when the premise of Case 1 is not fulfilled, that is, for every

𝑧 ≤ log𝑚 − 1, it holds that 𝑠 (1𝑧+10𝑚−𝑧−1)/𝑠 (1𝑧0𝑚−𝑧) ≥ 𝑒 . By multiplying this equality for all

𝑧 = 2, . . . , log𝑚 − 1, it follows that

𝑠
(
1log(𝑚)−10𝑚−log(𝑚)+1

)
𝑠 (110𝑚−1)

≥ 2
log𝑚−2 ≥ 𝑚

𝑒2
. (5)

Now let us consider a histogram profile where the population is divided in

√
𝑚 many equal sizes

groups, which first-rank alternatives 1, ...
√
𝑚, respectively. We fill up the remaining positions in

the histogram arbitrarily. Denote this histogram by h.
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We now assign utilities to induce h. There must exist one alternative among the

√
𝑚 first-ranked

alternatives that receives ≤ 1/
√
𝑚 probability of selection by 𝑓 (h). Let us call this alternative 𝑎∗,

and let us call the group which ranks 𝑎∗ first 𝐺 .

• Group 𝐺 . In this group, we assign the ordered utility vector 110𝑚−1.

• Group 𝐺𝑐 . In the remainder of the population, we assign the ordered utility vector

𝑠 (110𝑚−1)
𝑠 (1log(𝑚)−10𝑚−log(𝑚)+1)

· 1log(𝑚)−10𝑚−log(𝑚)+1

Let us denote the resulting utility matrix by𝑈 . We observe the following.

(1) The average utility of 𝑎∗ is at least sw(𝑎∗,𝑈 )/𝑛 ≥ 1/
√
𝑚.

(2) By equation (5), the average utility of any other alternative 𝑎 ≠ 𝑎∗ is at most

sw(𝑎,𝑈 )
𝑛

≤ 𝑒2

𝑚
.

(3) All voters have equal stakes. Therefore 𝑓 (h) = 𝑓 (hist(𝑈 )) = 𝑓 (hist𝑠 (𝑈 )) and wemay estimate

E[sw(𝑓 (hist𝑠 (𝑈 )),𝑈 )] ≤ 1

√
𝑚

1

√
𝑚

+ 𝑒2

𝑚2
≤ 10

𝑚
.

We obtain an overall distortion of at least

dist𝑠𝑈 (𝑓 ) ≥
√
𝑚

10

,

and the proof is complete. □

B.8 Proof of Lemma 3.13

B.8.1 Theorem B.5: reduction for rational-valued histograms. Here, we state and prove the reduction

assuming hist𝑠 (𝑈 ) has only rational entries, which we ensure by restricting to rational utility

matrices𝑈 ∈ Q𝑛×𝑚≥0
and rationality-preserving stakes functions 𝑠 (i.e., 𝑠 (u) ∈ Q whenever u ∈ Q𝑚≥0

).

Theorem B.5. Let 𝑓 be a voting rule, 𝑠 a rationality-preserving and 1-homogeneous stakes function,

and letU𝑠 be the set of all rational utility matrices satisfying the 𝑠-unit-stakes assumption. Then,

sup

𝑛≥1

sup

𝑈 ∈U𝑠

dist𝑈 (𝑓 ) = sup

𝑛≥1

sup

𝑈 ∈Q𝑛×𝑚≥0

dist
𝑠
𝑈 (𝑓 ).

Proof. We show the claimed equality by separately proving the directions ‘≤’ and ‘≥’. In order

to see the direction ‘≤’, we note that for any unit-stakes utility matrix𝑈 ∈ U𝑠 , hist(𝑈 ) = hist𝑠 (𝑈 ):
the standard and stakes-proportional histograms are the same. Therefore, dist𝑈 (𝑓 ) = dist𝑠

𝑈
(𝑓 ).

Taking suprema over 𝑛 ≥ 1 and𝑈 ∈ U𝑠 , we obtain the ‘≤’ direction.
It remains to show ‘≥’. In order to prove this direction, we fix any utility matrix𝑈 ∈ Q𝑛×𝑚≥0

, and

construct a unit-stakes utility matrix �̃� such that dist�̃� (𝑓 ) = dist𝑠
𝑈
(𝑓 ). We let

𝑠𝑖 =
𝑠 (u𝑖 )∑

𝑖∈[𝑛] 𝑠 (u𝑖 )
, 𝑖 ∈ [𝑛]

be the weights with which voter 𝑖 is represented in the stakes-recomposed election. Since 𝑠𝑖 ∈ Q,
there exists some �̃� such that 𝑠𝑖�̃� is again an integer for each 𝑖 ∈ [𝑛]. We fix such an �̃� and now

construct a utility matrix �̃� ∈ Q�̃�×𝑚≥0
for which 𝑓 (without taking into account stakes) exhibits the

same distortion as𝑈 (while accounting for stakes).

• We divide the electorate of �̃� into 𝑛 groups, each of them of size 𝑠𝑖�̃�. Call these groups𝐺1, ...𝐺𝑛 .

• Within each group 𝐺𝑖 , voters have the same ranking 𝜋𝑖 (𝑈 ) as voter 𝑖 in 𝑈 . However, they
possess scaled utilities u𝑖/𝑠 (u𝑖 ).
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Then we notice that by definition, hist(�̃� ) = hist𝑠 (𝑈 ), and therefore also 𝑓 (hist(�̃� )) = 𝑓 (hist𝑠 (𝑈 )).
Moreover, since 𝑠 is 1-homogeneous, it holds that for all 𝑖 ,

𝑠

( u𝑖
𝑠 (u𝑖 )

)
=

1

𝑠 (u𝑖 )
𝑠 (u𝑖 ) = 1,

which yields that U𝑠 satisfies the unit-stakes property. Moreover, for all alternatives 𝑎 ∈ [𝑚], it
holds that

sw(𝑎,𝑈 )
𝑛

=
∑︁
𝑖∈[𝑛]

𝑢𝑖 (𝑎) =
∑
𝑖 𝑠 (u𝑖 )
𝑛

∑︁
𝑖∈[𝑛]

𝑠𝑖
𝑢𝑖 (𝑎)
𝑠 (u𝑖 )

=
∑︁
𝑖∈[𝑛]

𝑠 (u𝑖 ) ·
sw(𝑎, �̃� )

𝑛
=

∑︁
𝑖∈[𝑛]

𝑠 (u𝑖 )
�̃�

𝑛
· sw(𝑎, �̃� )

�̃�
.

Since

∑
𝑖∈[𝑛] 𝑠 (u𝑖 ) �̃�𝑛 is a fixed constant independent of 𝑖 and 𝑎, it follows that the average utilities

in𝑈 and �̃� are equal up to multiplication with a fixed constant — thus distortion is preserved. □

B.8.2 Theorem B.7: Extension of Theorem B.5 to real-valued histograms. Under an additional very

mild restrictions on the voting rule 𝑓 , it is possible to prove the correspondence between stakes-

based procedures and unit-stakes assumptions from Theorem B.5 not just for rational utilities, but

for all real-valued utility functions. We term this assumption for 𝑓 to be rationally approximable,

which amount to the outcome of 𝑓 (h) for any preference histogram being well-approximated by

some preference histogram
˜h with only rational entries.

Definition B.6 (Rationally approximable rules). We say that a (deterministic or randomized) voting

rule 𝑓 : Δ(𝑆𝑚) → Δ( [𝑚]) is ‘rationally approximable’ if for every h ∈ Δ(𝑆𝑚) and every 𝜀 > 0 there

exists another histogram
˜h ∈ Q𝑛×𝑚≥0

with only rational entries such that

sup

𝜋∈𝑆𝑚
|ℎ𝜋 − ˜ℎ𝜋 | ≤ 𝜀 and sup

𝑎∈[𝑚]
|𝑓𝑎 (h) − 𝑓𝑎 ( ˜h) | ≤ 𝜀,

where 𝑓𝑎 (h) denotes the win probability of 𝑎 in 𝑓 (h).

TheoremB.7. For any 1-homogeneous stakes function 𝑠 and any voting rule 𝑓 : Δ( [𝑚!]) → Δ( [𝑚]),
we have that

sup

𝑛≥1

sup

𝑈 ∈U𝑠

dist𝑈 (𝑓 ) ≤ dist
𝑠 (𝑓 ).

If additionally 𝑠 is 1-homogeneous and 𝑓 is either (i) weakly locally constant or (ii) continuous, then

the reverse inequality is also true,

sup

𝑛≥1

sup

𝑈 ∈U𝑠

dist𝑈 (𝑓 ) ≥ dist
𝑠 (𝑓 ).

Proof of Theorem B.7. The first inequality is immediately implied by the fact that for any

𝑈 ∈ U𝑠 , the stakes-recomposed electorate is identical to the original electorate. Indeed, in this

case stakes-based election yields the same outcome as the non-stakes-based election, 𝑓 (hist(𝑈 )) =
𝑓 (hist𝑠 (𝑈 )), so that dist𝑈 (𝑓 ) = dist𝑠

𝑈
(𝑓 ). It thus only remains to prove the reverse inequality.

Let us fix an arbitrary 𝑛 ≥ 1 and utility matrix𝑈 ∈ R𝑛×𝑚 , and let hist𝑠 (𝑈 ) ∈ Δ(𝑆𝑚) denote the
stakes-recomposed profile corresponding to𝑈 . Without loss of generality, we may assume both

sw(𝑎∗,𝑈 ) > 0 (since otherwise𝑈 = 0) and

E
[
sw(𝑓 (hist𝑠 (𝑈 )),𝑈 )

]
> 0,

since otherwise dist𝑠
𝑈
(𝑓 ) = ∞ and there remains nothing to prove. By Proposition B.8, given any

𝜌 > 0 we may choose a unit-stakes utility matrix �̃� ∈ R�̃�×𝑚≥0
such that

sup

𝑎∈[𝑚]
|𝑓𝑎 (hist𝑠 (𝑈 )) − 𝑓𝑎 (hist(�̃� )) | ≤ 𝜌 and sup

𝑎∈[𝑚]

��� sw(𝑎,𝑈 )
𝑛

− sw(𝑎, �̃� )
�̃�

��� ≤ 𝜌.
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These two properties, taken together, imply the convergence���E[ sw(𝑓 (hist𝑠 (𝑈 )),𝑈 )
𝑛

]
− E

[ sw(𝑓 (hist(�̃� )), �̃� )
�̃�

] ��� 𝜌→0

−−−→ 0,

as well as the convergence ��
max

𝑎∈[𝑚]

sw(𝑎,𝑈 )
𝑛

− max

𝑎∈[𝑚]

sw(𝑎, �̃� )
�̃�

�� 𝜌→0

−−−→ 0.

Taken together, this implies that

|dist𝑠𝑈 (𝑓 ) − dist�̃� (𝑓 ) |
𝜌→0

−−−→ 0,

which proves the claim. □

Proposition B.8 (Approximation of social welfares). Suppose 𝑓 is a rationally approximable voting

rule. Let𝑈 ∈ R𝑛×𝑚 be any non-zero utility matrix. Then, for any 𝜌 > 0 there exists some large enough

�̃� and a unit-stakes utility matrix �̃� ∈ R�̃�×𝑚 such that

• The election outcomes are close,

sup

𝑎∈[𝑚]
|𝑓𝑎 (hist𝑠 (𝑈 )) − 𝑓𝑎 (hist(�̃� )) | ≤ 𝜌.

• For all 𝑎 ∈ [𝑚], the average utilities in𝑈 and �̃� are close,��� sw(𝑎,𝑈 )
𝑛

− sw(𝑎, �̃� )
�̃�

��� ≤ 𝜌.

Proof. Let 𝜀 > 0 be arbitrary and fix any 𝑈 . By Definition B.6, we can choose some
˜h ∈ Q𝑆𝑚≥0

with rational coefficients such that

sup

𝜋∈𝑆𝑚
|hist𝑠𝜋 (𝑈 ) − ˜ℎ𝜋 | ≤ 𝜀 and sup

𝑎∈[𝑚]
|𝑓
(
hist𝑠𝜋 (𝑈 )

)
− 𝑓𝑎 ( ˜ℎ) | ≤ 𝜀,

Step 1: Construction of utility matrix which induces
˜h. Since ˜h ∈ Q𝑆𝑚≥0

only has rational

coefficients, there exists some electorate with �̃� many voters and preferences (�̃�𝑖 : 𝑖 ≤ �̃�) such that

for each 𝜋 ∈ 𝑆𝑚 , exactly a ˜ℎ𝜋 fraction of the voters have ranking 𝜋 . Now, we construct a unit-stakes

utility matrix �̃� ∈ U𝑠 ∩ R�̃�×𝑚 which induces those rankings to the �̃� voters, and which in turn will

induce the profile
˜h, hist(�̃� ) = ˜h. To this end, let

𝑠𝑖 :=
𝑠 (𝑢𝑖 )∑

𝑖∈[𝑛] 𝑠 (𝑢𝑖 )
,

∑︁
𝑖∈[𝑛]

𝑠𝑖 = 1,

denote the weights corresponding to each voter 𝑖’s preferences in the stakes-recomposed electorate.

Since 𝑠 is 1-homogeneous, we may assume without loss of generality that

∑
𝑖∈[𝑛] 𝑠 (𝑢𝑖 ) = 𝑛, by

simply scaling the utilities (note that this leaves hist𝑠 (𝑈 ) and also dist𝑠
𝑈
(𝑓 ) unchanged). We partition

in the new ‘unit-stakes electorate’ (which consists of �̃� voters) into 𝑛 + 1 parts, which we denote by

𝐺1, ...,𝐺𝑛+1. Within each of those groups, voters share the same ordered utility vector.

Groups𝐺1, ...𝐺𝑛 . The first 𝑛 groups𝐺1, ...,𝐺𝑛 are specified as follows. Voters in group 𝑖 have the

utilities
𝑢𝑖
𝑠 (𝑢𝑖 ) , i.e., the same utilities as voter 𝑖 in the original electorate, but scaled to unit-stakes. In

particular, voters in group 𝐺𝑖 will inherit the same ranking 𝜋𝑖 as the 𝑖 − 𝑡ℎ voter from the original

electorate. Let the (fraction) size of the 𝑖-th group be denoted by 𝑔𝑖 , i.e., 𝑔𝑖 = |𝐺𝑖 |/�̃�. We now

determine those sizes. Since

sup

𝜋∈𝑆𝑚

�� ˜h𝜋 − hist𝑠𝜋 (𝑈 )
�� ≤ 𝜀,



Bailey Flanigan, Ariel Procaccia, and Sven Wang 30

we can now choose the (𝑔𝑖 : 𝑖 ∈ 𝑛) in such a way such that simultaneously, the following properties

are satisfied. First, 𝑔𝑖 ∈ [𝑠𝑖 − 𝜀, 𝑠𝑖 ], and second, for every 𝜋 ∈ 𝑆𝑚 ,∑︁
𝑖∈𝑛

𝑔𝑖 I
(
𝜋𝑖 = 𝜋

)
≤ ˜h𝜋 . (6)

The first property states that the group size 𝐺𝑖 does not exceed the amount of representation of

voter 𝑖 in the stakes-recomposed electorate 𝑠𝑖 . The second property states that by assigning group

sizes 𝑔𝑖 , compared to the histogram
˜h, none of the rankings is overrepresented. Note that∑︁

𝑖

𝑔𝑖 ≤
∑︁
𝑖

𝑠𝑖 ≤ 1, and

∑︁
𝑖

𝑔𝑖 ≥
∑︁
𝑖

𝑠𝑖 − 𝜀 ≥ 1 − 𝑛𝜀.

Group𝐺𝑛+1. This group constitutes the remainder of the population. Within this group, everyone

has the same ordered utility vector, but not the same rankings of alternatives. In this group, we assign

the ordered utility vector (𝑥, 0, . . . , 0), where 𝑥 is given by 𝑥 = 𝑠 ((1, 0, . . . , 0))−1 > 0. Note that 𝑥 is

the (unique) constant such that 𝑠 ((𝑥, 0, . . . , 0)) = 1. In terms of the orderings of alternatives in group

𝐺𝑛+1, we assign the exact rankings which are needed to complete the correct histogram
˜h which

we aim to realize. Since from Groups 𝐺1, ...,𝐺𝑛 , none of the rankings 𝜋 ∈ 𝑆𝑚 was overrepresented

compared to
˜h – see equation (6) – this is possible. The group 𝐺𝑛+1 has size at most 𝑛𝜀.

Let us denote the utility matrix which arises from this construction by �̃� ∈ R�̃�×𝑚≥0
.

Step 2: Approximation of social welfares. It remains to check that the distortion dist�̃� (𝑓 )
induced by �̃� approximates the distortion dist𝑠

𝑈
(𝑓 ) for the stakes-based election. To this end, we

upper and lower bound the difference in average utilities induced by 𝑈 and �̃� , respectively. First,

recalling that

∑
𝑖 𝑠 (𝑢𝑖 ) = 𝑛, we have the lower bound

sw(𝑎, �̃� )
�̃�

− sw(𝑎,𝑈 )
𝑛

≥
𝑛∑︁
𝑖=1

𝑔𝑖
𝑢𝑖 (𝑎)
𝑠 (𝑢𝑖 )

− 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖 (𝑎)

≥
𝑛∑︁
𝑖=1

(𝑠𝑖 − 𝜀)
𝑢𝑖 (𝑎)
𝑠 (𝑢𝑖 )

− 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖 (𝑎)

≥
𝑛∑︁
𝑖=1

𝑠 (𝑢𝑖 )∑
𝑗∈[𝑛] 𝑠 (𝑢 𝑗 )

𝑢𝑖 (𝑎)
𝑠 (𝑢𝑖 )

− 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖 (𝑎) −
𝑛∑︁
𝑖=1

𝜀
𝑢𝑖 (𝑎)
𝑠 (𝑢𝑖 )

= −𝜀
𝑛∑︁
𝑖=1

𝑢𝑖 (𝑎)
𝑠 (𝑢𝑖 )

.

Similarly, we may derive an upper bound, recalling the constant 𝑥 = 𝑠 ((1, 0, ..., 0))−1
:

sw(𝑎, �̃� )
�̃�

− sw(𝑎,𝑈 )
𝑛

≤
𝑛∑︁
𝑖=1

𝑔𝑖
𝑢𝑖 (𝑎)
𝑠 (𝑢𝑖 )

+ 𝑛𝜀𝑥 − 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖 (𝑎) ≤
𝑛∑︁
𝑖=1

𝑠𝑖
𝑢𝑖 (𝑎)
𝑠 (𝑢𝑖 )

+ 𝑛𝜀𝑥 − 1

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖 (𝑎) = 𝑛𝜀 · 𝑥 .

Since 𝜀 > 0 was arbitrary, and since both of the latter two bounds tend to 0 as 𝜀 → 0, we can now

choose 𝜀 > 0 small enough to fulfill all of the inequalities in the Proposition B.8 for any prescribed

threshold 𝜌 > 0. This proves the claim. □

Our result shows that, from the perspective of worst-case distortion, using a stakes-based

recomposition is equivalent to assuming across the population that every voter has equal stakes.
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B.9 Formalisms about the Stable Lottery Rule

We now define the Stable lottery rule,following [Ebadian et al., 2022]. Since only the case of a

stable lottery of size

√
𝑚 is relevant to us, we shall restrict our definition to this special case. Let

P√
𝑚 ( [𝑚]) be the set of all subsets (or ‘committees’) of [𝑚], of size

√
𝑚, and let Δ(P√

𝑚 ( [𝑚])) be
the set all of all distributions on P√

𝑚 ( [𝑚]). Given a subset 𝐴 ⊆ [𝑚] of alternatives, an alternative

𝑎 ∈ [𝑚] and a histogram profile h ∈ Δ(𝑆𝑚), let us denote the fraction of voters who rank 𝑎 ahead

of all of 𝐴 by

Freq𝑎≻𝐴 (h) =
∑︁
𝜋∈𝑆𝑚

ℎ𝜋 I(𝑎 ≻𝜋 𝐴).

If 𝑎 ∈ 𝐴, then we set Freq𝑎≻𝐴 (h) = 0 for all h.

Definition B.9 (Stable lottery). Given a preference histogram h, a stable lottery (of size

√
𝑚) is a

probability distribution 𝑃 (h) ∈ Δ(P√
𝑚 ( [𝑚])) (i.e., a random selection of a committee of size

√
𝑚)

such that for all h,

max

𝑎∈[𝑚]
E𝐴∼𝑃 (h)

[
Freq𝑎≻𝐴 (h)

]
<

1

√
𝑚
.

It is well-known that a stable lottery always exists, see, e.g. [Ebadian et al., 2022]. Building on

this definition, we define the Stable Lottery Rule in terms of histograms.

Definition B.10 (Stable Lottery Rule). Given a histogram h, let 𝑃 (h) be a stable lottery. With

probability 1/2, sample a committee 𝐴 of size

√
𝑚 from 𝑃 (h), and then choose an alternative

uniformly at random from𝐴. Else, with the remaining probability 1/2, simply choose an alternative

uniformly at random from [𝑚].

Proof of Theorem 3.12.

Theorem 3.12 (upper bound). For 𝑠 ∈ {sum,max, range}, dist𝑠 (Stable Lottery) ∈ 𝑂 (
√
𝑚).

First, assume that 𝑠 ∈ {max, sum}, and let 𝑓 = Stable Lottery Rule. Then, by a well-established

result from Ebadian et al [Ebadian et al., 2022], we know that both for 𝑠 = sum and 𝑠 = max, the
worst-case distortion over unit-stakes instances is of the order 𝑂 (

√
𝑚),

sup

𝑛≥1

sup

𝑈 ∈U𝑠

dist𝑈 (Stable Lottery Rule) ∈ 𝑂 (
√
𝑚),

where we recall the notation U𝑠 for the set of utility matrices𝑈 where each voter has unit stakes,

𝑠 (u𝑖 ) = 1. Our goal is to use Theorem B.5 to conclude that the stakes-proportional procedure also

has distortion of the order at most 𝑂 (
√
𝑚). For this, we need to confirm that the Stable Lottery

Rule is rationally approximable in the sense of Definition B.6. Indeed, this is seen as follows. Let h
be an arbitrary preference histogram. In [Ebadian et al., 2022], it is proven not just that a stable

lottery always exists for h; indeed, a slightly stronger requirement is validated, namely, that the

lottery satisfies

max

𝑎∈[𝑚]
E𝐴∼𝑃 (h)

[
Freq𝑎≻𝐴 (h)

]
≤ 1

√
𝑚 + 1

.

Now, let 𝜀 > 0. Suppose that
˜h is another histogram profile with rational entries such that

sup

𝜋∈𝑆𝑚
|ℎ𝜋 − ˜ℎ𝜋 | ≤ 𝜀.

We may also choose
˜h such that the difference

��
Freq𝑎≻𝐴 (h) − Freq𝑎≻𝐴 ( ˜h)

�� ≤ 𝜀 for any 𝑎. Choosing
𝜀 small enough, 𝑃 (h) is a permissible stable lottery also for

˜ℎ. Using this stable lottery, we have

that 𝑓 (h) = 𝑓 ( ˜ℎ); thus 𝑓 is rationally approximable; the statement follows for 𝑠 ∈ {max, sum}.
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It remains to show the claim for 𝑠 = range. Here, we argue along the same lines as Observation B.2:

The worst-case distortion both for 𝑠 = range and for 𝑠 = max can be realized while only considering

utility matrices in which each voter has minimum utility 0. Let this set of utilities be denoted byV .

Then,

sup

𝑈 ∈R𝑛×𝑚≥0

dist
range
𝑈

(𝑓 ) = sup

𝑈 ∈V
dist

range
𝑈

(𝑓 ) = sup

𝑈 ∈V
distmax

𝑈 (𝑓 ) = sup

𝑈 ∈R𝑛×𝑚≥0

distmax
𝑈 (𝑓 ).

□

B.10 Folklore: all randomized rules have at least𝑚 distortion.

Fact B.11. For all voting rules 𝑓 , dist(𝑓 ) ≥ 𝑚.

Proof. Consider a histogram in which each of the𝑚 alternatives occupies a 1/𝑚 fraction of the

first positions and the second to last positions are occupied arbitrarily. There exists some alternative

𝑎 which will be chosen by the randomized rule with probability at most 1/𝑚. Let𝐺 denote the group

in which 𝑎 is ranked first. In this group, let us assign the ordered utility vector (1, 0, ..., 0). In the

remainder of the population 𝐺𝑐 , we assign the zero utility vector. Let us denote this utility matrix

by𝑈 . Then, since 𝑓 selects 𝑎 with probability at most 1/𝑚, denoting the winner of the election by

𝑎′, we obtain E[sw(𝑎′,𝑈 )/𝑛] ≤ 1/𝑚2
, while the maximum welfare alternative has average utility

sw(𝑎,𝑈 )/𝑛 = 1/𝑚; thus the distortion of 𝑓 is at least𝑚. □


	Abstract
	1 Introduction
	1.1 Approach and contributions
	1.2 Related work

	2 Model
	2.1 The voting model
	2.2 A stakes framework within the voting model

	3 What if we have perfect stakes information?
	3.1 Deterministic voting rules
	3.2 Randomized voting rules

	4 What if we have approximate stakes information?
	5 What if we have no stakes information?
	6 Discussion
	6.1 The multi-issue mechanism design space & connections to other mechanisms
	6.2 Stakes in liquid and deliberative democracy

	References
	A Supplemental Materials from Section 1.2
	A.1 Connections to existing results

	B Supplemental Materials from Section 3
	B.1 All deterministic rules have unbounded distortion
	B.2 Proof of Theorem 3.1
	B.3 thm:det-UB holds when 's are defined with range instead of max
	B.4 Proof of lem:betafub
	B.5 Proof of thm:plurality-lb 
	B.6 Proof: f = 0 for many established voting rules
	B.7 Proof of thm:randlb
	B.8 Proof of lem:reduction-informal
	B.9 Formalisms about the Stable Lottery Rule
	B.10 Folklore: all randomized rules have at least m distortion.


