
Now We’re Talking: Better Deliberation Groups Through Submodular
Optimization

Jake Barrett,1 Ya’akov (Kobi) Gal,1,2 Paul Gölz,3 Rose M. Hong,3 and Ariel D. Procaccia3

1University of Edinburgh 2Ben-Gurion University of the Negev 3Harvard University

Abstract

Citizens’ assemblies are groups of randomly selected con-
stituents who are tasked with providing recommendations on
policy questions. Assembly members form their recommen-
dations through a sequence of discussions in small groups
(deliberation), in which group members exchange arguments
and experiences. We seek to support this process through opti-
mization, by studying how to assign participants to discussion
groups over multiple sessions, in a way that maximizes inter-
action between participants and satisfies diversity constraints
within each group. Since repeated meetings between a given
pair of participants have diminishing marginal returns, we
capture interaction through a submodular function, which is
approximately optimized by a greedy algorithm making calls
to an ILP solver. This framework supports different submodu-
lar objective functions, and we identify sensible options, but
we also show it is not necessary to commit to a particular
choice: Our main theoretical result is a (practically efficient)
algorithm that simultaneously approximates every possible ob-
jective function of the form we are interested in. Experiments
with data from real citizens’ assemblies demonstrate that our
approach substantially outperforms the heuristic algorithm
currently used by practitioners.

1 Introduction
Can deliberation among groups of randomly selected people
revitalize democracy? A growing number of political theo-
rists, activists, and even politicians believe so [8, 19, 32] and
have been putting this idea into practice. In the last decade,
hundreds of citizens’ assemblies (also known as deliberative
polls or minipublics) have been convened by civil society
and by local and national governments [25]. Recently, these
assemblies have become more numerous and higher profile:
Citizens’ assemblies established in 2016 and 2019 in Ireland,
for example, have led to national referenda and, in turn, to
major constitutional changes. As another example, France
has embraced this paradigm at different levels of govern-
ment [19]; in particular, the recommendations of the Citizens
Convention for Climate, established in 2019 with the bless-
ing of President Macron, have given rise to significant new
legislation.

On a high level, the process of organizing a citizens’ as-
sembly consists of two phases. In the first phase, a pool
of volunteers is put together, and the assembly is randomly

selected from this pool. The assembly is required to be repre-
sentative of the population in terms of features like gender,
ethnicity, age, and education, but the pool of volunteers is typ-
ically unrepresentative of the population due to self-selection
bias. In a series of papers, Flanigan et al. [10, 11, 13] develop
an algorithmic framework for randomly selecting citizens’
assemblies in a way that is representative, fair to volunteers,
and transparent.

In the second phase of the process, the assembly discusses
the issues at hand and reaches conclusions that inform policy
making. This discussion, known as deliberation, is what en-
ables an assembly composed of laypeople to reach judicious
recommendations on a complex issue. Though deliberation
lies at the heart of a citizens’ assembly’s purpose, almost no
work so far supports deliberation through algorithms, compu-
tation, or AI. Deliberation in a citizens’ assembly takes place
over a number of sessions, where in each session, participants
are divided into discussion groups, which we refer to as ta-
bles. For example, the Citizens’ Assembly of Scotland, which
was convened by the Scottish Government in 2019–2020, ran
over 16 sessions spread across 8 weekends; in each session,
the 104 participants were divided across 12 tables.

This work arises out of a collaboration with the Sorti-
tion Foundation — a nonprofit organization which facilitates
dozens of citizens’ assemblies worldwide every year — on
the design and implementation of algorithms for managing
deliberation. One problem that our contacts brought up is
scheduling the assignment of participants to tables, which we
address in this paper. The practitioners’ primary goal is to
find a schedule that, over the course of the process, allows par-
ticipants to exchange ideas with as many other participants as
possible. In addition, tables must be demographically diverse;
in the Citizens’ Assembly of Scotland, they were diversified
based on political view, age, and gender.

Currently, the Sortition Foundation as well as other non-
profits use a heuristic algorithm called GROUPSELECT [33]
to allocate tables, developed by the Sortition Foundation.
Internally, this algorithm optimizes the objective of maxi-
mizing the number of pairs of participants who meet at least
once, assigning no value to subsequent meetings. We see two
shortcoming with this current approach: First, as we show in
Section 6, GROUPSELECT performs quite poorly in terms of
its chosen objective. Second, the objective itself often fails
to encourage good schedules. We elaborate on this problem

in Section 3, but an example of such a problematic situation
is when all participants have met each other. At that point,
the objective is indifferent between all possible assignments,
and thus even a schedule repeating the same table assignment
across all remaining sessions would be optimal.

To overcome these shortcomings, we must address sev-
eral challenges. On a conceptual level, we need a principled
measure of interaction between participants, which we seek
to maximize. If interaction is measured as a function of the
number of times each pair of participants meets, how much
value should the first meeting between Alice and Bob have
relative to the second, third, or fourth? On a technical level,
we aim to develop a theoretically sound and practical algo-
rithmic framework for optimizing our measure of interaction,
with an eye towards real-world deployment.

Our approach and results. It is intuitive that meetings be-
tween the same participants have diminishing marginal re-
turns, e.g., the third meeting carries less value for delibera-
tion than the second. We express this idea through what we
call a saturation function f : for a monotone nondecreasing
and concave function f : N → R≥0, we model the goal
of maximizing interaction between participants through the
submodular objective f̂ =

∑
{i,j} f(mi,j), where the sum

ranges over all pairs of agents i, j and mi,j is the number of
sessions in which i and j are assigned to the same table. For
any choice of saturation function f , we obtain a practical al-
gorithm that maximizes the corresponding objective f̂ within
an approximation factor of 1 − 1/e ≈ 63%, building on a
classical result in submodular maximization [23] and using
an integer linear programming (ILP) solver as a subroutine.

Which saturation function f should we use? Given that no
objective seems universally better than the others, we pursue
an approach of simultaneous approximation [30]. Specifi-
cally, we design an algorithm that produces schedules that
Ω(1/ log T)-approximate the objectives f̂ for all saturation
functions f at once, where T is the number of sessions. This
result applies not just to table allocation, but to maximum-
coverage style problems in all other domains. Specifically,
we show that the f -MAXCOVERAGE problem recently intro-
duced by Barman, Fawzi, and Fermé [2] can be Ω(1/ log T)-
approximated for all f at once, in polynomial time.

We then evaluate our optimization algorithms and GROUP-
SELECT on data from seven citizens’ assemblies. We find
that all our algorithms outperform GROUPSELECT by a wide
margin, including when measured by its own objective. Two
saturation functions, based on the harmonic and geometric
series, seem promising for optimizing schedules in practice.

Related work. Along with those already mentioned, several
works [3, 6, 22, 28, 34] in computational social choice have
studied the random selection of citizens’ assemblies, but none
of them interface with the deliberation taking place once the
assembly convenes. A second line of work [5, 7, 14, 26, 35]
proposes and analyzes mathematical models for deliberation,
which we see as complementary to our approach. Whereas
these papers capture the dynamics of deliberation with more
nuance than us, our paper approaches deliberation through
the lens of a practical problem, table allocation, and its inter-

action with deliberation. Finally, Fishkin et al. [9] develop
a system that automatically manages speaking times and
speaker order in online deliberation. This is the one example
we know of that seeks to support deliberation in citizens’ as-
semblies through a practical, computational approach, but it
addresses a fundamentally different aspect of the deliberation
process.

Our use of submodular objectives follows a long tradition
in AI of maximizing submodular functions to obtain diverse
solutions. For example, this methodology encourages differ-
ent parts of a multi-document summary to refer to different
sources [4, 21], sensors to be placed where they can collect
complementary information [18], or papers to be assigned to
reviewers with different expertise [1]. In our application, the
submodular objective encourages schedules to vary which
pairs of assembly members meet across the sessions.

Our class of objective functions naturally generalizes the
maximum coverage problem [16] and coincides with the class
of f -MAXCOVERAGE problems (for saturation functions
f) defined by Barman et al. [2]. Despite this connection,
the result of Barman et al. (an algorithm that, for certain f ,
obtains a better approximation ratio than 1− 1/e) does not
apply to table allocation: since the “sets” that can be chosen
for coverage are implicitly represented in table allocation,
their algorithm is neither polynomial-time nor practical to
run in our setting.

Finally, our setup resembles the classic social golfer prob-
lem: n golfers must be repeatedly partitioned into k groups,
each of equal size s. Find a schedule of maximum length
given that no two golfers may be placed in the same group
twice. Most work in this space analyzes the solutions for spe-
cific n and k, or optimizes Boolean satisfiability formulations
to find long schedules [e.g., 20, 29, 31]. Our problem differs
from the social golfer problem in two ways. First, the social
golfer problem maximizes the number of sessions subject to
a hard constraint on repeated meetings, whereas we minimize
repeated meetings subject to a fixed schedule length. Sec-
ond, whereas the social golfer problem allows to group any s
golfers together, our representativeness constraints make the
problem no longer symmetric and even less tractable than the
social golfer problem.

2 Model
Table allocation problem. An instance of the table alloca-
tion problem is a tuple consisting of a set of agents N = [n],
a number of tables k, a number of sessions T ≥ 2, and a set
of representativeness constraints. These representativeness
constraints are given as a set F of features, where each fea-
ture ϕ ∈ F is defined by a set of agents Aϕ ⊆ N possessing
this feature, a lower quota `ϕ, and an upper quota uϕ such
that 0 ≤ `ϕ ≤ uϕ ≤ dn/ke.

A partition for this instance partitions the agents into k
disjoint tablesN = ∆1 ∪̇ · · · ∪̇∆k, subject to two constraints:
(1) each table ∆i has size either bn/kc or dn/ke, and (2) each
table ∆i satisfies all representativeness constraints, in the
sense that `ϕ ≤ |∆i ∩Aϕ| ≤ uϕ for all features ϕ.1 For ease

1In some assemblies in practice, partitions must additionally
satisfy clustering constraints, which require that some participants

of exposition, we assume that any given instance allows for
at least one partition. Given a table allocation instance, our
aim is to construct a schedule, which is a multiset Z over
partitions containing T elements.2

The f -MAXCOVERAGE problem. The optimization objec-
tives we propose for table allocation resemble maximum
coverage, since we aim to cover pairs of agents by selecting
T many partitions, each of which brings together (“covers”)
certain pairs of agents. Our objectives generalize maximum
coverage in that they may reward not only the first meeting
but also subsequent meetings to various degrees.

This generalization of maximum coverage coincides with
the f -MAXCOVERAGE problem defined by Barman et al. [2],
which is is parameterized by a saturation function f : N→
R≥0 that is monotone nondecreasing, concave, and satisfies
f(0) = 0. Each f -MAXCOVERAGE instance consists of a
finite ground set G, a collection Z of sets S ⊆ G of ground
elements, and target number T ≥ 2 of sets. For a given
instance of f -MAXCOVERAGE, a selection is a multiset over
Z , and a solution is a selection of cardinality T . The goal of
f -MAXCOVERAGE is to find a solution Z that maximizes
the objective f̂ , which is the function mapping selections Z
to R≥0 defined in terms of f such that

f̂(Z) :=
∑

g∈G
f(number of sets in Z that contain g)

=
∑

g∈G
f
(∑

S∈Z:g∈S Z(S)
)
.

For the saturation function f1(x) := 1{x≥1} = min{x, 1},
f1-MAXCOVERAGE coincides with classic maximum cov-
erage. The saturation function f adds expressivity beyond
maximizing coverage; e.g., the objective assigns value to
second appearances of g if f(2) > f(1). Generally, the con-
cavity of f promotes schedules that contain ground elements
similar numbers of times.

A function s that maps selections to R≥0 satisfies dimin-
ishing returns if, for any two selections Z1 v Z2 and for any
S ∈ Z , s(Z1+{S})−s(Z1) ≥ s(Z2+{S})−s(Z2). We call
s monotone if, for all selections Z1 v Z2, s(Z1) ≤ s(Z2).
One easily verifies that all objectives f̂ have diminishing
returns and are monotone. Finally, for some α ∈ (0, 1),
a solution Z α-approximates an objective f̂ if f̂(Z) ≥
α · maxsolution Z′ f̂(Z ′). A solution Z is a simultaneous α-
approximation if it α-approximates the objectives f̂ for all
saturation functions f at once.

3 Table Allocation as f -MAXCOVERAGE
Looking at the table allocation problem, it is not obvious
what makes one schedule more conducive to deliberation
(e.g. those unwilling to be photographed or those in need of transla-
tion services) be grouped together. Since our approach in Section 4
generalizes to clustering in a straight-forward way, we omit these
constraints for ease of exposition.

2A multiset over a finite support X is a function ms : X → N,
where ms(x) indicates how many copies of x ∈ X are contained
in the multiset. We write |ms| =

∑
x∈X ms(x) for the cardinality

of a multiset and denote multiset addition by +, multiset difference
by −, and multiset inclusion by v.

than another, other than a vague intuition that discussion
groups should be “mixed up” between sessions. The Sortition
Foundation’s work on GROUPSELECT makes an important
contribution by declaring a mathematically precise objective:
maximizing how many pairs of assembly members meet at
least once. This objective is certainly an incomplete perspec-
tive on what makes a schedule conducive to deliberation, but
it is rooted in the Sortition Foundation’s extensive experience
in organizing citizens’ assemblies.

We can express the objective optimized by GROUPSE-
LECT by casting a given table allocation instance as a f1-
MAXCOVERAGE problem: Let the ground set G be the set(
N
2

)
of all unordered pairs of agents, and let the collection

Z contain, for each partition S = ∆1 ∪̇ · · · ∪̇ ∆k of the
table allocation instance, the set

⋃
1≤i≤k

(
∆i

2

)
of all pairs

sitting at the same table in S. GROUPSELECT’s objective
reduces to f1-MAXCOVERAGE since, for the saturation func-
tion f1(x) = min{x, 1}, each pair i, j that does not meet
contributes 0 to the objective f̂1 and all other pairs contribute
1. Throughout this paper, we will use the same reduction to
optimize the objectives f̂ for other saturation functions f
over schedules.

As mentioned in the introduction, GROUPSELECT’s ob-
jective f̂1 seems inappropriate in many cases. One obvious
concern is that f̂1 does not express any preference between
schedules in which all pairs meet, which, our empirical eval-
uation shows, is not just a hypothetical, but relevant on real
data. Since some repeated meetings are typically unavoid-
able, an objective should arguably express a preference over
how these repeated meetings are distributed over pairs. Even
for just two sessions and without representativeness con-
straints, repeated meetings are inevitable whenever n > k2.
In Appendix A.1, we show that the minimum number of re-
peated meetings is at least k2

(
x
2

)
+ x · y in this case, where

x :=
⌊
n/k2

⌋
and y := n mod k2.

A more subtle issue with optimizing f̂1 is that prioritizing
first meetings might not be worth an arbitrarily high cost in
terms of which other pairs meet. In Appendix B, we present
a table allocation problem in which it is difficult to arrange
meetings for a subset P of the pairs, in the sense that (1) at
most one pair in P can meet per partition without violating
representativeness, (2) whenever a pair in P meets, repre-
sentativeness implies that the other pairs meeting each other
are essentially always the same ones, and (3) if no pair in
P meets, there is a lot of freedom in who meets whom. In
this instance, an algorithm optimizing f̂1 will expend most
sessions to make pairs in P meet one by one, even if this
means that the overwhelming majority of pairs meet either
excessively often or just once. In such instances, it seems
preferable to forgo some first meetings in P in order to allow
a large number of pairs to meet a second time.

Motivated by the above limitations of f̂1, we generalize
the optimization problem introduced by the Sortition Founda-
tion by considering saturation functions other than f1. Each
saturation function has its distinct advantages and disadvan-
tages, which might matter to different degrees depending on
the instance. For example, for any r ≥ 2, consider the sat-

uration function fr(x) := min{x, r}, for which each pair’s
contribution to f̂r increases by 1 per meeting up to the r’th
meeting, and does not increase beyond that. On the upside,
the objective f̂r pushes the schedule towards an ideal point in
which each pair meets r times with maximum vigor. On the
downside, if the representativeness constraints force some
pairs to meet fewer than r times (or more than r times), f̂r
is indifferent between how equally the number of meetings
below r (or above r, respectively) are spread.

In search of saturation functions whose marginal returns
diminish more smoothly, two kinds of saturation functions
strike us as promising. The first are the geometric satura-
tion functions gβ (for some 0 < β < 1), where gβ(x) :=∑x
i=1 β

i. Given that the marginals βmi,j decay exponentially
in the number mi,j of previous meetings of the pair, the ge-
ometric objectives ĝβ should still put much weight on the
first meeting. Geometric objectives possess the intuitively
appealing “self-similarity” property that, if we fix a partial
schedule in which all pairs appear equally often, the problem
of optimizing the remaining partitions looks just like opti-
mizing a shorter schedule, with the objective multiplied by a
constant. A final example is the harmonic saturation function
h(x) :=

∑x
i=1 1/i. Since this function’s marginals decrease

more slowly, we would expect the objective ĥ to prioritize
earlier meetings less radically. Note that the “self-similarity”
property is not satisfied by this objective.3

4 Optimizing a Specific Saturation Function
Having built intuition about the preference over allocation
tradeoffs expressed by a saturation function, we investigate
how a given objective f̂ can be approximately optimized.

One immediate obstacle is that already the problem of
deciding whether any partition exists for the given repre-
sentativeness constraints is NP-hard (Appendix C). Thus,
polynomial-time algorithms cannot produce partitions or
schedules (unless P = NP), which is why we will search for
algorithms that (though not theoretically polynomial-time)
run sufficiently fast on practical inputs. Fortunately, state-
of-the-art solvers for Integer Linear Programming (ILP) can
reliably find a representative partition in little time. Though
ILP solvers are powerful, formulating the entire optimization
over schedules as an ILP is intractable as we show in Sec-
tion 6. Therefore, our algorithmic approach will use ILP as a
powerful subroutine for finding partitions, but our approach
will handle in outside logic how the contributions of different
partitions interact in the objective.

What will enable us to break down the optimization into
generating partitions one at a time are the properties of the

3Consider a setting where we can achieve all pairs meeting
exactly ten times. In an ideal setting, the problem would “reset” as
if nobody had met: the tradeoff between participants meeting for
the nth and (n + 1)th times should be constant regardless of n.
This property is satisfied by the geometric utility function, but for
a harmonic utility function we will have a decreasing difference in
utilities as n increases. For example, three third meetings have the
same marginal utility as two second meetings (3

3
= 2

2
), but once

every pair has met ten times, three twelfth meetings have a higher
marginal utility than two eleventh meetings (3

12
> 2

11
).

objectives f̂ we consider, namely diminishing returns, mono-
tonicity, and that f̂(∅) = 0. These properties are useful since,
for any multiset function over Z satisfying them, Nemhauser,
Wolsey, and Fisher [23] showed that a simple greedy algo-
rithm returns a multiset of cardinality T whose objective
value is at least a 1 − 1/e fraction of the optimal objective
value across all multisets of size T .4 This greedy algorithm
iteratively constructs a multiset Z by starting from the empty
multiset and T times adding the set S ∈ Z with largest
marginal increase f̂(Z + {S})− f̂(Z). In most cases where
this greedy algorithm is run, the collection of sets Z is not
too large and explicitly given, which allows to identify S by
enumerating Z . By contrast, the set of all partitions might be
exponentially large, so enumerating them is not an option.

Thus, we instead implement each step of the greedy al-
gorithm by solving an ILP that will yield the partition with
largest marginal increase. This ILP formulation makes use
of the specific shape of our objectives, which decompose
into a sum over pairs of agents, and which have the property
that any partition’s marginal contribution to a pair {i, j}’s
summand is either zero (if i and j do not meet) or a constant
value f(mi,j + 1) − f(mi,j) (if i and j meet), where mi,j

denotes the number of times i and j have met before. Below
we describe the ILP, whose variables are xi,τ (“agent i is
allocated to table τ”) and y{i,j},τ (“agents i and j are both
allocated to table τ”), for all i 6= j ∈ N and 1 ≤ τ ≤ k:

maximize
∑

{i,j}∈(N
2)

1≤τ≤k

(
f(mi,j + 1)− f(mi,j)

)
· y{i,j},τ

subject to
∑

1≤τ≤k

xi,τ = 1 ∀i ∈ N

bn/kc ≤
∑
i∈N

xi,τ ≤ dn/ke ∀1≤τ≤k

`ϕ ≤
∑
i∈Aϕ

xi,τ ≤ uϕ ∀1≤τ≤k, ϕ ∈ F

y{i,j},τ ≥ xi,τ + xj,τ − 1
y{i,j},τ ≤ xi,τ
y{i,j},τ ≤ xj,τ

 ∀{i, j} ∈
(
N
2

)
,

1≤τ≤k

xi,τ ∈ {0, 1}, y{i,j},τ ∈ {0, 1} ∀i, j, τ .
Observe that, for each pair {i, j}, the 4th, 5th, and 6th
constraints constrain y{i,j},τ to equal one iff xi,τ and xj,τ
are one. As a result, at most one variable y{i,j},τ can be
nonzero for each {i, j}, and thus each pair contributes either
f(mi,j + 1) − f(mi,j) or nothing to the objective, as in-
tended. Due to the quadratically many y{i,j},τ variables and
the constraints tying them to the xi,τ , this ILP is substantially
more difficult to solve than just finding a valid partition, but
we will show in Section 6 that a state-of-the-art ILP solver
can optimize these programs to sufficient accuracy.

4Technically, Nemhauser et al. [23] prove this for submodular
set functions. Our setting differs slightly since we allow sets to be
selected multiple times, but the claimed result for multiset functions
follows directly by duplicating all sets T times. Whereas diminish-
ing returns and submodularity are equivalent for set functions, they
differ for multiset functions [17].

We can run the greedy maximization algorithm by iterating
the following steps T times: solving the ILP, extracting the
new partition from the xi,τ , adding the new partition to Z,
and updating the mi,j . If the ILP solver optimizes all sub-
problems to optimality, the resulting schedule will (1− 1/e)-
approximate the objective f̂ as proved by Nemhauser et
al. [23], and the greedy algorithm is known to outperform this
approximation factor in many cases [27]. Even if we should
be forced to terminate some ILP calls before reaching opti-
mality, our guarantees degrade smoothly: If all ILPs return a
partition whose marginal increase is at least an α > 0 frac-
tion of the optimal marginal increase, the resulting schedule
is still at least a (1− 1/eα)-approximation [15].

5 Simultaneously Optimizing All Saturation
Functions

Even though we have found a way to optimize the objective
for any given saturation function f , such an approach remains
not entirely satisfying given that we chose the saturation
function somewhat arbitrarily. As we discussed in Section 3,
how much the saturation function should encourage pairs to
meet for the i’th time across the different i seems to depend
on which distribution of meeting numbers are possible, which
is hard to predict for a given instance.

This challenge of settling on a single saturation function
raises the question of whether it is possible to produce sched-
ules that perform well relative to the objectives belonging
to all saturation functions simultaneously. Since we have
seen in Section 3 that different objective can lead to starkly
different schedules, and since there is an infinite variety of
saturation functions, it would be natural if simultaneous α-
approximations would in general only exist for extremely
low α. Instead, Algorithm 1 below (SIMAPPROX) provides a
simultaneous Ω(1/ log T)-approximation to all objectives.

Algorithm 1: SIMAPPROX

1 Z ← ∅
2 for t = 0, 1, . . . , T − 1 do
3 p← b(t/T) · (1 + log2 T)c
4 Z ← Z +

{
argmaxS∈Z f̂

2p(
Z + {S}

)}
5 return Z

This algorithm and our analysis of simultaneous approxi-
mation apply not only to table allocation but to all f -MAX-
COVERAGE problems, which have many further applications.
For these problems, SIMAPPROX even runs in polynomial
time, since the description of an f -MAXCOVERAGE instance
includes Z . For table allocation instances, the implicitly de-
fined Z might be exponentially large, but the ILP from Sec-
tion 4 implements Line 4 in practically efficient running time.

The structure of SIMAPPROX closely resembles that of
greedy maximization in that (using the terminology of table
allocation) it constructs a schedule Z, partition by partition,
greedily adds partitions whose marginal increase relative
to some objective f̂ is largest, and uses the same ILP for-

mulation to identify these partitions. The big difference be-
tween both algorithms is that SIMAPPROX does not optimize
marginals of the same objective in each iteration. Instead, it
first optimizes marginals for f̂20

for some number of steps,
then marginals for f̂21

, then for f̂22

, through the powers of
two up to around f̂T , each for a roughly equal number of
steps. In particular, SIMAPPROX is computationally no more
complex than the greedy maximization algorithm.

The key insight of this algorithm is that α-approximating
the logarithmically many objectives of the form f̂2p

(for
some p) suffices to approximate all objectives f̂ within a
constant factor of α. Thus, our proof that SIMAPPROX is a
simultaneous Ω(1/ log T)-approximation proceeds in three
steps: First, we show that the schedule returned by the algo-
rithm Ω(1/ log T)-approximates all f̂r where r is a power
of two (Lemma 5.1). Second, we show that the solution ap-
proximates the objectives f̂r for all r (Lemma 5.2). Finally,
we prove that this implies simultaneous approximation for
all objectives f̂ (Theorem 5.3). We sketch these arguments
below and defer the formal proofs to Appendix D.1.

Lemma 5.1. For each 0 ≤ p ≤ log2 T , the solution Z

returned by SIMAPPROX approximates f̂2p

within a factor
of (1− 1/e) · (1

1+log2 T
− 1

T).

Proof sketch. Since f̂2p

is greedily optimized in roughly
T/ log T of the steps, the objective value is at least a (1−1/e)
fraction of the optimal objective value obtained by any sched-
ule of length T/ log T , and this holds despite the steps opti-
mizing other objectives coming before and after. Since f̂2p

has diminishing returns, the optimal objective value for a
schedule of length T/ log T is at least a 1/ log T fraction of
the optimal objective value for a schedule of length T .

Lemma 5.2. For each 1 ≤ r ≤ T , the solution Z returned
by SIMAPPROX approximates f̂r within a factor of 1−1/e

2 ·
(1

1+log2 T
− 1

T).

Proof sketch. For two values r1 ≈ r2, the objectives f̂r1 and
f̂r2 are similar to the point that, if r1 ≤ r2, any schedule
that α-approximates f̂r1 at least α · r1r2 -approximates f̂r2 .
For a given r, let 2p denote its next-lower power of two. By
Lemma 5.1,Z Ω(1/ log T)-approximates f̂2p

; hence,Z must
2p

r · Ω(1/ log T) ≥ 1
2 · Ω(1/ log T)-approximate f̂r.

Theorem 5.3. SIMAPPROX produces solutions that simulta-
neously α-approximate f -MAXCOVERAGE for all f , in poly-
nomial time, for α = 1−1/e

2 · (1
1+log2 T

− 1
T) ∈ Ω(1/ log T).

Proof sketch. As we show in Lemma D.4 in Appendix D.1,
the fr form a sort of “basis” of the space of saturation func-
tions in the sense that, for any saturation function f and
any T , there exist nonnegative weights {wi}1≤i≤T such that
f(x) =

∑T
i=1 wi ·f i(x) for all 0 ≤ x ≤ T . Note that it must

then also hold that f̂ =
∑T
i=1 wi · f̂ i. For any saturation

function f , by Lemma 5.2, it holds that

f̂(Z) =
∑T

i=1
wi · f̂ i(Z) ≥

∑T

i=1
wi · α · max

solution Z′
f̂ i(Z ′)

= α ·
∑T

i=1
max

solution Z′
wi · f̂ i(Z ′)

≥ α · max
solution Z′

∑T

i=1
wi ·f̂ i(Z ′) = α · max

solution Z′
f̂(Z ′).

In Appendix D.2, we show that SIMAPPROX’s simultane-
ous approximation ratio of Ω(1/ log T) for f -MAXCOVER-
AGE is optimal up to a log log factor:
Theorem 5.4. There exists a family of maximum coverage
instances such that no solution has a simultaneous approx-
imation ratio larger than O(log log T/ log T). This holds
even if all sets S ∈ Z have equal cardinality (like in the table
allocation problem when k divides n).

In these instances, the ground elements are partitioned into
multiple blocks, and each block represents a different trade-
off between (a) how many ground elements of the block are
included in a set in Z and (b) how many ground elements are
in the block overall. For large values of r, f̂r is maximized by
choosing sets from blocks scoring high on (a) because they
cover many ground elements per set. For small r, by contrast,
blocks scoring high on (b) allow to avoid selecting ground
elements more than r times, which would not help f̂r. Since
scoring high on different objectives f̂r requires selecting dis-
joint sets, no solution can simultaneously approximate them
within a high factor. We conjecture that Theorem 5.4’s impos-
sibility on simultaneous approximation extends to the table
allocation problem; however, the symmetry between tables
and the transitivity of which pairs can simultaneously meet
make analogous instances highly cumbersome to construct.

6 Implementation and Empirical Results
We have implemented all algorithms in this work in Python,
using Gurobi as our ILP solver. We include our implemen-
tation in the supplementary material and will release it as
open source. Currently, we are working with the Sortition
Foundation to incorporate our algorithms into the tool that
hosts GROUPSELECT [33], which will allow users to switch
to our improved algorithms with little effort.

We perform our experiments on seven datasets, each based
on data from a real citizens’ assembly. Two of these datasets,
sf e and sf f, exactly describe assemblies coorganized
by the Sortition Foundation. The other five datasets, sf a
through sf d and hd are derived from assembly-selection
data used by Flanigan et al. [10]. For these latter datasets,
we do not have access to the members who ended up being
drawn for the citizens’ assembly, but we can “re-run” the
lottery process using the selection software Panelot [12] to
obtain an assembly that satisfies the actual representativeness
constraints. In Appendix E.1, we describe the processing of
the datasets and the experimental setup in more detail. To
compute experiments in parallel, we run them on an AWS
EC2 C5 instance with a 3.6 GHz processor, 16 threads, and
32 GB of RAM. Given that we limit each experiment to a

0 5 10 15 20 25 30

number of sessions T

0.00

0.25

0.50

0.75

1.00

g
u

ar
an

te
ed

fr
ac

ti
o

n
o

f
o

p
ti

m
u

m

instance

hd

sf_a

sf_b

sf_c

sf_d

sf_e

sf_f

Figure 1: Approximation certificates for the greedy algorithm
on ĝ1/2, guaranteeing near-optimality. The dashed line marks
1− 1/e.

0 5 10 15 20 25 30

number of sessions T

0

100

200

300

400

500

600

700

f̂1

algorithm

Greedy(f̂1)

Greedy(ĝ1/2)

Greedy(ĥ)

SimApprox+

SimApprox

GroupSelect

Figure 2: Performance of different algorithms on instance
sf f as measured by f̂1. The cross marks the historically
chosen schedule.

single thread, individual running times of our algorithms are
comparable to consumer hardware.

GROUPSELECT cannot satisfy a given list of representa-
tiveness constraints but only makes a best effort at proportion-
ally representing the diversified features. To compare it to our
algorithms on equal terms, we run our algorithms with rep-
resentativeness constraints derived from GROUPSELECT’s
output on the given instance. (In Appendix E.3, we show that
our algorithms continue to perform well for particularly tight
representativeness constraints.)

6.1 How Well Does the Greedy Algorithm
Optimize Its Objective?

We begin by verifying that optimizing schedules in a one-
shot ILP is not tractable, which justifies our greedy approach.
Indeed, when optimizing ĝ1/2 for a mere 4 sessions, in 4
hours running time, the ILP solver did not find any feasible
schedules from the one-shot ILP in 4 out of the 7 instances.5
We conclude that the runtime of this one-shot approach scales
prohibitively in the number of sessions to be useful.

Can the ILP solver solve the ILPs from Section 4, and how
much time does the solver need for the greedy algorithm to

5For the other 3 instances, the objective value is no better (within
±1%) than the greedy algorithm’s result produced in 8 minutes.

optimize its objective well? In Appendix E.3, we show that
increasing the ILP solver’s timeout generally increases ob-
jective value attained by the greedy algorithm, but that these
increases level off after around 60 seconds. To accommodate
one outlier and to be safe, we set the optimization timeout
to 120 seconds from here on, for the ILP calls both in the
greedy algorithm and in SIMAPPROX.6

Ideally, we want to know how close to optimal the sched-
ules produced by the greedy algorithm are, but this is impos-
sible to exactly evaluate because we see no way of finding the
optimal schedules for nontrivial instances. We can, however,
modify the greedy algorithms to produce, in addition to a
schedule, what we call a certificate of approximation, which
is a fraction α such that the produced schedule is guaranteed
to be at least an α-approximation of the optimal schedule.7 As
shown in Fig. 1, for example, greedily optimizing the objec-
tive ĝ1/2 produces schedules that are a 0.45-approximation or
better across all instances and numbers of sessions we study.
We stress that these certificates are lower bounds, and that
the schedules are likely to be much closer to optimal than
is guaranteed by the certificates. For example, the perfect
greedy algorithm (i.e., with perfectly optimal ILP solutions)
would have a certificate of 1 − (1− 1

T)T ≈ 0.63, but typi-
cally performs much closer to optimal.8 The proximity of
the certificates to this number suggests that terminating the
ILP solver yields schedules that are nearly as good as those
of the perfect greedy algorithm and not far from the optimal
objective value.

6.2 Comparison across Table-Allocation
Algorithms

After having measured the greedy algorithm in terms of the
objective it specifically aims to optimize, we now compare
the performance of different algorithms on a given instance
and according to the same metric. In Fig. 2, we show such
results for sf f and f̂1; experiments for other instances
and objectives can be found in Appendix E.3. This instance–
objective combination is particularly relevant to investigate,
since the Sortition Foundation did, in fact, maximize f̂1

using GROUPSELECT for this assembly, and since we know
the table allocation (for T = 4 sessions) determined at the
time. As the figure shows quite dramatically, GROUPSE-
LECT cannot compete with our other algorithms. Indeed,
the Sortition Foundation chose a schedule with 164 distinct
meetings for four sessions. By contrast, greedily maximizing
f̂1 yields an objective value of nearly twice that, at 320

6For an assembly with many sessions (30), the total optimization
runs in around one hour, which is the runtime of the assembly
selection algorithm by Flanigan et al. [10] for large assemblies.

7Calculating these certificates is possible since (1) the ILP solver
returns, in every step, not only a new partition but also an upper
bound on the largest possible marginal increase, and since (2) these
bounds naturally fit into the approximation bound by Nemhauser
et al. [23]. This ex post analysis combines the strengths of ILP and
submodular maximization and is, to our knowledge, novel.

8The certificates are also conservative in that the ILP solver often
struggles with tightening the upper bounds. Thus, each partition’s
marginals are probably closer to optimal than our bounds suggest.

distinct meetings. Across our datasets and objective functions,
GROUPSELECT leads to objective values that stagnate at a
much lower level than what our algorithms can achieve, for
reasons which we explain in Appendix E.2. This observation
is a powerful argument for practitioners to move away from
GROUPSELECT.

As is not very surprising, greedily optimizing f̂1 produces
schedules with many unique meetings. Given that sf f has(

40
2

)
= 780 pairs of agents, around 90% of pairs meet at

least once within the first 20 sessions. More surprisingly,
greedily optimizing a geometric objective or the harmonic
objective leads to numbers of distinct meetings that are nearly
as high, across all numbers of sessions T we study. Indeed,
throughout our experiments, we see that greedily optimizing
ĝ1/2 or ĥ leads to “well-rounded” schedules in the sense that
they perform well according to other objective metrics, which
makes either algorithm an attractive option for adoption in
practice. Optimizing f̂1 tends to perform very well on other
objectives when T is small but falls behind for larger T , when
encouraging, say, second meetings becomes an important
aspect of what makes a partition contribute to the objective.

A straight-forward implementation of SIMAPPROX does
not perform as well as the above-mentioned algorithms, even
if still much better than GROUPSELECT. A possible expla-
nation is that SIMAPPROX spends much of its time optimiz-
ing objectives f̂r for fairly large r. If most pairs have met
fewer than r times at that point, the ILP might have a large
number of optimal solutions, between which the ILP has no
preference. To mitigate this problem, we test a variant of
SIMAPPROX called SIMAPPROX+, which spends an extra 30
seconds after each ILP call to break ties in favor of partitions
with the more well-rounded objective ĝ1/2. As shown in the
figure, SIMAPPROX+ gets substantially closer to the perfor-
mance of the best greedy algorithms. While such variants of
the simultaneous-approximation algorithm might have value
for highly constrained table allocation problems or for large
numbers of sessions, greedily optimizing ĝ1/2 or ĥ seems
more worthwhile on the practical instances we study.

7 Discussion
As the last section shows, our algorithms produce schedules
that excel in terms of the objective chosen by the practi-
tioners, as well as in terms of the generalized objectives we
introduced. The fundamental research problem, however —
optimizing the group assignment in a way that increases the
quality of deliberation — remains wide open and will require
a multi-faceted approach. According to a handbook for assem-
bly organizers, mixing groups up has a whole range of bene-
fits: it helps assembly members “find common ground across
the whole diverse group” (emphasis added), avoids situations
where they “form cliques,” breaks up unproductive group dy-
namics, and overall “keeps things energised” [24]. Not only
might each of these benefits suggest a different schedule,
but predicting how well a schedule promotes each of these
effects is also an open question. We believe that an approach
combining optimization, behavioral research, and dynamic
models of deliberation [5, 7] can substantially support citi-
zens’ assemblies and, by extension, democratic innovation.

References
[1] Ahmed, F.; Dickerson, J. P.; and Fuge, M. 2017. Di-

verse Weighted Biparite b-Matching. In Proceedings
of the 26th International Joint Conference on Artificial
Intelligence (IJCAI), 35–41.

[2] Barman, S.; Fawzi, O.; and Fermé, P. 2021. Tight Ap-
proximation Guarantees for Concave Coverage Prob-
lems. In Proceedings of the International Symposium
on Theoretical Aspects of Computer Science (STACS),
9:1–9:17.

[3] Benadè, G.; Gölz, P.; and Procaccia, A. D. 2019. No
Stratification Without Representation. In Proceedings
of the 20th ACM Conference on Economics and Com-
putation (EC), 281–314.

[4] Carbonell, J.; and Goldstein, J. 1998. The Use of MMR,
Diversity-Based Reranking for Reordering Documents
and Producing Summaries. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SI-
GIR), 335–336.

[5] Chung, H.; and Duggan, J. 2020. A Formal Theory of
Democratic Deliberation. American Political Science
Review, 114(1): 14–35.

[6] Do, V.; Atif, J.; Lang, J.; and Usunier, N. 2021. Online
Selection of Diverse Committees. In Proceedings of
the 13th International Joint Conference on Artificial
Intelligence (IJCAI), 154–160.

[7] Fain, B.; Goel, A.; Munagala, K.; and Sakshuwong, S.
2017. Sequential Deliberation for Social Choice. In
Proceedings of the 13th Conference on Web and Internet
Economics (WINE), 177–190.

[8] Fishkin, J. 2018. Democracy When the People Are
Thinking: Revitalizing Our Politics Through Public De-
liberation. Oxford University Press.

[9] Fishkin, J.; Garg, N.; Gelauff, L.; Goel, A.; Munagala,
K.; Sakshuwong, S.; Siu, A.; and Yandamuri, S. 2019.
Deliberative Democracy with the Online Deliberation
Platform. In Proceedings of the 7th AAAI Conference on
Human Computation and Crowdsourcing (HCOMP).

[10] Flanigan, B.; Gölz, P.; Gupta, A.; Hennig, B.; and Pro-
caccia, A. D. 2021. Fair Algorithms for Selecting Citi-
zens’ Assemblies. Nature, 596: 548–552.

[11] Flanigan, B.; Gölz, P.; Gupta, A.; and Procaccia, A. D.
2020. Neutralizing Self-Selection Bias in Sampling for
Sortition. In Proceedings of the 34th Annual Conference
on Neural Information Processing Systems (NeurIPS).

[12] Flanigan, B.; Gölz, P.; Gupta, A.; Procaccia, A. D.; and
Rusak, G. 2021. Panelot. [accessed: May 2022].

[13] Flanigan, B.; Kehne, G.; and Procaccia, A. D. 2021. Fair
Sortition Made Transparent. In Proceedings of the 35th
Annual Conference on Neural Information Processing
Systems (NeurIPS).

[14] Goel, A.; and Lee, D. T. 2016. Towards Large-Scale
Deliberative Decision-Making: Small Groups and the
Importance of Triads. In Proceedings of the 17th ACM
Conference on Economics and Computation (EC), 287–
303.

[15] Goundan, P. R.; and Schulz, A. S. 2007. Revisiting the
Greedy Approach to Submodular Set Function Maxi-
mization. Working paper.

[16] Hochbaum, D. S.; and Pathria, A. 1998. Analysis
of the Greedy Approach in Problems of Maximum k-
Coverage. Naval Research Logistics, 45(6): 615–627.

[17] Kapralov, M.; Post, I.; and Vondrák, J. 2013. Online
Submodular Welfare Maximization: Greedy Is Optimal.
In Proceedings of the 24th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 1216–1225.

[18] Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-
Optimal Sensor Placements in Gaussian Processes: The-
ory, Efficient Algorithms and Empirical Studies. Jour-
nal of Machine Learning Research, 9(2).

[19] Landemore, H. 2020. Open Democracy: Reinventing
Popular Rule for the Twenty-First Century. Princeton
University Press.

[20] Lardeux, F.; Monfroy, E.; Crawford, B.; and Soto, R.
2015. Set Constraint Model and Automated Encoding
into SAT: Application to the Social Golfer Problem.
Annals of Operations Research, 235(1): 423–452.

[21] Lin, H.; and Bilmes, J. 2011. A Class of Submodular
Functions for Document Summarization. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies (HLT), 510–520.

[22] Meir, R.; Sandomirskiy, F.; and Tennenholtz, M. 2021.
Representative Committees of Peers. Journal of Artifi-
cial Intelligence Research, 71: 401–429.

[23] Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L.
1978. An Analysis of Approximations for Maximizing
Submodular Set Functions – I. Mathematical Program-
ming, 14(1): 265–294.

[24] newDemocracy Foundation; and United Nations
Democracy Fund. 2018. Enabling National Initiatives
to Take Democracy Beyond Elections. Technical report.

[25] OECD. 2020. Innovative Citizen Participation and
New Democratic Institutions: Catching the Deliberative
Wave. OECD.

[26] Perote-Peña, J.; and Piggins, A. 2015. A Model of
Deliberative and Aggregative Democracy. Economics
& Philosophy, 31(1): 93–121.

[27] Pokutta, S.; Singh, M.; and Torrico, A. 2020. On the
Unreasonable Effectiveness of the Greedy Algorithm:
Greedy Adapts to Sharpness. In Proceedings of the
37th International Conference on Machine Learning
(ICML), 7772–7782.

[28] Saran, R.; and Tumennasan, N. 2013. Whose Opin-
ion Counts? Implementation by Sortition. Games and
Economic Behavior, 78: 72–84.

[29] Schmand, D.; Schröder, M.; and Vargas Koch, L. 2022.
A Greedy Algorithm for the Social Golfer and the Ober-
wolfach Problem. European Journal of Operational
Research, 300(1): 310–319.

[30] Stein, C.; and Wein, J. 1997. On the Existence of Sched-
ules That Are Near-Optimal for Both Makespan and

Total Weighted Completion Time. Operations Research
Letters, 21(3): 115–122.

[31] Triska, M.; and Musliu, N. 2012. An Effective Greedy
Heuristic for the Social Golfer Problem. Annals of
Operations Research, 194(1): 413–425.

[32] Van Reybrouck, D. 2016. Against Elections: The Case
for Democracy. Random House.

[33] Verpoort, P. 2020. GroupSelect App.
[34] Walsh, T.; and Xia, L. 2012. Lot-Based Voting Rules.

In Proceedings of the 11th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
603–610.

[35] Zvi, G. B.; Leizerovich, E.; and Talmon, N. 2021. Itera-
tive Deliberation via Metric Aggregation. In Proceed-
ings of the 7th International Conference on Algorithmic
Decision Theory (ADT), 162–176.

Appendix
A Proofs for the Two Round Case

A.1 Minimum Number of Repeated Meetings Between Two Rounds
Definitions & Assumptions As defined in Section 2, suppose we have a set of n participants [n] = {0, . . . , n− 1} and a set
of k groups [k] = {0, . . . , k − 1}, and that participants are distributed among groups as evenly as possible, according to the size
function Z:

Z(g) =

{
dn/ke if g < (n mod k)

bn/kc otherwise
(1)

We consider arbitrary back-to-back sessions s, t ≤ T where t = s+ 1, so for convenience, let s = 1 and t = 2. Note that we
only consider assemblies without clustered participants, and that the bound we derive does not take into account representation
constraints (i.e., groups do not need to meet any specific representation quotas), so there is no need to associate attributes with
each participant.

Now, for an arbitrary allocation A, let A be a function such that for a session s ≤ T and any participant i ∈ [n], As(i) returns
the group that i has been assigned to for s. For each pair of participants (i, j) where i, j ∈ [n] and i < j and sessions s, t ≤ T
where s < t, we say that (i, j) is a repeated meeting if the pair meets during both sessions; in other words, we can define an
indicator Is,t(i, j) that corresponds to whether (i, j) is a repeated meeting as follows:

Is,t(i, j) =

{
1 if (As(i) = As(j)) ∧ (At(i) = At(j))

0 otherwise
.

Objective For an arbitrary allocation A over the back-to-back sessions s and t, the number of repeated meetings generated
between the two sessions can be expressed as

RMs,t(A) =
∑

i,j∈[n] s.t. i<j

Is,t(i, j).

We thus aim to minimize RMs,t(A) over all feasible allocations A.

Theorem (Minimum Repeated Meetings) The minimum number of repeated meetings RM∗s,t that can be achieved between
back-to-back sessions in assemblies without clustered participants is

RM∗s,t =

{
k2
(
x
2

)
+ x · y if n > k2

0 otherwise
, (2)

where x =
⌊
n/k2

⌋
and y = n mod k2.

Proof For convenience, we will simply refer to participants assigned to a group g ∈ [k] in session 1 as “g1-participants.”
Consider an arbitrary allocation for session 1. We first prove the following lemma:
Lemma A.1. For any g ∈ [k], distributing the Z(g) g1-participants as evenly as possible among all k groups in session 2
minimizes the number of repeated meetings between g1-participants.

Proof. Fix an arbitrary group g ∈ [k]. For an arbitrary session-2 allocation A of the Z(g) g1-participants, we can adapt the
notation from Section A.1 and let A(i) denote the group that the g1-participant i has been assigned to in A. Then, for any group
h ∈ [k], A−1(h) denotes the set of g1-participants that were assigned to h in A.

First, consider any session-2 allocation A of the g1-participants that contains two groups γ, γ′ ∈ [k] such that |A−1(γ)| ≥
|A−1(γ′)|+ 2. We claim that A does not minimize the number of repeated meetings between g1-participants; in particular, we
can construct another allocation B from A that results in fewer such repeated meetings: Let B be identical to A, except with one
of the A−1(γ) participants reassigned to γ′. Then, by definition, the number of repeated meetings between the g1-participants in
A is

RM1,2(A) =
∑
h∈[k]

(
|A−1(h)|

2

)
,

while the number of repeated meetings between the g1-participants in B is

RM1,2(B) =
∑
h∈[k]

(
|B−1(h)|

2

)

=

(
|A−1(γ)| − 1

2

)
+

(
|A−1(γ′)|+ 1

2

)
+

∑
h∈[k]\{γ,γ′}

(
|A−1(h)|

2

)
.

Rewriting RM1,2(A) as (
|A−1(γ)|

2

)
+

(
|A−1(γ′)|

2

)
+

∑
h∈[k]\{γ,γ′}

(
|A−1(h)|

2

)
,

we can then compute RM1,2(A)−RM1,2(B) as follows:

RM1,2(A)−RM1,2(B) =

(
|A−1(γ)|

2

)
+

(
|A−1(γ′)|

2

)
−
(
|A−1(γ)| − 1

2

)
−
(
|A−1(γ′)|+ 1

2

)
=
|A−1(γ)|(|A−1(γ)| − 1)

2
+
|A−1(γ′)|(|A−1(γ′)| − 1)

2

− (|A−1(γ)| − 1)(|A−1(γ)| − 2)

2
− |A

−1(γ′)|(|A−1(γ′)|+ 1)

2

= |A−1(γ)| − |A−1(γ′)| − 1

≥ (|A−1(γ′)|+ 2)− |A−1(γ′)| − 1 = 1.

We have thus shown that RM1,2(A)−RM1,2(B) > 0 =⇒ RM1,2(B) < RM1,2(A), and A does not minimize the number of
repeated meetings between g1-participants as desired.

Now, consider any session-2 allocation A of the g1-participants that does not contain two groups γ, γ′ ∈ [k] such that
|A−1(γ)| ≥ |A−1(γ′)|+ 2, i.e., A such that for all γ ∈ [k], the |A−1(γ)| differ by at most 1. We claim that all such allocations
achieve the same number of repeated meetings between the g1-participants: Let A be such an allocation, and for convenience, let
xg = bZ(g)/kc and yg = Z(g) mod k. Then, in order for the condition to hold, it is easy to verify that A must assign exactly
(xg + 1) g1-participants to yg of the k groups and xg g1-participants to the remaining k − yg groups. The number of repeated
meetings between g1-participants in A is thus always

RM1,2(A) = yg

(
xg + 1

2

)
+ (k − yg)

(
xg
2

)
= yg

xg(xg + 1)

2
+ (k − yg)

xg(xg − 1)

2

= k

(
xg
2

)
+ ygxg. (3)

Putting everything together, we can see that in order for a session-2 allocation to minimize the number of repeated meetings
between g1-participants, it must distribute the g1-participants as evenly as possible among all k groups. But since all allocations
that distribute the g1-participants as evenly as possible achieve the same number of repeated meetings between g1-participants,
the allocations that minimize this number are exactly the allocations that distribute the g1-participants as evenly as possible
among all k groups. The statement of the lemma thus holds as desired.

Corollary A.1.1. For each g ∈ [k], distributing the g1-participants as evenly as possible among all k groups in session 2
minimizes the total number of repeated meetings between the two sessions.

Proof. By Lemma A.1, it follows that for each g ∈ [k], distributing the Z(g) g1-participants as evenly as possible among all k
groups in session 2 minimizes the number of repeated meetings between g1-participants. But because repeated meetings can only
form between participants who were in the same group in session 1, distributing all groups in such a way in session 2 actually
minimizes the total number of repeated meetings between the two sessions. We can thus compute RM∗1,2 using Equation 3 as
follows:

RM∗1,2 =
∑
g∈[k]

k

(
xg
2

)
+ ygxg. (4)

Moreover, it is clear that this minimum is actually attainable: Algorithm 2 (p. 12) generates a session-2 allocation that for
each g ∈ [k] distributes the g1-participants as evenly as possible among all k groups; it also guarantees that the right number of
participants are assigned to each session-2 group (i.e., according to the size function Z defined in A.1), thus ensuring that the
allocation is feasible.

Returning to the proof of Theorem A.1, we now show how Equation 4 can be rewritten as Equation 2. We split the proof into
three cases based on the relationship between n and k2.

Case 1 (n = k2):

Algorithm 2: Corollary A.1.1 – Sample Assignment Strategy

Input :a partition ∆1
0 ∪̇∆1

1 ∪̇ · · · ∪̇∆1
k−1 for the first session

Output :a partition ∆2
0 ∪̇∆2

1 ∪̇ · · · ∪̇∆2
k−1 for the second session

1 c← 0
2 ∆2

0 ← ∅; ∆2
1 ← ∅; . . . ; ∆2

k−1 ← ∅
3 for τ = 0, 1, . . . , k − 1 do
4 for i ∈ ∆1

τ do
5 ∆2

c mod k ← ∆2
c mod k ∪ {i}

6 c← c+ 1

7 return the partition ∆2
0 ∪̇∆2

1 ∪̇ · · · ∪̇∆2
k−1

We claim that RM∗1,2 = 0: Since n = k2 ≡ 0 mod k, Z(g) = bk2/kc = k for all g ∈ [k]. But then xg = bk/kc = 1 and
k ≡ 0 mod k =⇒ yg = 0 for all g ∈ [k], so it follows from Equation 4 that

RM∗1,2 =
∑
g∈[k]

k

(
1

2

)
+ 0 · 1

=
∑
g∈[k]

0

= 0.

Intuitively, this makes sense: Suppose we fix an arbitrary group g ∈ [k]. In order to achieve 0 repeated meetings between
g1-participants, the k g1-participants must be assigned to distinct groups (which may include g) in session 2; otherwise, at least
one pair among the g1-participants will be meeting for the second time. But this is clearly possible, as there are k total groups,
and we can simply assign one of the g1-participants to each group. Moreover, since Z(g) = k for all g ∈ [k], it follows by
symmetry that all k2 participants can be reallocated such that there are 0 repeated meetings between sessions 1 and 2; one such
allocation that attains this minimum, for example, is generated by Algorithm 2.

Case 2 (n < k2):
We again claim that RM∗1,2 = 0: By definition, Z(g) ≤ k for all g ∈ [k]. It thus follows that xg ≤ bk/kc = 1 =⇒

(
xg

2

)
= 0

for all g ∈ [k]. Now, consider an arbitrary group g ∈ [k]. If xg = 0, it immediately follows that ygxg = 0. Otherwise, if xg = 1,
we must have that Z(g) = k. Thus, k ≡ 0 mod k =⇒ yg = 0, and we again have that ygxg = 0. Putting everything together, it
follows from Equation 4 that

RM∗1,2 =
∑
g∈[k]

k

(
xg
2

)
+ ygxg

=
∑
g∈[k]

0

= 0.

Moreover, as in Case 1, one such allocation that attains this minimum is generated by Algorithm 2.
Case 3 (n > k2):
Finally, in the case that n > k2, we use Algorithm 2 to show how Equation 4 can be rewritten as Equation 2. In particular,

we already know from Corollary A.1.1 that Algorithm 2 generates a session-2 allocation A that minimizes the total number
of repeated meetings between sessions 1 and 2, so we can simply compute RM∗1,2 by counting the total number of repeated
meetings between the session-1 allocation and A. We split Case 3 into two subcases.

Subcase 3-1: This subcase will provide intuition for the more general subcase to follow. Consider when n = xk2 for x ∈ N
such that x > 1. By definition, Z(g) = xk for all g ∈ [k]. Now, suppose without loss of generality that for each g ∈ [k], the
set of g1-participants is labeled g1 = {0, 1, . . . , Z(g) − 1}. In order to count the number of repeated meetings between the
session-1 allocation and A, we can first imagine dividing the n participants into n/k2 = x “blocks” of size k2 such that block 1
contains the set [k] ⊂ g1 (i.e., the first k g1-participants) for all g ∈ [k], block 2 contains the set [2k]\[k] ⊂ g1 (i.e., the next k
g1-participants) for all g ∈ [k], and so on. More explicitly, the x blocks b1, b2, . . . , bx are

b1 : {0, 1, . . . , k − 1︸ ︷︷ ︸
01-participants

, 0, 1, . . . , k − 1︸ ︷︷ ︸
11-participants

, . . . , 0, 1, . . . , k − 1︸ ︷︷ ︸
(k−1)1-participants

},

b2 : {k, k + 1, . . . , 2k − 1︸ ︷︷ ︸
01-participants

, k, k + 1, . . . , 2k − 1︸ ︷︷ ︸
11-participants

, . . . , k, k + 1, . . . , 2k − 1︸ ︷︷ ︸
(k−1)1-participants

},

...
bx : {(x− 1)k, (x− 1)k + 1, . . . , xk − 1︸ ︷︷ ︸

01-participants

, (x− 1)k, (x− 1)k + 1, . . . , xk − 1︸ ︷︷ ︸
11-participants

, . . . ,

(x− 1)k, (x− 1)k + 1, . . . , xk − 1︸ ︷︷ ︸
(k−1)1-participants

, }.

This formulation simplifies our counting process. In particular, we can consider how Algorithm 2 assigns the participants in
each block to groups as follows: Fix an arbitrary group g ∈ [k]. For each block, it is clear that Algorithm 2 assigns exactly one
of the k g1-participants to each of the k groups in A. Then, since there are x total blocks, Algorithm 2 must assign exactly x
g1-participants to each of the k groups in A. We can thus compute RM∗1,2 as follows: Because any pair of these x g1-participants
(which we henceforth refer to as a “g1-clique”) has already met in session 1, they generate

(
x
2

)
repeated meetings between the

two sessions. Then, since there are k of these g1-cliques (where g1 is fixed), and k possible values for g1, it follows that

RM∗1,2 = k2

(
x

2

)
.

Moreover, since xk2 ≡ 0 mod xk2 =⇒ y = 0 =⇒ x · y = 0, this result matches the one given in Equation 2.
Subcase 3-2: Now, consider when n = xk2 + y for x, y ∈ N such that x > 0 and 0 < y < k2. In order to count the number

of repeated meetings between the session-1 allocation and A, we can again imagine dividing the n participants into blocks. In
particular, we already know from Subcase 3-1 that the first bn/k2c = x blocks of size k2 contribute k2

(
x
2

)
repeated meetings to

the total count. In this subcase, however, we also have an additional “remainder” block of size y = n mod k2. We can again
consider how Algorithm 2 assigns the participants in this remainder block to groups as follows: First, because participants are
distributed among groups as evenly as possible in all sessions (and, in particular, in session 1), the remainder block consists of at
most k g1-participants for all g ∈ [k]. It is thus clear that for each g ∈ [k], Algorithm 2 assigns at most one of the g1-participants
to each of the k groups in A. Then, since there are already x g1-participants in each group, assigning any participant in the
remainder block to a group increases the number of repeated meetings by x. The remainder block thus contributes x · y repeated
meetings to the total count, and it follows that

RM∗1,2 = k2

(
x

2

)
+ x · y.

The statement of the theorem thus holds as desired.

Corollary (Maximum Links) Finally, the bound on the minimum number of repeated meetings that can be achieved between
back-to-back sessions in assemblies without clustered participants also yields a bound on the maximum number of links L∗s,t that
can be achieved between such sessions. In particular, the naive maximum (i.e., all possible meetings that can generated between
two sessions) is m = 2

∑
g∈[k]

(
Z(g)

2

)
, so adjusting for the minimum repeated meetings yields

L∗s,t =

{
m−

(
k2
(
x
2

)
+ x · y

)
if n > k2

m otherwise
, (5)

where x =
⌊
n/k2

⌋
and y = n mod k2.

B Sub-Optimal Results from Prioritizing First Meetings
To demonstrate the limitations of optimizing unique meetings, we construct a family of table allocation instances in which this
objective leads to a controversial schedule.

Each such instance is parameterized by a prime p. For such a p, we construct an instance with n := p (p+ 2) agents, k := p
tables, and T :=

(
p
2

)
sessions. We will refer to p agents as “heavies”, to p other agents as “mediums”, and to the remaining

p2 agents as “lightweights”. We will further label each lightweight with a number: p many lightweights are labelled 1, two
lightweights are labelled 2, and (for all t = 3, 4, . . . , k) p+ 1 many lightweights are labeled t.

The key part of the instance are the representativeness constraints. For ease of exposition, we will not give them explicitly, but
define them implicitly using the following lemma:
Lemma B.1. Fix a set of agents N = [n] and a number of tables k such that k divides n.9 Furthermore, fix an arbitrary set
P ⊆

(
N
k

)
, i.e., any set P whose elmeents are sets of k many agents each. Then, there exists a set of representativeness constraints

such that a set ∆ of k agents is a representative panel iff ∆ ∈ P .
9This last assumption is made for convenience, not because it is fundamental to the lemma.

Proof. Create one feature f∆ for each ∆ ∈
(
N
k

)
\ P , and set Af∆

:= ∆, `f∆ = 0, and uf∆ = k − 1, i.e., the constraint for
feature f∆ rules out that a table might be exactly ∆. One easily verifies that any ∆ ∈ P satisfies all these constraint, and that no
∆ ∈

(
N
k

)
\ P does.

Recall that, in the instance we are constructing, each table must contain p + 2 agents. Using the above lemma, we define
representativeness constraints such that a table satisfies representativeness iff one of the following conditions applies
Type “HM”: the table contains one heavy, one medium, and any p lightweights,
Type “HL”: the table contains one heavy and all p+ 1 lightweights of a single label 3 ≤ t ≤ k,
Type “HHL”: the table contains two “heavies” and all p lightweights of label 1, or
Type “ML”: the table contains all k “mediums”, and both lightweights with label 2.
Lemma B.2. In 3p sessions, it is possible to make all pairs of agents meet at least once, except for heavy–heavy pairs.

Proof. First, we will show that all lightweight-lightweight pairs can meet within p+ 1 sessions: If we keep one heavy and one
medium fixed at each table, the lightweights can be split across the tables without restriction (type “HM”), where each table
will contain exactly p lightweights. Khare and Federer (1979)10 show that the lightweights can be scheduled in such a way
across p+ 1 rounds that each lightweight–lightweight pair meets exactly once. Second, we will show that all heavy–medium and
heavy–lightweight pairs that haven’t met yet can meet in p− 1 additional sessions. For this, simply start from any of the previous
table allocations, and cyclically permute the heavies p− 1 times. Third, we can cyclically permute the mediums for p− 1 more
sessions to ensure that all medium–lightweight pairs have also met. Finally, all medium–medium pairs can meet in one more
session: allocate all of them in a table of type “ML”, and group all remaining agents in tables of types “HHL” and “HL”. Thus
all pairs other than heavy–heavy pairs have met in (p+ 1) + 2(p− 1) + 1 = 3p sessions, as claimed.

Lemma B.3. Each heavy–heavy pair can meet, but at most one heavy–heavy pair can meet at a time, and, whenever a
heavy–heavy pair meets, lightweights of different label do not meet.

Proof. Fix any two heavies. These two heavies can be placed together with the lightweights of label 1 to form a table of type
“HHL”. Next, form a table of type “ML” containing all the mediums and the lightweights of label 2. Then, the remaining p− 2
heavies can be seated on tables of type “HL”, where each table contains a heavy and then lightweights of homogeneous label.
This shows that heavy–heavy pairs can meet, and one verifies that, in this specific partition, only one pair of heavies meets and
no lightweight with different labels meet.

To show the lemma, observe that the above construction is the only possible one: two heavies can only sit on a table of type
“HHL”; since one table will not have a heavy by the pigeon-hole principle, it must have type “ML”; and since no mediums remain
for the other tables, all of them must have type “HL”.

By the above observations, the schedule optimizing f̂1 over T =
(
p
2

)
sessions must make at least((

n

2

)
−
(
p

2

))
+

((
p

2

)
− 3 p

)
=

(
n

2

)
− 3 p

pairs meet. By Lemma B.3, this implies that at least
(
p
2

)
− 3p out of the

(
p
2

)
sessions made heavy–heavy pairs meet and therefore

did not let any lightweight–lightweight pairs interact across labels. However, lightweight–lightweight pairs with different
labels make up p4/2 − O(p3) of the p4/2 + O(p3) total pairs. If our objective was, say, f̂3 p, the above schedule gives at
most 3 p points for each of the Ω(p3) meeting that is not between lightweights of different label plus at most O(p2) points for
lightweight–lightweight meetings across 3 p meetings in which those appear, for a total objective value in O(p4). By contrast,
if we had simply repeated the first p steps of Lemma B.1 Ω(p) times, the interactions between lightweights alone would have
contributed Ω(p) ·

(
p2

2

)
∈ Ω(p5) points to the objective. If p is large enough, this difference becomes substantial. This is one way

of capturing the intuition that, in this setup, spending Ω(p2) rounds on heavy–heavy meetings that keep the partition mostly
unchanged might be less desireable than mixing the lightweight–lightweigh interactions well.

C NP-hardness of Partition Feasability
Proposition C.1. Deciding whether some partition is possible for the given representativeness constraints is NP-hard.

Proof. By reduction from equitable graph k-coloring. For each node in the original graph, create an agent, and set the number of
tables to k. (For equitable graph coloring, we may assume that k divides the number of nodes.) For each edge in the graph, create
a new feature f , where Af contains the two endpoints of the edge, where `f = 0 and uf = 1. Now, there exists a partition iff the
graph had an equitable coloring. Indeed, this is easy to see if we identify tables with colors: That table sizes must be equal to
n/k directly corresponds to the equitability constraint in the coloring problem; and the representativeness constraints express
exactly that no two neighboring nodes may possess the same color.

10M. Khare and W. T. Federer. 1979. A Simple Construction Procedure for Resolvable Incomplete Block Designs for Any Number of
Treatments.

D Simultaneous Approximation
D.1 Deferred Proofs
Step 1: Approximation of f̂2p

Lemma 5.1. For each 0 ≤ p ≤ log2 T , the solution Z returned by SIMAPPROX approximates f̂2p

within a factor of
(1− 1/e) · (1

1+log2 T
− 1

T).

Proof. Fix some 0 ≤ p ≤ log2 T . Line 3 of the algorithm will select this p whenever p ≤ (t/T) · (1 + log2 T) < p + 1, or
equivalently whenever p T

1+log2 T
≤ t < (p+1)T

1+log2 T
. This range must contain at least b T

1+log2 T
c integer values of t, and all these

integers correspond to iterations of the algorithm since t ≥ p T
1+log2 T

≥ 0 and t < (p+1)T
1+log2 T

≤ ((log2 T)+1)T
1+log2 T

= T .
Let Zt0 denote the value of Z when p first gets selected in Line 3, and let Zt1 denote the value of Z after completing the

subsequent b T
1+log2 T

c steps of optimizing f̂2p

. The steps in between can be seen as greedily optimizing a function g mapping

selections to real numbers where g(Z ′) := f̂2p

(Z ′ + Zt0)− f̂2p

(Zt0). A function of this form is called a contraction of f̂2p

,
which implies that g inherits diminishing returns and monotonicity from f̂2p

. By Nemhauser, Wolsey, and Fisher [23],

g(Zt1 − Zt0) ≥ (1− 1/e) · max
selection Z′

|Z′|=b T
1+log2 T c

g(Z ′),

which implies that

f̂2p

(Z) ≥ f̂2p

(Zt1) = f̂2p

(Zt0) + g(Zt1 − Zt0)

≥ f̂2p

(Zt0) + (1− 1/e) · max
selection Z′

|Z′|=b T
1+log2 T c

(
f̂2p

(Z ′ + Zt0)− f̂2p

(Zt0)
)

=
f̂2p

(Zt0)

e
+ (1− 1/e) · max

selection Z′
|Z′|=b T

1+log2 T c

f̂2p

(Z ′ + Zt0)

≥ (1− 1/e) · max
selection Z′

|Z′|=b T
1+log2 T c

f̂2p

(Z ′)

Finally, it is well known that, for any submodular function f̂ , the optimal value among sets of cardinality T1 is at least a T1/T2

fraction of the optimal value among sets of cardinality T2 ≥ T1. As claimed, it follows that

f̂2p

(Z) ≥
(
1− 1

e

) b T
1+log2 T

c
T

· max
solution Z′

f̂(Z ′) ≥
(
1− 1

e

)(1

1 + log2 T
− 1

T

)
· max

solution Z′
f̂(Z ′).

Step 2: Approximation of f̂r

Lemma D.1. For any i ≥ j and any solution Z, f̂ i(Z) ≥ f̂ j(Z).

Proof. Since f i(x) ≥ f j(x) for all x ∈ N,

f̂ i(Z) =
∑
g∈G

f i(# of sets in Z that contain g) ≥
∑
g∈G

f j(# of sets in Z that contain g) = f̂ j(Z).

Lemma D.2. For any i ≤ j and any schedule Z, f̂ i(Z) ≥ i
j f̂

j(Z).

Proof. Since, for all x ∈ N,

f i(x) = min(x, i) =
i

j
min

(
j

i
· x, j

i
· i
)

=
i

j
min

(
j

i
· x, j

)
≥ i

j
min(x, j) =

i

j
f j(x),

it follows that

f̂ i(Z) =
∑
g∈G

f i(# of sets in Z that contain g)

≥
∑
g∈G

i

j
· f j(# of sets in Z that contain g) =

i

j
· f̂ j(Z).

Lemma D.3. For any α, i ≥ j, and schedule Z, if Z α-approximates f̂ j , then Z must α · ji -approximate f̂ i.

Proof.

f̂ i(Z) ≥ f̂ j(Z) (by Lemma D.1)

≥ α · max
solution Z′

f̂ j(Z ′) (by assumption)

≥ α · f̂ j(argmax
solution Z′

f̂ i(Z ′))

≥ α · j
i
· max

solution Z′
f̂ i(Z ′). (by Lemma D.2)

Lemma 5.2. For each 1 ≤ r ≤ T , the solution Z returned by SIMAPPROX approximates f̂r within a factor of 1−1/e
2 ·

(1
1+log2 T

− 1
T).

Proof. Fix some r, and let p := blog2(r)c, which means that 2p ≤ r < 2p+1. By Lemma 5.1, Z approximate f̂2p

within a factor
of (1− 1/e) · (1

1+log2 T
− 1

T). By Lemma D.3, it follows that Z approximates f̂r by a factor of

2p

r
· (1− 1/e) · (1

1 + log2 T
− 1

T
) >

1

2
· (1− 1/e) · (1

1 + log2 T
− 1

T
).

Step 3: Approximation of Any f̂
Lemma D.4. Fix some saturation function f and a number T of sessions. There exist nonnegative weights {wi}1≤i≤T such that,
for all 1 ≤ x ≤ T , f(x) =

∑T
i=1 wi · f i(x).

Proof. Indeed, for any 0 ≤ x ≤ T ,

f(x) = f(x)− f(0)

=

x∑
i=1

(f(x)− f(x− 1))

=

T∑
i=1

(f(x)− f(x− 1)) · 1{x ≥ i}

=

T∑
i=1

(f(x)− f(x− 1)) ·
(
f i(x)− f i−1(x)

)
=

T−1∑
i=1

((
f(i)− f(i− 1)

)
−
(
f(i+ 1)− f(i)

))
︸ ︷︷ ︸

≥ 0 by concavity

·f i(x)

+
(
f(T)− f(T − 1)

)︸ ︷︷ ︸
≥ 0 by monotonicity

·fT (x)−
(
f(1)− f(0)

)
· f0(x)︸ ︷︷ ︸

=0

D.2 Lower Bound
Theorem 5.4. There exists a family of maximum coverage instances such that no solution has a simultaneous approximation
ratio larger than O(log log T/ log T). This holds even if all sets S ∈ Z have equal cardinality (like in the table allocation
problem when k divides n).

Proof. We begin by describing the f -MAXCOVERAGE instances (for an unspecified saturation function f) and will then analyze
them. For k = 1, 2, . . . , set b := k + 2 and create an instance as follows: Define the ground set as the disjoint union

G = B0 ∪̇B1 ∪̇ · · · ∪̇Bk ∪̇Bk+1

of k + 2 many blocks. For i = 0, 1, . . . , k + 1, block Bi contains b2k+1−i many elements. We will treat all ground elements
within the same block as identical.

Next, we will define the collection Z , which is partitioned into k + 1 many types:

Z = T0 ∪̇ T1 ∪̇ · · · ∪̇ Tk.

Each type Ti consists of all sets S ⊆ Bi ∪Bk+1 such that |S| = bk and |S ∩Bi| = bi, that is, bi elements can be freely chosen
from block Bi and the remaining bk − bi elements freely from Bk+1. Finally, we set T := b2k+1, and which concludes the
definition of the maximum coverage instance.

Next, we will establish lower bounds on which objective values can be achieved for certain objective functions f̂r. Consider
some i = 0, 1, . . . , k, and consider a set Z that only contains sets of type Ti, in such a way that each ground element in block Bi
is selected exactly T bi/b2k+1−i = b2i times.11 For such a Z, it clearly holds that f̂ b

2i

(Z) ≥ T bi = b2k+i+1.

Now, consider any solution Z. By the pigeon-hole principle, we can fix a 0 ≤ i ≤ k such that no more than T
k+1 elements of

Z are of type Ti. We will show that f̂ b
2i

(Z) must be substantially lower than the value computed in the last paragraph. We will
separately bound the terms on the right-hand side of the following decomposition:

f̂ b
2i

(Z) =
∑
g∈Bi

f b
2i
(∑

S∈Z:g∈S Z(S)
)

+
∑

g∈
⋃

0≤j<i Bj

f b
2i
(∑

S∈Z:g∈S Z(S)
)

+
∑

g∈
⋃

i<j≤k+1 Bj

f b
2i
(∑

S∈Z:g∈S Z(S)
)

Term “g ∈ Bi”. Since, by assumption, at most T/(k+ 1) elements of Z have type Ti, since each S ∈ Ti contains bi elements
of Bi, and since no other type contains elements of Bi, this term is at most T

k+1 b
i = b2k+i+1

k+1 .

Term “g ∈
⋃

0≤j<iBj”. Any S ∈ Z contains at most bi−1 elements in
⋃

0≤j<iBj . Hence, this term is at most T bi−1 =
b2k+i+1

b .

Term “g ∈
⋃
i<j≤k+1Bj”. Compared to Bi, these blocks contain relatively few elements:∣∣∣∣∣∣

⋃
i<j≤k+1

Bj

∣∣∣∣∣∣ = b2k−i + b2k−i−1 + · · ·+ bk = b2k+1−i ·
(

1

b
+

1

b2
+ · · ·+ 1

bk+1−i

)

≤ b2k+1−i ·
∞∑
j=1

1

bj
=
b2k+1−i

b− 1
.

Since each ground element contributes at most b2i to the objective, the third term is at most b2i · b
2k+1−i

b−1 = b2k+i+1

b−1 .
Putting the above bounds together, it follows that

f̂ b
2i

(Z) ≤
(

1

k + 1
+

1

b
+

1

b− 1

)
· b2k+i+1 ≤ 3

k + 1
· b2k+i+1 ≤ 3

k + 1
·max
Z′

f̂ b
2i

(Z ′).

We have thus established that no Z can simultaneously approximate all fr with an approximation ratio better than 3
k+1 . The

statement follows by observing that

3

k + 1
=

6

2k + 2
<

6

2k + 1
=

6

2k + 1
· ln(k + 2)

ln(k + 2)
<

6

2k + 1
·

ln
(
(2k + 1) ln(k + 2)

)
ln(k + 2)

= 6
ln ln

(
(k + 2)2k+1

)
ln
(
(k + 2)2k+1

) = 6
ln lnT

lnT
.

E Empirical Results
E.1 Data Preprocessing and Experimental Setup
As mentioned in the main text, our empirical analyses are based on seven datasets: sf a, sf b, sf c, sf d, sf e, sf f, and
hd. All datasets whose name begins with “sf” are based on citizens’ assemblies coorganized by the Sortition Foundation; the
dataset hd to an assembly organized by the nonprofit Healthy Democracy. We use the Sortition Foundation datasets with the
organization’s permission; use of hd did not require permission, as noted by Flanigan et al. [10]. None of our datasets contain
information that would allow to identify individuals; individuals are only labeled with their values for attributes (e.g., gender, age
category, education level, . . .). Though the datasets are not personally identifiable, our nonprofit partners have asked us not to
identify the specific citizens’ assemblies belonging to the datasets, nor to reveal which features were used, and we cannot publish
our datasets. We are not aware of any alternative datasets on citizens’ assemblies that would be more openly available. As we
describe in the body, the assemblies for datasets sf a through sf d and hd were selected from the original lottery requirements
using Panelot.org, for which the following random seeds were generated on that website and used: sf a: 125131; sf b: 228155;
sf c: 402199; sf d: 722865; hd: 283988.

11One could choose such an Z by going over the elements of Bi in a round robin manner.

For each dataset with n participants, we chose k = d
√
n e for all experiments. This definition was intuited from the number

of groups (namely, k = 7) practitioners chose for the sf f dataset, a 40-participant assembly coorganized by the Sortition
Foundation, as well as from the typical size of tables. Our definition of k results in groups of size at most k, which appears to be
reasonable for all seven datasets provided to us. A k value near to

√
n also indicates there is a low minimum number of repeated

links between two rounds, as per Appendix A.1.
Code for the baseline algorithm GROUPSELECT is available at https://github.com/sortitionfoundation/groupselect-app, and it

is released under a GNU General Public License v3.0.
One important detail is that GROUPSELECT is not able to directly take in representativeness constraints as our algorithm. As

we describe in E.2, it instead takes in a priority ordering over feature categories and then makes a best effort at representing these
features similarly across tables. Here, we describe how we selected the feature ordering for our runs of GROUPSELECT: For
the sf e dataset coorganized by the Sortition Foundation, practitioners suggested the (anonymized) ordering [e, g, b, f, a]. The
ordering for datasets sf a through sf d was then extrapolated to preserve the suggested ordering as much as possible (i.e., by
considering the actual mapping between pre- and post-anonymized features of the sf e dataset). Moreover, in instances where
features were not identical across datasets, we substituted features that are often correlated with the feature present in sf e; for
example, the feature “socioeconomic status” might be substituted for “education.” For datasets sf f and hd, on the other hand,
we did not have access to pre-anonymized features; in these cases, we simply ordered the features in the order they were given.

Finally, we define representativeness constraints for our algorithm based on solutions produced by GROUPSELECT. As
described in E.2, GROUPSELECT produces solutions in which (for a given set of inputs) features are distributed across tables
identically in all allocations. Thus, for each experiment, we only need to observe one of these allocations to determine the lower
and upper quotas that GROUPSELECT satisfies for each feature in F . These quotas were then provided as input our algorithm to
ensure that our solutions (at worst) match the representativeness constraints met by GROUPSELECT.

Across different plots, each data point in the plot is based on a single run of the algorithm. This makes sense for our algorithms
(which, other than the not entirely predictable timing of the ILP solver) are essentially deterministic. GROUPSELECT is random
in principle (we use the seed 1 throughout), but this randomness has very limited effect, as can be seen from the stability of
GROUPSELECT’s objective value across varying numbers of sessions (see Fig. 2 and Appendix E.3), and as we explain further
below.

We run our experiments on Amazon AWS EC2, in a single “C5.4xlarge” instance running Ubuntu with a 3.6 GHz processor,
16 virtual CPUs, and 32 GB of RAM. We ran up to 15 experiments in parallel, limiting each to use Gurobi (version 9.5) in a
single thread. The total running time for all our experiments on this machine was less than 24 hours.

E.2 Description of Baseline Algorithm (GROUPSELECT)
Inputs. For each assembly, GROUPSELECT takes as input a participants’ attributes table like the one given below, where
each row represents a participant, and each column represents an attribute such as “Label,” “Gender,” or “Geography.” That is,
GROUPSELECT assumes that the relevant features can be grouped into multiple partitions (by value of the attribute) of the panel.

Table 1: List of participant attributes in example instance

Label Gender Geography

WR1 Female Rural
WR2 Female Rural
WR3 Female Rural
WC Female City
MR Male Rural
MC Male City

A mode can then be chosen for each attribute, where the modes are defined as follows:
• Diversify: For this attribute, the algorithm roughly tries to distribute its values evenly across all tables. The algorithm requires

that at least one attribute be diversified.
• Cluster: For this attribute, the algorithm roughly tries to group participants with the same attribute values together. For

example, if Gender is put in Cluster mode (i.e., Gender is clustered), then the algorithm tries to group all women together
on the same tables, and all men together on the same tables. Furthermore, as will become important later, GROUPSELECT
clusters a binary attribute by distributing all of the clustered participants among as few groups as possible.

Across all clustered and diversified attributes, GROUPSELECT requires an attribute ordering to be specified. This feature
roughly allows organizers to rank the attributes in Cluster and Diversify mode, respectively, by importance so that higher-priority
attributes are more likely to reflect the desired properties of the chosen mode. The algorithm also allows for manual allocation so
that organizers have the option to assign participants to groups themselves.

Finally, GROUPSELECT takes as input the number of tables desired, the number of sessions, and a random seed.

Output. For each session, GROUPSELECT outputs the participants that have been assigned to each group. The output for two
sessions of the assembly given in Table 1, for example, could look like the following:

Session Table 1 Table 2

1 WR1 ,WR2 ,WR3 WC ,MR,MC
2 WR1 ,WR2 ,MC WR3 ,WC ,MR

Algorithm Description. The following description simplifies GROUPSELECT by ignoring manual overrides and clustering
constraints:

Algorithm 3: GROUPSELECT

1 function GROUPSELECT(N, num allocs)
2 partitions ← []
3 repeat 100 times
4 append the result of GETRANDOMPARTITION() to partitions

5 schedules ← ∅
6 repeat 100 times
7 uniformly draw T partitions from partitions , add result to schedules

8 return argmaxZ∈schedules f̂
1(Z)

9 function GETRANDOMPARTITION()
10 create a list ordered agents of the agents, sorted lexicographically by the attribute ordering, and ordering agents with

identical features uniformly at random . See details.
11 ∆1 ← ∅; ∆2 ← ∅; . . . ; ∆k ← ∅
12 for i in ordered agents do
13 τ ← table where i’s features are least frequent . See details.
14 ∆τ ← ∆τ ∪ {i}
15 return partition ∆1 ∪̇∆2 ∪̇ · · · ∪̇∆k

Below are a few additional details, labeled by line number:

Line 10: To illustrate this lexicographic ordering, consider the assembly from Table 1 for the attribute ordering
[Gender,Geography]. In this case, the lexicographic ordering of the possible combinations of attributes is[

[Female,Rural], [Female,City], [Male,Rural], [Male,City]
]
,

and thus one possible orderings of agents that ordered agents might take on is

[WR1 ,WR2 ,WR3 ,WC ,MR,MC].

Note that the only degree of freedom in ordered agents is the relative order in which agents with exactly the same combination
of features appear (in this case, WR1 ,WR2 ,WR3). This degree of freedom is determined uniformly at random. Note
that, if there are many different features, there are exponentially many combinations, which means that the randomness of
GETRANDOMPARTITION might have little to no effect.

Line 13: Fixing agent i, the algorithm considers the first attribute a1 in the attribute ordering. Agent i will be placed at a table τ
where i’s value for a1 is so far represented the least frequently. For example, if a2 equals Gender, and i is male, then i will be
placed among the tables that so far have been allocated the lowest number of male agents.
In many cases, this criterion will not determine a unique table; in the example, multiple tables might have the same minimum
number of male agents. In this case, ties are broken in favor of tables where i’s value for the second attribute a2 in the ordering
is rarest; if ties remain, the tables are successively refined by the third, fourth, etc. attribute of the ordering.

Note that, regardless of the randomness, the partition produced by GETRANDOMPARTITION is deterministic up to permutations
between agents with the exact same combination of features.

This also explains why GROUPSELECT is so far from optimal in optimizing its objective f̂1. To summarize Algorithm 3,
GROUPSELECT algorithm proceeds in two phases: First, it creates a pool of partitions. Second, it repeatedly draws random
schedules from this pool (by uniformly sampling T partitions without replacement), computes their objective value, and returns
the best schedule across these samples.

GROUPSELECT’s main problem is that the pool generated in step 1 lacks diversity. This is understandable given that
practitioners need to generate many partitions that all satisfy the same representativeness constraints; since finding a partition
for given representativeness constraints is NP-hard (Appendix C), no simple and efficient algorithms for this problem are
available. The practitioners’ approach to this problem is equivalent to generating a single partition with (heuristically) good
representativeness, and then permuting “clones”, i.e., panel members that have exactly the same vector of features. While this
approach makes sense for few numbers of features, it severely restricts the possible partitions for the numbers of features
that practitioners typically use the algorithm for. For example, if two agents do not have “clones” on the same table in the
original single partition, they can never meet. In typical use cases, “clones” seem to have been frequent enough that the Sortition
Foundation did not realize this severe limitation. But it clearly shows in comparison with the much larger degree of meetings
enabled by our algorithms, which is possible since integer linear programming allows to efficiently optimize over the full space
of representative partitions.

E.3 Additional Experiments

First, we will investigate the impact of different ILP timeouts on our greedy algorithms. Below we show one plot for each out of
five algorithms. In each case, the x axis indicates the timeout per ILP call in seconds. The y axis indicates the sum of obtained
marginals over 20 sessions, normalized at the maximum timeout of 180 seconds for ease of readability. (For SIMAPPROX and
SIMAPPROX+, we sum the marginals for the different functions being optimized.)

50 100 150

timeout

0.7

0.8

0.9

1.0

n
or

m
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

algorithm = Greedy(f̂1)

50 100 150

timeout

algorithm = Greedy(ĝ1/2)

50 100 150

timeout

algorithm = Greedy(ĥ)

50 100 150

timeout

algorithm = SimApprox+

50 100 150

timeout

algorithm = SimApprox

instance

hd

sf_a

sf_b

sf_c

sf_d

sf_e

sf_f

As one expects, the general trend across most lines is that larger timeouts lead to better optimization. This is, however, not
always the case; in particular, instance sf c exhibits nonmonotone behavior where shorter optimization times are more effective,
and this is the case to an extreme degree when we greedily optimized the objective f̂1. Other than in these extreme cases, a
timeout of 60 seconds achieves at least around 95% of the sum of marginals of a timeout of 180 seconds.

On the next pages, we will evaluate the schedules produced by six algorithms: greedy algorithms optimizing f̂1, ĝ1/2, ĥ,
SIMAPPROX+, SIMAPPROX, and GROUPSELECT. We will evaluate all algorithms on all instances and on numbers of sessions
that vary between 1 and 30. Most notably, we evaluate the quality of schedules in terms of a whole range of objectives, including
objectives f̂r for small and large r, geometric objectives for small and large bases, and the harmonic objective. Across all these
experiments, we can see that the schedules obtained by greedily optimizing either ĝ1/2 or ĥ lead to the best objective values or
very close to the best (in particular, greedily optimizing f̂1 performs a bit better when evaluated on f̂1). The GROUPSELECT

baseline is uniformly beaten by all other algorithms; greedily optimizing f̂1 tends to fall back for larger numbers of sessions T .

0

100

200

300

o
b

je
ct

iv
e

va
lu

e

metric = f̂1 — instance = hd

0

200

400

metric = f̂1 — instance = sf_a

0

200

400

600

o
b

je
ct

iv
e

va
lu

e

metric = f̂2 — instance = hd

0

250

500

750

metric = f̂2 — instance = sf_a

0

500

1000

1500

o
b

je
ct

iv
e

va
lu

e

metric = f̂10 — instance = hd

0

1000

2000

metric = f̂10 — instance = sf_a

0

200

400

600

o
b

je
ct

iv
e

va
lu

e

metric = ĝ1/2 — instance = hd

0

250

500

750

metric = ĝ1/2 — instance = sf_a

0

500

1000

1500

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.9 — instance = hd

0

500

1000

1500

metric = ĝ0.9 — instance = sf_a

0

200

400

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.1 — instance = hd

0

200

400

metric = ĝ0.1 — instance = sf_a

0 10 20 30

number of sessions T

0

250

500

750

o
b

je
ct

iv
e

va
lu

e

metric = ĥ — instance = hd

0 10 20 30

number of sessions T

0

500

1000

metric = ĥ — instance = sf_a

algorithm

Greedy(f̂1)

Greedy(ĝ1/2)

Greedy(ĥ)

SimApprox+

SimApprox

GroupSelect

0

50

100

150

o
b

je
ct

iv
e

va
lu

e

metric = f̂1 — instance = sf_b

0

250

500

750

metric = f̂1 — instance = sf_c

0

200

400

600

metric = f̂1 — instance = sf_d

0

100

200

300

o
b

je
ct

iv
e

va
lu

e

metric = f̂2 — instance = sf_b

0

500

1000

1500

metric = f̂2 — instance = sf_c

0

500

1000

metric = f̂2 — instance = sf_d

0

250

500

750

o
b

je
ct

iv
e

va
lu

e

metric = f̂10 — instance = sf_b

0

1000

2000

3000

metric = f̂10 — instance = sf_c

0

1000

2000

metric = f̂10 — instance = sf_d

0

100

200

300

o
b

je
ct

iv
e

va
lu

e

metric = ĝ1/2 — instance = sf_b

0

500

1000

1500

metric = ĝ1/2 — instance = sf_c

0

500

1000

metric = ĝ1/2 — instance = sf_d

0

200

400

600

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.9 — instance = sf_b

0

1000

2000

metric = ĝ0.9 — instance = sf_c

0

1000

2000

metric = ĝ0.9 — instance = sf_d

0

100

200

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.1 — instance = sf_b

0

250

500

750

metric = ĝ0.1 — instance = sf_c

0

250

500

750

metric = ĝ0.1 — instance = sf_d

0 10 20 30

number of sessions T

0

200

400

o
b

je
ct

iv
e

va
lu

e

metric = ĥ — instance = sf_b

0 10 20 30

number of sessions T

0

500

1000

1500

metric = ĥ — instance = sf_c

0 10 20 30

number of sessions T

0

500

1000

1500
metric = ĥ — instance = sf_d

0

2000

4000

o
b

je
ct

iv
e

va
lu

e

metric = f̂1 — instance = sf_e

0

200

400

600

metric = f̂1 — instance = sf_f

0

2500

5000

7500

o
b

je
ct

iv
e

va
lu

e

metric = f̂2 — instance = sf_e

0

500

1000

metric = f̂2 — instance = sf_f

0

5000

10000

o
b

je
ct

iv
e

va
lu

e

metric = f̂10 — instance = sf_e

0

1000

2000

metric = f̂10 — instance = sf_f

0

2000

4000

6000

o
b

je
ct

iv
e

va
lu

e

metric = ĝ1/2 — instance = sf_e

0

500

1000

metric = ĝ1/2 — instance = sf_f

0

5000

10000

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.9 — instance = sf_e

0

1000

2000

metric = ĝ0.9 — instance = sf_f

0

2000

4000

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.1 — instance = sf_e

0

250

500

750

metric = ĝ0.1 — instance = sf_f

0 10 20 30

number of sessions T

0

2500

5000

7500

o
b

je
ct

iv
e

va
lu

e

metric = ĥ — instance = sf_e

0 10 20 30

number of sessions T

0

500

1000

metric = ĥ — instance = sf_f

Recall that, in all experiments so far, the representativeness constraints were derived from GROUPSELECT, and as a result were
probably relatively easy to satisfy. In this section, we repeat some of our experiments with substantially tighter representativeness
constraints. Specifically, for each instance, we use an ILP to compute a strengthening of the constraints derived before, namely
one that, summed up over all features, decreased the gap between lower and upper quotas by the largest amount. The resulting
constraints are substantially tighter: the gap between upper quota and lower quota, averaged over features, shrunk by an amount
of at least 1.9 in every instance (median: 2.5, maximum: 5.4). Given that these constraints are now maximally tight, we would
expect the ILP solver to face a more challenging task.

As expected, the ILP solver requires more time in the sense that, in some of the iterations of the greedy algorithm or of
SIMAPPROX, the ILP solver is not able to find any feasible solution within 120 seconds (we then let the ILP solver run until
some feasible solution is found). For the objective ĝ1/2, for example, 3 of our 7 instances still compute 30 sessions in less than
30 · 120 seconds, 3 other instances exceed this amount by 7%, 26%, and 37%. The clear outlier is the instance sf e (which has
nearly 3 times more panel members than the second-largest instance), which requires around 3 hours for 30 sessions — 3 times

as much time as implied by our timeouts.

To our surprise, tightening the representativeness constraints did not have a clear negative effect on the approximation
certificates in the equivalent of Fig. 1, shown in Fig. 3. Instead, some guarantees became a bit better and some a bit worse,
leading to a similar overall picture. Though this comparison is not quite on equal terms since the experiment with tightened
constraints used greater running time, we would have expected a clear negative effect since we expected the ILP solver to get
less far in bounding the optimality gap.

0 5 10 15 20 25 30

number of sessions T

0.00

0.25

0.50

0.75

1.00

g
u

ar
an

te
ed

fr
ac

ti
o

n
o

f
o

p
ti

m
u

m

instance

hd

sf_a

sf_b

sf_c

sf_d

sf_e

sf_f

Figure 3: Approximation certificates for the greedy algorithm on ĝ1/2, guaranteeing near-optimality, but for the maximally tight
quotas. The dashed line marks 1− 1/e.

A final dimension of comparison are the objective values themselves. For this, we repeat the plots from the beginning of
this section below, showing the objective value attained as a function of T , for the same combinations of objective metrics and
instances. In roughly half of the instances, objective values are substantially lower than without constraints; for example, the
number of unique meetings might be only half as large at T = 30 sessions with tightened constraints than with the original
constraints. In the other half of instances, objective values are barely reduced. Since we chose maximally tight constraints, it is
entirely plausible that some agents are bound to never appear on the same table (the easiest case would be an upper bound of 1
on a feature, which implies that two agents with this feature never meet), or that the lack of flexibility in the constraints means
that a much smaller number of new meetings can be achieved per session. The tightened constraints seem to have such effects for
some instances; on other instances, the tightened constraints seem to leave similar flexibility as the original constraints.

0

50

100

150

o
b

je
ct

iv
e

va
lu

e

metric = f̂1 — instance = hd

0

200

400

metric = f̂1 — instance = sf_a

0

100

200

300

o
b

je
ct

iv
e

va
lu

e

metric = f̂2 — instance = hd

0

250

500

750

metric = f̂2 — instance = sf_a

0

500

1000

o
b

je
ct

iv
e

va
lu

e

metric = f̂10 — instance = hd

0

1000

2000

metric = f̂10 — instance = sf_a

0

100

200

300

o
b

je
ct

iv
e

va
lu

e

metric = ĝ1/2 — instance = hd

0

200

400

600

metric = ĝ1/2 — instance = sf_a

0

500

1000

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.9 — instance = hd

0

500

1000

1500

metric = ĝ0.9 — instance = sf_a

0

50

100

150

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.1 — instance = hd

0

200

400

metric = ĝ0.1 — instance = sf_a

0 10 20 30

number of sessions T

0

200

400

o
b

je
ct

iv
e

va
lu

e

metric = ĥ — instance = hd

0 10 20 30

number of sessions T

0

250

500

750

metric = ĥ — instance = sf_a

algorithm

Greedy(f̂1)

Greedy(ĝ1/2)

Greedy(ĥ)

SimApprox+

SimApprox

0

20

40

o
b

je
ct

iv
e

va
lu

e

metric = f̂1 — instance = sf_b

0

250

500

750

metric = f̂1 — instance = sf_c

0

200

400

metric = f̂1 — instance = sf_d

0

25

50

75

o
b

je
ct

iv
e

va
lu

e

metric = f̂2 — instance = sf_b

0

500

1000

1500
metric = f̂2 — instance = sf_c

0

500

1000

metric = f̂2 — instance = sf_d

0

200

400

o
b

je
ct

iv
e

va
lu

e

metric = f̂10 — instance = sf_b

0

1000

2000

3000

metric = f̂10 — instance = sf_c

0

1000

2000

metric = f̂10 — instance = sf_d

0

25

50

75

o
b

je
ct

iv
e

va
lu

e

metric = ĝ1/2 — instance = sf_b

0

500

1000

metric = ĝ1/2 — instance = sf_c

0

250

500

750

metric = ĝ1/2 — instance = sf_d

0

200

400

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.9 — instance = sf_b

0

1000

2000

metric = ĝ0.9 — instance = sf_c

0

1000

2000

metric = ĝ0.9 — instance = sf_d

0

20

40

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.1 — instance = sf_b

0

250

500

750

metric = ĝ0.1 — instance = sf_c

0

200

400

metric = ĝ0.1 — instance = sf_d

0 10 20 30

number of sessions T

0

50

100

150

o
b

je
ct

iv
e

va
lu

e

metric = ĥ — instance = sf_b

0 10 20 30

number of sessions T

0

500

1000

1500

metric = ĥ — instance = sf_c

0 10 20 30

number of sessions T

0

500

1000

metric = ĥ — instance = sf_d

0

1000

2000

3000

o
b

je
ct

iv
e

va
lu

e

metric = f̂1 — instance = sf_e

0

100

200

300

metric = f̂1 — instance = sf_f

0

2000

4000

6000

o
b

je
ct

iv
e

va
lu

e

metric = f̂2 — instance = sf_e

0

200

400

600

metric = f̂2 — instance = sf_f

0

5000

10000

o
b

je
ct

iv
e

va
lu

e

metric = f̂10 — instance = sf_e

0

1000

2000

metric = f̂10 — instance = sf_f

0

2000

4000

6000

o
b

je
ct

iv
e

va
lu

e

metric = ĝ1/2 — instance = sf_e

0

200

400

600

metric = ĝ1/2 — instance = sf_f

0

5000

10000

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.9 — instance = sf_e

0

500

1000

1500

metric = ĝ0.9 — instance = sf_f

0

2000

4000

o
b

je
ct

iv
e

va
lu

e

metric = ĝ0.1 — instance = sf_e

0

100

200

300

metric = ĝ0.1 — instance = sf_f

0 10 20 30

number of sessions T

0

2000

4000

6000

o
b

je
ct

iv
e

va
lu

e

metric = ĥ — instance = sf_e

0 10 20 30

number of sessions T

0

250

500

750

metric = ĥ — instance = sf_f

	deliberation
	appendix

