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Fair algorithms for selecting citizens’ 
assemblies

Bailey Flanigan1 ✉, Paul Gölz1 ✉, Anupam Gupta1, Brett Hennig2 & Ariel D. Procaccia3 ✉

Globally, there has been a recent surge in ‘citizens’ assemblies’1, which are a form of 
civic participation in which a panel of randomly selected constituents contributes to 
questions of policy. The random process for selecting this panel should satisfy two 
properties. First, it must produce a panel that is representative of the population. 
Second, in the spirit of democratic equality, individuals would ideally be selected to 
serve on this panel with equal probability2,3. However, in practice these desiderata are 
in tension owing to differential participation rates across subpopulations4,5. Here we 
apply ideas from fair division to develop selection algorithms that satisfy the two 
desiderata simultaneously to the greatest possible extent: our selection algorithms 
choose representative panels while selecting individuals with probabilities as close to 
equal as mathematically possible, for many metrics of ‘closeness to equality’. Our 
implementation of one such algorithm has already been used to select more than 
40 citizens’ assemblies around the world. As we demonstrate using data from ten 
citizens’ assemblies, adopting our algorithm over a benchmark representing the 
previous state of the art leads to substantially fairer selection probabilities. By 
contributing a fairer, more principled and deployable algorithm, our work puts the 
practice of sortition on firmer foundations. Moreover, our work establishes citizens’ 
assemblies as a domain in which insights from the field of fair division can lead to 
high-impact applications.

In representative democracies, political representatives are usually 
selected by election. However, over the past 35 years, an alternative 
selection method has been gaining traction among political scien-
tists2,6,7 and practitioners1,8–10: ‘sortition’, which is the random selection 
of representatives from the population. The chosen representatives 
form a panel—usually known as a citizens’ assembly—that convenes to 
deliberate on a policy question. (Such panels also go by other names; 
our work applies to all panels in the broader category of ‘deliberative 
minipublics’11.) Citizens’ assemblies are now being administered by 
more than 40 organizations in over 25 countries12; one of these organi-
zations—the Sortition Foundation in the UK—recruited 29 panels in 
2020. Although many citizens’ assemblies are initiated by civil-society 
organizations, they are also increasingly being commissioned by public 
authorities on municipal, regional, national and supranational levels1. 
Notably, since 2019, two Belgian regional parliaments have internally 
established permanent sortition bodies13,14. The growing use of citizens’ 
assemblies by governments is giving the decisions of these assemblies 
a more direct path to affecting policy. For example, two recent citizens’ 
assemblies commissioned by the national legislature of Ireland led to 
the legalization of same-sex marriage and abortion15.

Ideally, a citizens’ assembly selected using sortition acts as a micro-
cosm of society: its participants are representative of the population, 
and thus its deliberation simulates the entire population convening 
‘under conditions where it can really consider competing arguments 
and get its questions answered from different points of view’16. However, 

whether this goal is realized in practice depends on exactly how assem-
bly members are chosen.

Panel selection is generally done in two stages: first, thousands of 
randomly chosen constituents are invited to participate, a subset of 
whom opt into a ‘pool’ of volunteers. Then, a panel of prespecified 
size is randomly chosen from this pool using some fixed procedure, 
which we term a ‘selection algorithm’. As the final and most complex 
component of the selection process, the selection algorithm has great 
power in deciding who will be chosen to represent the population. In 
this Article, we introduce selection algorithms that preserve the key 
desirable property pursued by existing algorithms, while more fairly 
distributing the sought-after opportunity17–20 of being a representative.

To our knowledge, all of the selection algorithms previously used in 
practice (Supplementary Information section 12) aim to satisfy one par-
ticular property, known as ‘descriptive representation’ (that the panel 
should reflect the composition of the population)16. Unfortunately, the 
pool from which the panel is chosen tends to be far from representative. 
Specifically, the pool tends to overrepresent groups with members who 
are on average more likely to accept an invitation to participate, such 
as the group ‘college graduates’. To ensure descriptive representation 
despite the biases of the pool, selection algorithms require that the 
panels they output satisfy upper and lower ‘quotas’ on a set of speci-
fied features, which are roughly proportional to the population rate 
of each feature (for example, quotas might require that a 40-person 
panel contain between 19 and 21 women). These quotas are generally 
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imposed on feature categories delineated by gender, age, education 
level and other attributes that are relevant to the policy issue at hand. 
In Supplementary Information section 3, we demonstrate that quota 
constraints of this form are more general than those that are achiev-
able via ‘stratified sampling’, which is a technique that is often used for 
drawing representative samples.

Selection algorithms that pre-date this work focused only on satisfy-
ing quotas, leaving unaddressed a second property that is also central 
to sortition: that all individuals should have an equal chance of being 
chosen for the panel. Several political theorists present equality of 
selection probabilities as a central advantage of sortition, and stress its 
role in promoting ideals such as equality of opportunity2,21, democratic 
equality16,21–23 and allocative justice23,24. Engelstad, who introduced an 
influential model of the benefits of sortition, argues that this form of 
equality constitutes ‘[t]he strongest normative argument in favour 
of sortition’25 (for more details on desiderata from political theory, 
see Supplementary Information section 4). In addition to political 
theorists, major practitioner groups have also advocated for equal 
selection probabilities4,26. However, these practitioners face the fun-
damental hurdle that, in practice, the quotas almost always necessitate 
selecting people with somewhat unequal probabilities, as individuals 
from groups that are underrepresented in the pool must be chosen 
with disproportionately high probabilities to satisfy the quotas. Two 
previous papers27,28 have suggested mathematical models in which 
selection algorithms can reconcile equal selection probabilities with 
representativeness, but both of these studies make assumptions that 
are incompatible with current practice (Supplementary Information 
section 5).

Although it is generally impossible to achieve perfectly equal prob-
abilities, the reasons to strive for equality also motivate a more gradual 
version of this goal: making probabilities as equal as possible, subject to 
the quotas. We refer to this goal as ‘maximal fairness’. We find that our 
benchmark (a selection algorithm representing the previous state of 
the art) falls far short of this goal, giving volunteers markedly unequal 
probabilities across several real-world instances. This algorithm even 
consistently selects some types of volunteer with near-zero probability, 
and thus excludes them in practice from the chance to serve. We further 
show that, in these instances, it is possible to give all volunteers a prob-
ability of well above zero while satisfying the quotas, demonstrating 
that the level of inequality produced by the benchmark is avoidable.

In this Article, we close the gaps we have identified, both in theory 
and in practice. We first introduce not only a selection algorithm that 
achieves maximal fairness, but also a more general algorithmic frame-
work for producing such algorithms. Motivated by the multitude of 
possible ways to quantify the fairness of an allocation of selection prob-
abilities, our framework gives a maximally fair selection algorithm for 
any measure of fairness with a particular functional form. Notably, such 
measures include the most prominent measures from the literature on 
fair division29,30, and we show that these well-established metrics can 
be applied to our setting by casting the problem of assigning selection 
probabilities as one of fair resource allocation (Supplementary Informa-
tion section 9). Then, to bring this innovation into practice, we imple-
ment a deployable selection algorithm that is maximally fair according 
to one specific measure of fairness. We evaluate this algorithm and find 
that it is substantially fairer than the benchmark on several real-world 
datasets and by multiple fairness measures. Our algorithm is now in 
use by a growing number of sortition organizations around the world, 
making it one of only a few31–34 deployed applications of fair division.

Algorithmic framework
Definitions
We begin by introducing necessary terminology, which we illustrate 
with an example in Supplementary Information section 1. We refer 
to the input to a selection algorithm—a pool of size n, a set of quotas 

and the desired panel size k—as an ‘instance’ of the panel selection 
problem. Given an instance, a selection algorithm randomly selects a 
‘panel’, which is a quota-compliant set of k pool members. We define the 
‘output distribution’ of the algorithm for an instance as the distribution 
that specifies the probabilities with which the algorithm outputs each 
possible panel. Then, the ‘selection probability’ of a pool member is the 
probability that they are on a panel randomly drawn from the output 
distribution. We refer to the mapping from pool members to their selec-
tion probabilities as the ‘probability allocation’, which we aim to make 
as fair as possible. Finally, a ‘fairness measure’ is a function that maps a 
probability allocation to a fairness ‘score’ (for example, the geometric 
mean of probabilities, of which higher values correspond to greater fair-
ness). An algorithm is described as ‘optimal’ with respect to a fairness 
measure if, for any instance, the fairness of the probability allocation 
of the algorithm is at least as high as that of any other algorithm.

Formulating the optimization task
To inform our approach, we first analysed algorithms that pre-dated 
our own. Those algorithms that we have seen in use all have the same 
high-level structure: they select individuals for the panel one-by-one, 
and in each step randomly choose whom to add next from among those 
who—according to a myopic heuristic—seem unlikely to produce a 
quota violation later. As finding a quota-compliant panel is an algo-
rithmically hard problem (Supplementary Information section 6), it is 
already an achievement that these simple algorithms find any panel in 
most practical instances. However, owing to their focus on finding any 
panel at all, these algorithms do not tightly control which panel they 
output or, more precisely, their output distribution (the probabilities 
with which they output different panels). Because the output distribu-
tion of an algorithm directly determines its probability allocation, the 
probability allocations of existing algorithms are also uncontrolled, 
which leaves room for them to be highly unfair.

In contrast to these existing algorithms, which have output distribu-
tions that arise implicitly from a sequence of myopic steps, the algo-
rithms in our framework (1) explicitly compute a maximally fair output 
distribution and then (2) sample from that distribution to select the 
final panel (Fig. 1). Crucially, the maximal fairness of the output distribu-
tion found in the first step makes our algorithms optimal. To see why, 
note that the behaviour of any selection algorithm on a given instance 
is described by some output distribution; thus, as our algorithm finds 
the fairest possible output distribution, it is always at least as fair as 
any other algorithm.

As step (2) of our selection algorithm is simply a random draw, we 
have reduced the problem of finding an optimal selection algorithm 
to the optimization problem in step (1)—finding a maximally fair dis-
tribution over panels. To fully specify our algorithm, it remains only 
to solve this optimization problem.

Solving the optimization task
A priori, it might seem that computing a maximally fair distribution 
requires constructing all possible panels, because achieving optimal 
fairness might necessitate assigning non-zero probability to all of them. 
However, such an approach would be impracticable, as the number 
of panels in most instances is intractably large. Fortunately, because 
we measure fairness according to individual selection probabilities 
only, there must exist an ‘optimal portfolio’—a set of panels over which 
there exists a maximally fair distribution—containing few panels (by 
Carathéodory’s theorem, as discussed in Supplementary Information 
section 7). This result brings a practical algorithm within reach, and 
shapes the goal of our algorithm: to find an optimal portfolio while 
constructing as few panels as possible.

We accomplish this goal using an algorithmic technique known as 
‘column generation’, where, in our case, the ‘columns’ being generated 
correspond to panels (a formal description is provided in Supplemen-
tary Information section 8). As shown in Fig. 1, our algorithms find an 
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optimal portfolio by iteratively building a portfolio of panels 𝒫. In each 
iteration, a panel is chosen to be added to 𝒫 via the following two steps: 
(1a) finding the optimal distribution 𝒟 over only the panels currently in 
𝒫 and (1b) adding a panel to 𝒫 that—on the basis of the gradient of the 
fairness measure—will move the portfolio furthest towards optimality. 
This second subtask makes use of integer linear programming, which 
we use to generate quota-compliant panels despite the theoretical 
hardness of the problem. Eventually, the panel with the most promis-
ing gradient will already be in 𝒫, in which case 𝒫 is provably optimal, 
and 𝒟 must be a maximally fair distribution. In practice, we observe 
that this procedure terminates after few iterations.

Our techniques extend column generation methods that are typically 
applied to linear programs, allowing them to be used to solve a large 
set of convex programs (Supplementary Information section 8.1). This 
extension allows our framework to be used with a wide range of fair-
ness measures—essentially any for which the fairest distribution over a 
portfolio can be found via convex programming. Supported measures 
include those most prominent in the fair division literature: egalitarian 
welfare35, Nash welfare30, Gini inequality36,37 and the Atkinson indices37,38. 
Our algorithmic approach also has the benefit of easily extending to 
organization-specific constraints beyond quotas; for example, prac-
titioners can prevent multiple members of the same household from 
appearing on the same panel. Owing to its generality, our framework 
even applies to domains outside of sortition, such as the allocation of 
classrooms to charter schools39 or kidney exchange40 (Supplementary 
Information section 8.2).

 
Deployable selection algorithm
To bring fair panel selection into practice, we developed an efficient imple-
mentation of a specific maximally fair selection algorithm, which we call 
LEXIMIN (defined in Supplementary Information section 10). LEXIMIN 
optimizes the well-established fairness measure leximin30,39,41, which is 
sensitive to the very lowest selection probabilities. In particular, leximin is 
optimized by maximizing the lowest selection probability, and then break-
ing ties between solutions in favour of probability allocations with highest 
second-lowest probability, and so on. This choice of fairness measure is 
motivated by the fact that—as we show here and in Supplementary Informa-
tion section 13—LEGACY (the algorithm used by the Sortition Foundation 
before their adoption of LEXIMIN) gives some pool members a near-zero 
probability when much more equal probabilities are possible. This type 
of unfairness is especially pressing because if it consistently affected pool 
members with particular combinations of features, these individuals 
and their distinct perspectives would be ‘systematically excluded from 
participation’42, which runs counter to a key promise of random selection.

To increase the accessibility of LEXIMIN, we have made its implementa-
tion available through an existing open-source panel selection tool43 and 
on https://panelot.org/44, a website on which anyone can run the algo-
rithm without installation. LEXIMIN has since been deployed by several 
organizations, including Cascadia (USA), the Danish Board of Technology 
(Denmark), Nexus (Germany), of by for* (USA), Particitiz (Belgium) and 
the Sortition Foundation (UK). As of June 2021, the Sortition Foundation 
alone has already used LEXIMIN to select more than 40 panels.

Output distribution ( )
given by our algorithm

Probability allocation
given by our algorithm

Each pool member is
on the selected panel
with the probability
they are given in the
probability allocation

Using ILP, check whether
is an optimal

portfolio

Initial portfolio
(depends on
fairness
measure F)

If is optimal, then
is maximally fair (F)

Sample panel
from output
distribution

(current portfolio)

Calculate
Step (1) Step (2)

the
fairest (F)
distribution
over

If is not optimal, ILP

provides new panel to add:

+

Fig. 1 | Algorithm optimizing a fairness measure F. Step (1): construct a 
maximally fair output distribution 𝒟 over an optimal portfolio 𝒫 of 
quota-compliant panels (denoted by coloured boxes), which is done by 

iteratively building an optimal portfolio of panels and computing the fairest 
distribution over that portfolio. Step (2): sample the distribution to select a 
final panel.

Table 1 | List of instances on which algorithms were evaluated

Instancea Pool size 
(n)

Panel size 
(k)

No. of quota 
categories

Mean selection 
probability (k/n)

LEGACY minimum 
probability (sampled)b

LEXIMIN minimum 
probability (exact)

Running time 
(LEXIMIN)

sf(a) 312 35 6 11.2% ≤0.32% 6.7% 20 s

sf(b) 250 20 6 8.0% ≤0.17% 4.0% 9 s

sf(c) 161 44 7 27.3% ≤0.15% 8.6% 6 s

sf(d) 404 40 6 9.9% ≤0.11% 4.7% 46 s

sf(e) 1,727 110 7 6.4% ≤0.03% 2.6% 67 min

cca 825 75 4 9.1% ≤0.03% 2.4% 7 min

hd 239 30 7 12.6% ≤0.09% 5.1% 37 s

mass 70 24 5 34.3% ≤14.9% 20.0% 1 s

nexus 342 170 5 49.7% ≤2.24% 32.5% 1 min

obf 321 30 8 9.3% ≤0.03% 4.7% 3 min

At the request of practitioners, the topics, dates and locations of the panels are not identified. 
aFor the instances we study, panels were recruited by the following organisations. sf(a–e), Sortition Foundation; cca, Center for Climate Assemblies; hd, Healthy Democracy; mass, MASS LBP; 
nexus, Nexus; obf, of by for*. 
b99% confidence, see ‘Statistics’ section in the Methods.

https://panelot.org/
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We measure the effect of adopting LEXIMIN over pre-existing algo-
rithms by comparing its fairness to that of LEGACY (described in Sup-
plementary Information section 11). We chose LEGACY as a benchmark 
because it was widely used before this work, is similar to several other 
selection algorithms used in practice (Supplementary Information sec-
tion 12) and is the only existing algorithm we found that was fully speci-
fied by an official implementation. We compare LEXIMIN and LEGACY on 
ten datasets from real-world panels and with respect to several fairness 
measures, including the minimum probability (Table 1), the Gini coef-
ficient and the geometric mean. This analysis shows that LEXIMIN is 
fairer in all examined instances, and substantially so in nine out of ten.

Effect of adopting LEXIMIN over LEGACY
We compare the fairness of LEXIMIN and LEGACY using datasets from 
ten citizens’ assemblies, which were organized by six different sorti-
tion organizations in Europe and North America. As Table 1 shows, our 
instances are diverse in panel size (range of 20–170, median of 37.5) and 
number of quota categories (range of 4–8). On consumer hardware, the 
run-time of our algorithm is well within the time available in practice.

Out of concern for low selection probabilities, we first compare the 
minimum selection probabilities given by LEGACY and LEXIMIN, sum-
marized in Table 1. Notably, in all instances except for ‘mass’ (an outlier 

in that its quotas only mildly restrict the fraction of panels that are fea-
sible), LEGACY chooses some pool members with probability close to 
zero. We can furthermore identify combinations of features that lead to 
low selection probabilities by LEGACY across all instances (as described 
in ‘Individuals rarely selected by LEGACY’ in the Methods), raising the 
concern that LEGACY may in fact systematically exclude some groups 
from participation. By contrast, LEXIMIN selects no individual nearly 
so infrequently, with minimum selection probabilities ranging from 
26% to 65% (median of 49%) of k/n—the ‘ideal’ probability individuals 
would receive in the absence of quotas.

One might wonder whether this increased minimum probability 
achieved by LEXIMIN affects only a few pool members who are most dis-
advantaged by LEGACY. This is not the case: as shown in Fig. 2 (shaded 
boxes), between 13% and 56% of pool members (median of 46%) across 
instances receive probability from LEGACY lower than the minimum given 
to anyone by LEXIMIN (Extended Data Table 2). Thus, even the first stage 
of LEXIMIN alone (that is, maximizing the minimum probability) provides 
a sizable section of the pool with more equitable access to the panel.

We have so far compared LEGACY and LEXIMIN over only the lower 
end of selection probabilities, as this is the range in which LEXIMIN 
prioritizes being fair. However, even considering the entire range of 
selection probabilities, we find that LEXIMIN is quantifiably fairer 
than LEGACY on all instances by two established metrics of fairness, 
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namely the Gini coefficient and the geometric mean (Extended Data 
Table 1). For example, across instances (excluding the instance mass), 
LEXIMIN decreases the Gini coefficient—a standard measure of inequal-
ity—by between 5 and 16 percentage points (median of 12; negligible 
improvement for mass). Notably, the 16-point improvement in the Gini 
coefficient achieved by LEXIMIN on the instance ‘obf’ (from 59% to 43%) 
approximately reflects the gap between relative income inequality in 
Namibia (59% in 2015) and the USA (41% in 2018)45.

Discussion
As the recommendations made by citizens’ assemblies increasingly 
affect public decision-making, the urgency that selection algorithms 
distribute this power fairly across constituents also grows. We have 
made substantial progress on this front: the optimality of our algorith-
mic framework conclusively resolves the search for fair algorithms for a 
broad class of fairness measures, and the deployment of LEXIMIN puts 
an end to some pool members being virtually never selected in practice.

Beyond these immediate benefits to fairness, the exchange of ideas 
we have initiated between practitioners and theorists presents continu-
ing opportunities to improve panel selection in areas such as transpar-
ency. For example, for an assembly in Michigan, we assisted of by for* 
in selecting their panel using a live lottery in which participants could 
easily observe the probabilities with which each pool member was 
selected. Such lotteries represent an advance over the transparency 
possible with previous selection algorithms. In this instance, we found 
that the output distribution of LEXIMIN could be transformed into a 
simple lottery without a meaningful loss of fairness (Fig. 3). Further 
mathematical work is needed to show that this transformation can in 
general preserve strong fairness guarantees.

The Organisation for Economic Co-operation and Development 
describes citizens’ assemblies as part of a broader democratic move-
ment to ‘give citizens a more direct role in […] shaping the public deci-
sions that affect them’1. By bringing mathematical structure, increased 
fairness and greater transparency to the practice of sortition, research 
in this area promises to put practical sortition on firmer foundations, 
and to promote the mission of citizens’ assemblies to give everyday 
people a greater voice.
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maries, source data, extended data, supplementary information, 
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Methods

Theoretical results
The mathematical definitions and proofs supporting this Article 
can be found in the Supplementary Information. In Supplementary 
Information section 2, we formally define our model of the panel 
selection problem. In Supplementary Information section 6, we prove 
that, under widely accepted assumptions in complexity theory, panel 
selection algorithms cannot run in polynomial time, which justifies 
that our algorithms aim for acceptable running times on observed 
panel instances rather than for theoretical runtime guarantees. In 
Supplementary Information section 7, we show that Carathéodory’s 
theorem implies the existence of small optimal portfolios, which 
motivates our use of column generation. Supplementary Informa-
tion section 8 describes the algorithmic ideas behind our algorithmic 
framework and its applicability to domains outside of sortition, for-
mally defines the framework and when it can be applied, and proves 
its termination and correctness. In Supplementary Information sec-
tion 9, we cast the problem of panel selection into the language of fair 
division, which allows us to apply a range of fairness measures from 
the literature. We also show how each of these fairness measures 
can be optimized using our framework. In Supplementary Informa-
tion section 10, we describe our algorithm LEXIMIN and prove its 
correctness. In Supplementary Information section 11, we describe 
the benchmark LEGACY. In Supplementary Information section 13, 
we construct a family of instances in which LEGACY is highly unfair 
even though the instances allow one to select all agents with equal 
probability. Finally, in Supplementary Information section 15, we 
analyse panel selection from an axiomatic perspective and describe 
why we found this approach to be less fruitful than the optimization 
approach we adopted in this Article.

Individuals rarely selected by LEGACY
The empirical results in Table 1 demonstrate that, in most instances, 
LEGACY selects some pool members with very low probability. How-
ever, in any given citizens’ assembly, this does not automatically imply 
that these individuals had low probability of serving on the panel. 
Indeed, if such an individual would have been selected by LEGACY 
with higher probability in most other pools that could have formed 
(as a result of other sets of agents being randomly invited alongside 
this individual), then the individual might still have had a substantial 
overall probability of serving on the citizens’ assembly.

In this section, we show how our data suggest that this is not the 
case, and that some people do in fact seem to have very low like-
lihood overall of ending up on the panel when LEGACY is used. We 
make this case by demonstrating two separate points. First, we show 
that, across instances, LEGACY tends to give very low selection prob-
abilities to agents who have many features that are overrepresented 
in the observed pool relative to the quotas. Second, we discuss why it 
is likely that, across possible pools for the same citizens’ assembly, it 
is usually the same agents who have many overrepresented features. 
These two points, taken together, suggest that agents who have many 
overrepresented features in the pools we observe are rarely selected 
by LEGACY overall.

 
Relationship between overrepresentation of features and selec-
tion probability. To measure the relationship between the level of 
overrepresentation of an agent’s features and that agent’s selection 
probability by LEGACY, we first construct a simple indicator called the 
‘ratio product’, which measures the level of overrepresentation of a 
given agent’s set of features in the pool. The ratio product is composed 
of, for each of the features of an agent, the ratio between the fraction 
of this feature in the pool and the fraction of the quotas of the feature 
(specifically, the mean of lower and upper quota) in the panel. That 
is, if we denote the set of pool members with a feature f by Nf and if we 

denote the lower and upper quotas of the feature by ℓf and uf, respec-
tively, then the ratio product of an agent i is defined as:
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Given that the quotas are typically set in proportion to the share 
of the feature in the population, we say that agents with a high ratio 
product have many overrepresented features. Using this indicator, we 
find that there is a clear negative relationship in all instances between 
the ratio product of an individual and their selection probability by 
LEGACY (Extended Data Fig. 3). Most importantly, as this trend would 
suggest, we find that the pool members with the largest ratio products 
consistently have some of the lowest selection probabilities.

 
The same agents probably have many overrepresented features 
across most possible pools. Recall that we define an instance with 
respect to a single pool. However, this observed pool is only one among 
several hypothetical pools that could have resulted from the random 
process of sending out invitation letters. We define the ratio product 
of an agent with respect to a single instance and, therefore, a single 
observed pool. Then, if a different hypothetical pool (including that 
agent) had instead been drawn during the invitation process, the ratio 
product of the same agent with respect to that pool would probably be 
different, depending on which constituents were invited to join the pool 
alongside them. As the quotas and the target panel size k would be the 
same for all these hypothetical instances, the differences in ratio prod-
uct would be due to different values of |Nf|, for all features f of the agent. 
Here, |Nf|—a random variable, the value of which is determined during 
the random invitation process—essentially follows a hypergeometric 
distribution, because it is simply the number of invitations sent to 
constituents who both have feature f and are willing to participate. 
Consequentially, all |Nf| are well-concentrated, from which it follows 
that the ratio product of an individual should not vary much across 
all hypothetical pools containing them. The ratio product should be 
especially concentrated when all of an individual’s features tend to be 
overrepresented, and thus all factors of the ratio product are large.

 
Interpretation of results. The analysis so far suggests that LEGACY 
selects individuals with many overrepresented features with low prob-
ability. Even so, one might consider the possibility that these individuals 
are more likely to join the pool if invited (given that they are overrepre-
sented in the pool), and that, therefore, their lower selection probability 
by LEGACY in the panel-selection stage is outweighed by their higher 
probability of entering the pool in the pool-formation stage. This raises 
the question of whether the low selection probabilities given to these 
individuals by LEGACY are necessarily inconsistent with a scenario in 
which the probabilities of people going from population to panel (their 
‘end-to-end’ probabilities17) are actually equal.

A back-of-the-envelope calculation suggests that this is not the case—
that, in fact, the end-to-end probabilities are probably far from equal 
when using LEGACY. Across instances, the median ratio between the 
average selection probability k/n and (the upper confidence bound on) 
the minimum selection probability given by LEGACY is larger than 100. 
If the selection probability of an individual conditioned on appearing 
in some pool is indeed 100 times lower than that of an ‘average’ citizen, 
the individual would have to enter the pool 100 times more frequently 
than this average citizen to serve on the panel with equal end-to-end 
probability. Given that average response rates are typically between  
2 and 5%, someone opting into the pool 100 times more frequently 
than an average citizen is simply not possible.

Although we have demonstrated that LEGACY underrepresents a spe-
cific group (agents with many overrepresented features), we do not have 
reason to believe that LEGACY would exclude groups defined by inter-
sections of few features (for example, ‘young women’ or ‘conservatives 
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with a university degree’ are the intersection of two features). In Sup-
plementary Information section 14, we investigate the representation 
of such groups for one instance, ‘sf(e)’. There, we find that LEGACY and 
LEXIMIN represent intersectional groups to similar degrees of accuracy 
(Extended Data Fig. 4), explore factors determining the representation of 
an intersectional group and describe how the accuracy of intersectional 
representation could be improved using our algorithmic framework.

Instance-data preprocessing
At the request of practitioners, we pseudonymize the features of each 
dataset. This does not affect the analysis, as both LEGACY and LEXIMIN 
are agnostic to this information.

For data from Healthy Democracy (instance ‘hd’), of by for* (instance 
‘obf’) and MASS LBP (instance ‘mass’), and for the instance ‘sf(e)’ from the 
Sortition Foundation, respondent data and quotas were taken without 
modification. For privacy reasons, pool members with non-binary gender 
in the instances ‘sf(a)’ to ‘sf(d)’ were randomly assigned female or male 
gender with equal probability. In two of these instances (‘sf(a)’ and ‘sf(d)’), 
the originally used quotas were not recorded in the data, but we recon-
structed them according to the procedures of the Sortition Foundation 
for constructing quotas from the population fractions. The panel from 
the Center for Climate Assemblies (instance ‘cca’) did not formally use 
upper and lower quotas; instead, exact target values for each feature were 
given (which could not simultaneously be satisfied) as well as a priority 
order over which targets were more important than others. We set quotas 
by identifying the minimal relaxation to the lowest-priority target that 
could be satisfied. For the Nexus instance (instance ‘nexus’), the region of 
one pool member was missing and inferred from their city of residence. 
Because Nexus only used lower quotas, the upper quotas of each feature 
were set to the difference between k and the sum of lower quotas of all 
other features of the same category. Such a change does not influence 
the output distribution of either LEGACY or LEXIMIN but makes the ratio 
product defined in ‘Individuals rarely selected by LEGACY’ above more 
meaningful. Because Nexus permitted k to range between 170 and 175, 
we chose 170 to make their lower quotas as tight as possible.

Statistics
The selection probabilities of LEXIMIN are not empirical estimates, but 
rather exact numbers generated by the algorithm, computed from its 
output distribution.

By contrast, the selection probabilities given to each agent by LEG-
ACY (as used in the numbers in the text and tables) refer to the fraction 
of 10,000 sampled panels in which the agent appears (in which each 
sample is from a single run of LEGACY on the same instance).

In Fig. 2, Extended Data Figs. 1, 2, when plotting the line representing 
LEGACY, agents are sorted along the x axis in order of this empirical 
estimate of their selection probability by LEGACY, and this is the selec-
tion probability given on the y axis. As, for each agent, the number of 
panels on which they appear across runs of LEGACY is distributed as a 
binomial variable with 10,000 trials and unknown success probability, 
we indicate Jeffreys’ intervals for each of these success probabilities 
(that is, selection probabilities) with 99% confidence46. These are con-
fidence intervals on the selection probability of a specific agent, not on 
the selection probability of a specific percentile of the agents.

In addition to reporting two-sided 99% confidence intervals on each 
agents’ selection probability by LEGACY, in Table 1, we report a 99% con-
fidence upper bound on the minimum selection given to any agent by 
LEGACY per instance. We cannot simply set this upper bound equal to 
the smallest upper end of the two-sided confidence interval of any agent 
as computed above because out of these many confidence intervals, 
some are likely to lie entirely below the true selection probability of the 
respective agent. Instead, we compute the upper bound on the minimum 
probability using the confidence interval for a single agent, by running 
two independent sets of 10,000 samples: In the first set of samples (the 
one discussed two paragraphs prior), we identify a single agent who 

was least frequently chosen to the panel in this set; then, we count how 
often this specific agent is selected across the second set of samples and 
calculate an upper bound based on a one-sided Jeffreys’ interval as fol-
lows: if the specific agent was selected in s out of the 10,000 panels, the 
confidence bound is the 99th percentile of the distribution beta(1/2 + s, 
1/2 + 10,000 − s). (The bound would be 1 if s = 10,000, but this does not 
happen in any of the instances.) With 99% confidence, this is an upper 
bound on the selection probability of the specific agent, and thus also an 
upper bound with 99% confidence on the minimum selection probability.

As the magnitudes of the two-sided confidence intervals in Fig. 2 and 
Extended Data Figs. 1, 2 show, the empirical estimates we get of the 
selection probabilities of agents by LEGACY are likely to be close to 
their true values. Moreover, two of the three statistics we report are 
not very sensitive to sampling errors: For Gini inequality, additive 
errors in the estimate of selection probabilities translate into addi-
tive errors in the Gini coefficient; and, when we report the number of 
agents whose selection probability by LEGACY lies under the minimum 
selection probability of LEXIMIN, Fig. 2 and Extended Data Figs. 1, 2 
show that the confidence intervals of most agents lie either below or 
above this threshold. Therefore, our analysis of LEGACY selection prob-
abilities should not be substantially affected by the fact that we can 
only use empirical estimates of selection probabilities rather than the 
ground-truth selection probabilities themselves. The one exception 
is the geometric mean, for which the error in estimating small selec-
tion probabilities can severely affect the measure. In particular, in all 
instances in which one individual appeared in 0 out of 10,000 sam-
pled panels, the geometric mean of empirical selection probabilities 
would be 0. Thus, when computing the geometric mean for LEGACY 
in Extended Data Table 1 and in the body of the Article, we erred on the 
side of being generous to LEGACY by setting the selection probabilities 
of these individuals to 1/10,000 instead of 0.

The running times of LEXIMIN were measured on a 2017 Macbook 
Pro with a 3.1-GHz dual-core Intel i5 processor. Although the running 
time should not depend on random decisions in the algorithm, the run-
ning time of calls to the optimization library Gurobi depends on how 
the operating system schedules different threads. Reported times are 
medians of three runs, and are rounded to the nearest second if below 
60 s, or to the nearest minute otherwise.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The panel datasets analysed in this Article are not publicly available 
owing to the potential for identifying specific panels or participants. 
We cannot share the dataset nexus owing to agreements between Nexus 
and their upstream data sources. All other datasets are available from 
P.G. for research purposes only. Any publication of results based on 
these data are subject to the permission of the organizations supplying 
the data. For cca and hd data, publication does not require permission.

Code availability
An implementation of our selection algorithm LEXIMIN as well as all 
code required to reproduce the empirical results of this Article are 
available at https://github.com/pgoelz/citizensassemblies-replication.
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Extended Data Fig. 1 | Selection probabilities for remaining instances. 
Selection probabilities given by LEGACY and LEXIMIN to the bottom 60% of 
pool members on the 4 instances that are not shown in Fig. 2. Pool members are 
ordered across the x axis in order of increasing probability given by the 
respective algorithms. Shaded boxes denote the range of pool members with a 

selection probability given by LEGACY that is lower than the minimum 
probability given by LEXIMIN. LEGACY probabilities are estimated over 
10,000 random panels and are indicated with 99% confidence intervals (as 
described in ‘Statistics’ in the Methods). Green dotted lines show the equalized 
probability (k/n).



Extended Data Fig. 2 | Selection probabilities up to the 100th percentile. 
Selection probabilities given by LEGACY and LEXIMIN on all ten instances. Pool 
members are ordered across the x axis in order of increasing probability given 
by the respective algorithms. In contrast to Fig. 2 and Extended Data Fig. 1, this 
graph shows the full range of selection probabilities (up to the 100th 

percentile). Shaded boxes denote the range of pool members with a selection 
probability given by LEGACY that is lower than the minimum probability given 
by LEXIMIN. LEGACY probabilities are estimated over 10,000 random panels 
and are indicated with 99% confidence intervals (as described in ‘Statistics’ 
in the Methods). Green dotted lines show the equalized probability (k/n).
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Extended Data Fig. 3 | Overrepresentation and LEGACY selection 
probabilities. Relationship between how overrepresented the features of an 
agent are and how likely they are to be chosen by the LEGACY algorithm. The 
level of overrepresentation is quantified as the ratio product (as described in 

‘Individuals rarely selected by LEGACY’ in the Methods); agents further to the 
right are more overrepresented. Across instances, pool members with high 
ratio product are consistently selected with very low probabilities.



Extended Data Fig. 4 | Representation of feature intersections. For all 
intersections of two features on the instance sf(e), how far the expected 
number of group members selected by LEGACY or LEXIMIN differs from the 
proportional share in the population is shown. Although many intersectional 
groups are represented close to accurately, some groups are over- and 

underrepresented by more than 15 percentage points by either algorithm. 
Which groups get over- and underrepresented is highly correlated between 
both algorithms. Panel shares are computed for a pool of size 1,727, and 
population shares are based on a survey with 1,915 respondents after cleaning.
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Extended Data Table 1 | Gini coefficient and geometric mean of LEGACY and LEXIMIN

Gini coefficient and geometric mean of probability allocations of both algorithms, for each instance. On every instance, LEGACY has a lower  
Gini coefficient and a larger geometric mean. For computing the geometric mean, we slightly correct upward empirical selection probabilities  
of LEGACY that are close to zero (as described in ‘Statistics’ in the Methods).



Extended Data Table 2 | Share below LEXIMIN  
minimum probability

For each instance, the share of pool members selected with lower probability  
by LEGACY than the minimum selection probability of LEXIMIN is shown. This  
corresponds to the width of the shaded boxes in Fig. 2, Extended Data Figs. 1, 2.
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1 Illustration of Definitions with Examples

Here, we introduce the definitions and concepts used in this paper through an example
instance, which is composed of a pool, information about quotas, and a panel size k.

Example instance. Suppose we want to select a panel of size k = 3. Let the features
on which we want to impose quotas be female, male, young, and old; and let the lower
and upper quotas for each feature be as specified below:

female male young old

lower quota 1 1 2 1
upper quota 2 2 2 1

Finally, suppose that the pool of the instance contains n = 5 pool members, which are
given with their features:

name features

Alice young, female
Bob old, male
Ciara young, female
Dan young, male
Ella old, female

Panels for the example instance. A panel for this instance is any set of 3 pool
members in which 1 or 2 are female, 1 or 2 are male, exactly 1 is old, and exactly 2 are
young. Therefore, the complete set of panels in this instance is:

P̂ = {{Alice, Bob, Ciara}, {Alice, Bob, Dan}, {Ciara, Bob, Dan},
{Alice, Dan, Ella}, {Ciara, Dan, Ella}}

Selection algorithms on this instance. In general, a selection algorithm takes in an
arbitrary instance and must (randomly) return a panel for that instance. Thus, when a
selection algorithm receives our example instance as its input, it must produce one of the
panels in P̂. Now, we compare the behavior of two selection algorithms, Legacy and
LexiMin, on this instance. (These algorithms are formally defined in SI 10 and 11, but
no knowledge of the algorithms is necessary to follow this example.)

Legacy∗ and LexiMin each have a different output distribution on our instance,
both of which are displayed on the left-hand side of the two tables below. While both
algorithms return the same set of panels, they differ in how likely each panel is to be

∗For one specific way of breaking ties between features (male> female>old>young), which is left
unspecified by the algorithm (see SI 11).
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selected; for example, Legacy selects the panel {Alice, Bob, Ciara} with probability 1/6
whereas LexiMin selects that panel with probability 1/3.

Each algorithm’s output distribution determines the selection probability of each pool
member. For example, the probability that Legacy selects a panel containing Ella can
be calculated by summing up the output probabilities of both panels that include her:
Since Legacy selects {Alice, Dan, Ella} and {Ciara, Dan, Ella} each with probability
1/6, Ella’s selection probability is 1/3. We refer to agents’ collective selection probabilities
as a probability allocation. The probability allocations of the two algorithms are given on
the right-hand side of the two tables below.

Fairness measures evaluate the fairness of different probability allocations, which allows
us to evaluate whether Legacy or LexiMin is fairer on our instance. One important
fairness measure (“egalitarian social welfare”; see SI 9) measures the fairness of a probability
allocation by its minimum selection probability. Using this fairness measure, the fairness
of Legacy’s probability allocation is 1/3 whereas the fairness of LexiMin’s probability
allocation is 1/2. Since the latter value is higher, the fairness measure judges LexiMin
to be fairer on the example instance than Legacy.

In this paper, we develop maximally fair selection algorithms. As it turns out, LexiMin
is one such algorithm for the fairness measure above, in the sense that, for all instances,
and for all other selection algorithms, the minimum selection probability of LexiMin will
be at least as large as the minimum selection probability of the other algorithm.

Legacy

Output Distribution Probability Allocation
P[{Alice, Bob, Ciara} selected] = 1

6 Alice: 1
6 + 1

4 + 1
6 = 7

12

P[{Alice, Bob, Dan} selected] = 1
4 Bob: 1

6 + 1
4 + 1

4 = 2
3

P[{Ciara, Bob, Dan} selected] = 1
4 Ciara: 1

6 + 1
4 + 1

6 = 7
12

P[{Alice, Dan, Ella} selected] = 1
6 Dan: 1

4 + 1
4 + 1

6 + 1
6 = 1

2

P[{Ciara, Dan, Ella} selected] = 1
6 Ella: 1

6 + 1
6 = 1

3

LexiMin

Output Distribution Probability Allocation
P[{Alice, Bob, Ciara} selected] = 1

3 Alice: 1
3 + 1

12 + 1
4 = 2

3

P[{Alice, Bob, Dan} selected] = 1
12 Bob: 1

3 + 1
12 + 1

12 = 1
2

P[{Ciara, Bob, Dan} selected] = 1
12 Ciara: 1

3 + 1
12 + 1

4 = 2
3

P[{Alice, Dan, Ella} selected] = 1
4 Dan: 1

12 + 1
12 + 1

4 + 1
4 = 2

3

P[{Ciara, Dan, Ella} selected] = 1
4 Ella: 1

4 + 1
4 = 1

2
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2 Model

An instance consists of a set of agents N = {1, . . . , n}, a desired panel size k, and a finite
set of features. Examples of such features could be “female” or “older than 65”. Let Nf be
the set of agents with feature f . Each feature f is furthermore associated with a lower
quota `f and an upper quota uf , which specify lower and upper limits on the number
of panel seats to be filled by agents in Nf . In a given instance, a panel P is any subset
of N such that the following integer linear program (ILP) is satisfied by the set of 0–1
indicators xi that specify whether agent i is in panel P :

∑
i∈N

xi = k (P contains k agents)

`f ≤
∑
i∈Nf

xi ≤ uf ∀ features f (P satisfies all lower and upper quotas)

xi ∈ {0, 1} ∀i ∈ N (the xi are binary indicators).

In the context of our column-generation framework, we call a set of panels within the
same instance a portfolio.

To avoid issues of well-definedness, we formally restrict our definition of an instance to
include only those in which there exists at least one panel. (In practice, this restriction is
unproblematic, since the existence of a panel can be confirmed by checking the satisfiability
of the ILP above with an ILP solver before applying a selection algorithm.)
A selection algorithm receives an instance as its input and must randomly choose a

panel to return. We call the distribution describing the probability with which each panel
is returned the selection algorithm’s output distribution for this instance. If, for a given
selection algorithm and input instance, we let the random variable P denote the panel
returned by the selection algorithm (its distribution then being the output distribution),
the selection probability pi of an agent i is defined as P[i ∈ P ], and a probability allocation
is a function mapping each agent i ∈ N to their selection probability pi.

Finally, a fairness measure for a specific instance is a function F : [0, 1]n → (R∪{−∞})
mapping the probability allocations of that instance to a score, where larger scores denote
preferable levels of fairness. To avoid artificially reducing the generality of our results, this
definition of a fairness measure is specific to one instance. Where we speak of “fairness
measures” in the body of the paper and in SI 9 (e.g., “Nash welfare” or “Gini coefficient”),
we are formally referring to families of fairness measures, where each family contains one
fairness measure for each possible instance.

3 Stratified Sampling

One procedure for selecting random panels that is often discussed is stratified sampling.
A stratified-sampling procedure is defined by what we will call a stratification: a partition
of the population into disjoint subgroups (e.g., women, men, people of nonbinary gender),
where each subgroup is associated with the number of panel seats they will receive (say, 19,
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19, and 2 seats). Then, from each stratum, the procedure uniformly samples the specified
number of panel members. Stratified sampling and our selection algorithms similarly
strive to ensure descriptive representation. However, our algorithms accept a more flexible
range of quotas for expressing constraints on descriptive representation, making them
more widely applicable than stratified sampling. For instance, the quota constraints
imposed in all ten citizens’ assemblies analyzed in this paper cannot be expressed as
stratifications.

To understand why the quotas imposed in practice are more general than those imposed
by stratified sampling, we first note that the constraints expressed by a stratification can
directly be expressed as a system of quotas. This is done by turning each stratum into a
feature, and then setting both the feature’s lower and upper quota to the desired number
of panel seats. By contrast, not every system of quotas can be expressed as a stratification.
This is for two reasons: first, whereas practitioners often permit a bit of tolerance between
a feature’s upper and lower quota, stratified sampling requires specifying the exact number
of people to be chosen from each stratum. Second, and more fundamentally, quotas are
often imposed on overlapping groups (e.g., the groups women and young people, where
individuals can belong to both groups at once), whereas all strata must be disjoint.
To see why this restriction limits the generality of stratified sampling, consider an

example in which we have overlapping categories gender and age, and want to impose
quotas on women, men, people of non-binary gender, young people, and old people. In
stratified sampling, one would define six disjoint strata: young women, young men, young
people of nonbinary gender, old women, old men, and old people of nonbinary gender.
One would then have to specify some exact number of people from each stratum; by
contrast, the constraints expressed by quotas on the feature can be much more flexible
since they, for example, do not directly constrain the age composition within the group of
women.

As illustrated in the above example, one can implement quotas in practical settings
by defining the strata to be all intersectional groups. However, this strategy does not
extend practicably to the number of feature categories on which quotas are imposed
in practice (in our instances, between 4 and 8). This is because imposing quotas on
many orthogonal features (e.g, gender, age, region, and education level) would require
setting aside a number of seats for exponentially many combinations of these features
(e.g., “female, 18–25 years old, London, no diploma”), which would quickly exceed the
number of panel seats.

4 Desiderata for Sortition in the Political Science Literature

In this paper, we approach the problem of panel selection from a pragmatic angle. We ask:
taking as given the overall panel selection process (sending out invitations uniformly at
random, and then using quotas to enforce representativeness), what is the best selection
algorithm for practitioners to use?

To identify desirable properties of a selection algorithm, it is natural to take inspiration
from political theory, where advantages and disadvantages of sortition have been discussed
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in detail16,23,25,42,47. However, one should not expect the political theory literature to
give concrete instructions for a practical selection algorithm, since the literature focuses
on an idealized sortition process that ignores the complications of the real-world settings
in which panels must be selected. In particular, the literature assumes that panels can be
selected by sampling directly from the population, whereby each member of the population
is selected with equal probability and will agree to participate if invited2,21,24. We refer
to this procedure as idealized sortition. Usually, in practice, a large majority of people
decline to participate when invited42.
Though this literature does not immediately prescribe a practical selection algorithm,

it informs our approach by identifying the values that should be pursued when designing
selection algorithms. In this section, we outline several prominently advocated properties
of idealized sortition, discuss how they are or are not conducive to algorithmic imple-
mentation, and describe how these properties complement or contradict one another.
Ultimately, our approach of making selection probabilities as equal as possible strives
for promotion of equality, while guaranteeing the achievement of representativeness as
implemented by practitioners via quotas.

4.1 Properties of Idealized Sortition

Following a model developed by Engelstad25 and elaborated upon by others2,24, sortition
should simultaneously (1) promote equality, (2) ensure representativeness, (3) maximize
efficiency, and (4) protect against conflict and domination.

Equality

According to Engelstad, “The strongest normative argument in favour of sortition is linked
to the idea of social equality and individual welfare”, which stems from the fact that
every constituent has an equal selection probability.25 Subsequent work in political theory
has reaffirmed the importance of equal selection probabilities, even if different authors
deduce this importance from slightly different ideals: Some16,21–23 see the equal selection
probabilities of idealized sortition as an embodiment of democratic equality, the ideal
that a democratic decision-making process should give equal consideration to all of its
constituents’ preferences. Other authors2,21 stress equal probabilities as the hallmark of
(prospect-regarding48) equality of opportunity. A related argument is made by Stone23,24.
Rather than seeing equality as the goal in its own right, he views random allocation with
equal probability as the only way to satisfy allocative justice in the distribution of public
offices among constituents who all have equal claims to authority.
As we discuss in the introduction, perfect equality of selection probabilities is not

attainable within the constraints of practical sortition. In this paper, we handle this
impossibility by proposing a more gradual version of this goal: Subject to achieving
descriptive representation, one should make selection probabilities as equal as possible.
The view of political office as a good, and of sortition as a means to allocative justice23,
is a natural foundation for the approach of treating panel selection as a problem of fair
division (see SI 9).
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Representativeness

Another important benefit of ideal sortition is that, with high probability, the composition
of the panel will resemble the population along all dimensions of interest24. Descriptive
representation is a crucial assumption in Fishkin’s argument that the result of a deliberative
minipublic can reveal the likely outcome of the whole population deliberating16,22. In
addition to its contribution to the quality of deliberation, descriptive representation is
particularly valuable in contexts of mistrust and marginalization49.

As stated above, the statistical properties of idealized sortition imply that any possible
division of the population is likely to be represented close to proportionally on the panel,
provided that the panel size is sufficiently large. By contrast, no such guarantee can be
provided in the realistic setting where constituents decline to participate, which forces
practitioners to select specific features for which they want to enforce descriptive represen-
tation using quotas. Whereas our approach focuses on making selection probabilities close
to equal, we do not sacrifice descriptive representation for this goal. Rather, organizing
bodies can still set quotas to ensure a desired level of descriptive representation, and our
methods only use the remaining freedom within these constraints to promote equality.
In this way, our method allows an assembly organizer to trade off representation and
equality by tightening or loosening the quotas.

Efficiency

In comparison to selecting representatives by election, some authors argue that sortition
is more efficient because it requires fewer resources2,25. For instance, campaigning and
organizing elections are not necessary. Arguably, this argument is more specific to the
benchmark of elections than to sortition, and subsequent works have put little emphasis
on this point24.
When considering the design of the selection algorithm, the only major resource one

might seek to use efficiently is time—namely, the time the algorithm takes to run. Given
that the selection of the panel from the pool is only a minor task in organizing and
convening a citizens’ assembly, as organizers spend much more time recruiting the pool and
organizing the deliberation. For this reason, reducing the running time of the algorithm
seems a frivolous efficiency. As we show in Table 1, our algorithm LexiMin runs in
seconds for most instances and an hour at most. This is significantly longer than the
running time of the benchmark algorithm Legacy, but much faster than the process of
executing other selection algorithms using dice and spreadsheets, as practiced by some
organizations. We take this as an indicator that hours versus minutes of running time is
not a significant consideration in terms of efficiency.
Existing algorithms often confront practitioners with a hard trade-off between rep-

resentation and computational efficiency, since more numerous and tighter quotas may
drastically increase the running time of these algorithms. While such a concern cannot be
theoretically ruled out for any known algorithm (SI 6), our algorithms delegate the task of
finding panels to a state-of-the-art ILP solver, a mature technology routinely used to solve
much harder tasks50 than all panel-selection subtasks we have encountered. Therefore,
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we expect our algorithm to allow for much more complex quotas without substantial
increases in running time; the fundamental trade-offs between representativeness and
equality, of course, persist. Our algorithms also have an advantage in the (undesirable)
situation where no panel formed from the pool can satisfy the quotas. Whereas existing
algorithms enter an infinite loop in this situation until the user gives up, our algorithms’
first call to the ILP solver will immediately reveal that the quotas are infeasible; in these
situations, our implementation solves a second ILP to suggest a minimal relaxation of the
quotas that can be satisfied.

Protection against Conflict and Domination

A final family of arguments stresses that, if the members of a panel are chosen via idealized
sortition, this procedure prevents interested parties from swaying the selection for their
benefit2,25,51. Stone summarizes these arguments as follows:

“First, [sortition] can prevent wrongful action on the part of the agent who
must select officials. [. . . ] Second, it can prevent wrongful action on the part
of the officials selected. If the method of selection is in any way predictable,
outside interests might bribe or threaten officials into conformity with their
wishes. If the method is unpredictable, then such wishes cannot be expressed
at least until the results of the lottery become known. [. . . ] Finally, competing
elites unable to stack the political process in their favor have less to fight
about.”24

In the practical setting of sortition, the additional stages of the selection process (as
compared to idealized sortition) inherently create opportunities for dishonest agents to
influence the composition and the decisions of the panel in ways that cannot be remedied
by a change of selection algorithm. First, with respect to concerns about wrongful action
on the part of the officials, the panel organizers wield a lot of influence in sending out the
invitations, setting the quotas, and handling the process of selecting the panel from the
pool.

More fundamentally, when any selection algorithm enforcing descriptive representation
is used, a dishonest pool member can significantly increase their chances of selection by
misrepresenting their features. For example, this pool member might pretend to have
a different political orientation because they know that people with this orientation are
unlikely to participate, and thus are likely to be underrepresented in the pool. Since, on
average, the selection algorithm must choose pool members from this group with higher
probability, reporting this feature will likely increase the agent’s probability of being
selected for the panel. So long as practitioners seek to enforce descriptive representation in
the presence of unequal rates of participation across subgroups, this type of manipulation
seems unavoidable.
If, despite these challenges, one wanted to design a selection algorithm to discourage

manipulation, one would have to target a specific kind of manipulation. For instance,
for reducing the effect of bribing or intimidating pool members before they are selected,
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the algorithm within our framework minimizing the largest selection probabilities might
be appropriate. Such an algorithm would increase the cost to the manipulator since
any bribed pool member would have a substantial chance of not being selected to the
panel, rendering the bribe futile. For other threat models, it would be natural for the
selection algorithm to maximize not only the uncertainty of each agent being selected for
the panel individually but the uncertainty about the composition of the whole panel. A
selection algorithm maximizing this objective of maximum entropy could, in principle, be
implemented by uniformly drawing sets of k pool members, repeating this process until
one set satisfies all quotas. Whether this selection algorithm can be sped up to the degree
of being practically relevant is an interesting question for future work.

4.2 Beyond Idealized Sortition, and the Objective of Maximal Fairness

As we have described, a large body of political theory literature characterizes the desiderata
and benefits of idealized sortition. However, there is also research that engages, as we do
in this work, with sortition beyond the idealized assumption that everyone is willing to
participate. Such work often mentions stratified sampling2,3,21,42,52 as a sampling method
that can be used to reestablish descriptive representation despite differing response rates
across subpopulations. For details on stratified sampling and how it relates to our work,
see SI 3. In the political theory literature touching on stratified sampling, several authors
point out that the benefits of idealized sortition do not perfectly extend to stratified
sampling21,24,42,53. To our knowledge, however, the literature stops short of proposing
more gradual ideals, such as the maximal fairness objective we propose to approximate
equality.

5 Related Work on Panel Selection

The algorithmic problem of selecting panels for citizens’ assemblies has motivated two
previous papers. Both previous papers consider different models of sortition than does
this work, and their results are not directly applicable to the practical setting we consider
here.

In the first paper, Benadè, Gölz, and Procaccia27 study a setting closely resembling what
we call idealized sortition in SI 4— that is, Benadè et al. assume that the panel-selection
procedure can choose any constituent to participate (they assume it has full knowledge of
the population) without taking into account that some constituents might not agree to
serve on the panel. In this setting, uniform sampling without replacement is the most
natural selection procedure, and it provides two important benefits: perfect equality of
selection probabilities and probabilistic guarantees on the descriptive representation of any
arbitrary group in the population. If one wants deterministic guarantees on descriptive
representation along one specific category of attributes (say, gender), stratified sampling
(SI 3) will give such guarantees. Benadè et al. show that such deterministic guarantees can
be imposed for certain groups with only marginal deterioration in the representation of
other groups. Unfortunately, these results do not extend to the practical setting explored
in this paper because, in addition to their unrealistic assumption that all constituents
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will participate, the set of quotas that can be imposed via stratified sampling is much
more restrictive than those imposed in practice (see SI 3 for details).
The second paper, by Flanigan, Gölz, Gupta, and Procaccia28, also develops a panel

selection procedure, and, unlike Benadè et al., it accounts for the possibility that people
invited to the panel may decline to join. Flanigan et al. consider the same general
panel-selection pipeline as does this paper, with a uniform sample of the population being
invited to participate, invitation recipients self-selecting into a pool of volunteers, and
then a selection algorithm choosing the panel from the pool.

The main differences between the paper by Flanigan et al. and ours lies in the level of
idealization of the models of sortition, and in the handling of quotas. On both of these
counts, this paper engages more directly with the practical setting than does Flanigan
et al.: In the present paper, we directly address the problem faced by practitioners
when they sample their panel, which means taking as already decided the set of agents
who opted into the pool and the quotas imposed by practitioners. As we described in
the introduction, with these attributes of the problem already decided, equal selection
probabilities are generally not attainable, which is why we focus on achieving equality
to the maximum degree possible. By contrast, Flanigan et al. attempt to recover a
notion of equal probabilities in an idealized probabilistic model of the panel-selection
pipeline. Specifically, in their model, whether an invited agent joins the pool is decided
by a biased coin flip, where the success probability of each agent’s coin, the agent’s
participation probability, is known to the selection algorithm. Furthermore, quotas are
not externally given, but are determined by what the selection algorithm can ensure for
the given citizens’ assembly. Under these assumptions and further assuming that all
participation probabilities lie above a certain minimum bound, Flanigan et al. design a
selection algorithm that achieves near-equal end-to-end probabilities, i.e., ensures that
each agent reaches the panel from the population with similar probability. To do so, it
prioritizes selecting those pool members who had the lowest probability of accepting their
invitation, essentially canceling out the self-selection bias.

Note that Flanigan et al. and our paper pursue different notions of equality: Their paper
aims to equalize the probability of each agent going from population to panel (calculated
across all possible pools), whereas our paper aims for equality between the selection
probabilities of members of a single pool. While their notion of equality is conceptually
appealing, it is well-defined only relative to their modeling assumption that people decide
to join the pool randomly. If one nevertheless wanted to apply their selection algorithm
in practice, the agents’ “participation probabilities” would have to be estimated using
machine learning. Since, depending on these estimates, the selection algorithm might
select an individual with much higher or lower selection probability, determining this
number based on inherently imprecise techniques raises concerns about algorithmic bias
and transparency. Finally, while their selection algorithm ensures some quotas, these
guarantees only hold in the limit of very large pools and, even then, the gap between
upper and lower quotas remains much looser than the gap between upper and lower
quotas typically imposed by practitioners.
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6 Computational Hardness

Here we show that, under standard complexity assumptions, there does not exist a
selection algorithm (even an unfair one) that runs in polynomial time. At its core, this
impossibility is a consequence of the following hardness result:

Theorem 1. For a given set of agents, panel size, and set of features with associated
quotas, it is NP-hard to decide whether there exists a panel.

Proof. By reduction from the NP-complete problem Exact Cover by 3-Sets (X3C)54.
Fix an X3C instance consisting of a ground set X with |X| = 3 q and of a collection C of
3-element subsets of X. From this instance, construct an instance of the panel-selection
problem as follows: Identify the pool members N with the 3-sets C, create one feature
fx per x ∈ X, and set the panel size k to q. For every feature fx, we impose quotas
`fx = ufx = 1, and we set Nfx to the set of agents whose corresponding 3-set contains x.

It remains to show that there exists a panel iff there exists an exact cover for the X3C
instance:
⇒: Suppose that there is a quota-compliant panel P ⊆ N . By the definition of the
quotas, all features fx apply to exactly one agent in P . Thus, all elements x ∈ X occur
in exactly one of the three-sets corresponding to P , which means that this collection of
3-sets is an exact cover.
⇐: Let C ′ ⊆ C be an exact cover for the X3C instance. Note that |C ′| = q = k because
every set in C ′ has exactly 3 elements and must cover a universe of size |X| = 3 q. Set
the panel P to C ′. Since C ′ covers every element x ∈ X exactly once, each feature fx
applies to a single agent in P . This shows that the quotas are satisfied.

Formally, the hardness of this decision problem does not immediately contradict the
existence of polynomial-time selection algorithms, since our definition of a selection
algorithm only allows for instances in the input of the algorithm, and instances are
required to have at least one panel (SI 2). Nonetheless, the non-existence of polynomial-
time algorithms follows as a simple corollary: if a selection algorithm produced a panel in
polynomial time with probability 1, this would imply P = NP (Corollary 1 below), and,
even if a selection algorithm succeeded at producing a panel in polynomial time only
with constant probability, this would imply NP = RP (Corollary 2 below). The latter
consequence would in turn imply NP = RP ⊆ P/poly 55 and thus that the polynomial-time
hierarchy collapses56, both of which are widely assumed to be false.
Since polynomial-time selection algorithms are unlikely to exist, this paper studies

algorithms that are efficient in practice but whose worst-case running time might scale
exponentially.

Corollary 1. Unless P = NP, there is no selection algorithm that finds a panel in
polynomial time (with probability 1).

Proof. By contrapositive. Suppose that there was a selection algorithm that would
return a panel within nc computation steps for some constant c. Since our definition
of instances assumes that all instances possess panels, this hypothetical algorithm may

10



behave arbitrarily when provided with an input for which no panel exists. Still, this
selection algorithm would allow to decide the NP-hard problem from Theorem 1 in
polynomial time: Given a set of agents, a panel size, and a set of features, simply
simulate the selection algorithm for nc steps and check whether a quota-compliant panel
was returned. Since this polynomial-time algorithm decides an NP-hard problem, the
existence of a polynomial-time selection algorithm would imply P = NP.

Corollary 2. Unless RP = NP, there is no selection algorithm that, with constant
probability, finds a panel in polynomial time.

Proof. By contrapositive. Suppose that there was a selection algorithm that, for each
instance, would succeed at returning a panel in nc computation steps (for some constant
c) with constant probability. By again simulating this selection algorithm for nc steps
and checking whether a quota-compliant panel was returned, one defines an RP-acceptor
for the NP-hard language defined in Theorem 1, implying RP = NP.

7 Small Optimal Portfolios Exist

Proposition 1. Fix an arbitrary instance and a fairness measure F for this instance. If
there exists any maximally fair distribution over panels for F , there exists a maximally
fair output distribution whose support includes at most n+ 1 panels.

Proof. Consider the hypercube [0, 1]n, and associate each dimension with one agent. A
panel P can be embedded into this space by its characteristic vector ~vP ∈ {0, 1}n, whose
ith component is one exactly if i ∈ P .
Fix a maximally fair panel distribution, let P denote its support, and let {λP }P∈P

denote its probability mass function. Note that

~p :=
∑
P∈P

λP ~vP

is a probability allocation maximizing F , and that it is a convex combination of the
{~vP }P∈P . By Carathéodory’s theorem, there is a subset P ′ ⊆P of size at most n+ 1
such that ~p still lies in the convex hull of this smaller set. Thus, there are nonnegative
real numbers {λ′P }P∈P′ adding up to one such that

~p =
∑
P∈P′

λ′P ~vP .

These λ′P form the probability mass function of a distribution over at most n+ 1 panels,
which has the same probability allocation ~p as the original maximally fair distribution,
which implies that the new distribution is also maximally fair for F .

11



8 Algorithmic Framework

In this section, we first summarize the high-level design of our algorithmic framework, how
it is situated among existing algorithms and techniques, and how the framework applies
to settings other than sortition. We then introduce the notion of a distribution-optimizer
family, which encapsulates the information that the framework needs to optimize a fairness
measure, and we formally describe the steps of the framework. Finally, we prove the
correctness of the framework.

8.1 Algorithmic Framework Overview and Context

At the highest level, each algorithm in our framework maximizes a concave function (the
fairness measure). The approach our algorithms take to optimizing these concave functions
generalizes a form of column generation, an algorithmic technique that is commonly used
for solving linear programs with many variables and few constraints.57 The existing
column generation approach for solving such linear programs proceeds as follows: We
first consider a version of the linear program in which all but a portfolio consisting of
some K of the variables are assumed to be non-basic and set to zero. This restricted
version of the program then has only K variables (and the same few constraints as in the
original program), so its optimal primal and dual variables can be found efficiently. This
primal solution (with zeros for the remaining variables) is then checked for optimality
in the entire original program. This is done by looking for a column with negative
reduced cost, i.e., a primal variable not currently in the portfolio such that slightly
increasing its value from the current value of zero would lead to an increase in the
objective. If such a column exists, it is then added to our portfolio of possibly basic
variables, and the process is repeated for this slightly larger linear program. Once no such
column exists, the solution for the restricted program is already optimal for the entire
program.

Our column-generation algorithm applies the same general approach to convex programs
satisfying strong duality. We are not aware of many previous papers applying column
generation to convex optimization, and the papers we know of use column generation to
refine linear approximations of convex functions, rather than directly optimizing the convex
function over restricted sets of variables57,58. One reason that column generation has not
been applied to convex programs themselves might be that general convex programs may
not have optimal solutions with few nonzero variables, and thus, column generation might
not be faster than direct optimization of the full convex program. As we discuss below,
however, the optimization problems considered in this paper have a special structure
that ensures the existence of optimal solutions with few nonzero variables, which makes
column generation a promising approach.

The convex program we solve, stated in its most general form, is as follows: Let N be
a finite set of entities (in our case: pool members), and let P̂ be an implicitly defined
(i.e., not explicitly given) family of subsets of N (in our case: quota-compliant panels).
Then, we consider a convex program of the following shape:
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maximize h(~p, ~x)
subject to gr(~p, ~x) ≤ 0 ∀1 ≤ r ≤ m (1)

~p ∈ PossibleMarginals(P̂) .

Without the constraint in the last row, this would just be a general convex program,
with a concave objective function h, m many constraints defined by convex functions
gr, an arbitrary vector of variables ~x, and a vector of special variables ~p, one per entity.
What makes this convex program special is the constraint “~p ∈ PossibleMarginals(P̂)”,
which expresses that there exists some probability distribution over P̂ such that the
p1, . . . , pn in ~p are the entities’ marginals induced by that distribution (where an entity’s
marginal is the probability that a set containing them is drawn from that distribution
over P̂). This last constraint could be easily expanded into additional linear constraints
and exponentially many auxiliary variables λP , one for the probability mass of each set P
in P̂, but this would require enumerating exponentially many sets in P̂ and drastically
increasing the size of the convex program. As we show in SI 7, Carathéodory’s theorem
implies that an optimal solution of this expanded program (if one exists) can set all but
|N |+ 1 of the λP variables to zero.
Thus, our framework applies column generation to these λP variables, repeatedly

solving the expanded convex program under the restriction that all λP except those
in a small portfolio are non-basic and set to zero. Given some additional assumptions
(guaranteeing that these restricted programs are solvable and satisfy strong duality), we
can define the reduced cost of a set P in P̂ as a sum of Karush-Kuhn-Tucker (KKT)
multipliers corresponding to the set’s elements. Thus, our framework reduces optimizing
the convex program with the special constraint “~p ∈ PossibleMarginals(P̂)” to the problem
of optimizing a linear objective over P̂ (for finding the column with minimum reduced
cost in each iteration of the column generation). When, as in this paper, P̂ is implicitly
defined by an ILP, the framework directly defines an algorithm by using an ILP solver for
these subtasks.

8.2 Applications of Framework to Other Problems

Solving convex programs of the form (1) identified above has immediate applications
outside of sortition and to combinatorial structures other than quota-compliant panels:
For example, Kurokawa, Procaccia, and Shah39 study the problem of assigning classrooms
to charter schools, where the implicit sets in P̂ correspond to sets of schools that can
simultaneously be matched in a bipartite matching with knapsack constraints. While
Kurokawa et al. give an algorithm optimizing the leximin criterion in this domain, our
framework immediately allows to optimize other fairness measures such as Nash welfare.

A second application lies in kidney exchange, where Roth, Sönmez and Ünver40 again
propose an algorithm for finding the leximin-optimal distribution over matchings, where
each edge in the matching connects two donor–patient pairs matched for a 2-way exchange
of kidneys. Not only does our framework allow the optimization of fairness measures
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other than leximin, but it also extends to the more complex forms of kidney exchange
encountered in practice, including longer cyclical exchanges and donation chains initiated
by altruistic donors. The literature proposes multiple ILP formulations59,60 that can be
used for this purpose.
While both previous examples optimize individual fairness as their objective, our

techniques apply to other convex optimization objectives as well. In SI 14.3, we give an
example of an objective that optimizes the descriptive representation of groups rather
than aiming for equal selection probabilities between individuals.

8.3 Conditions for Applying the Framework

We now specify conditions that allow a convex program to be solved using our framework.
Putting the outline in SI 8.1 into the language of panel selection, the column generation
repeatedly (i) optimizes the convex program with the added restriction that the output
probabilities of all panels not included in the current portfolio of panels P are set to
zero, and then (ii) uses the KKT multipliers and an ILP solver to identify the panel to
add to P that will allow the greatest marginal increase in fairness, until, eventually, the
solution found in (i) is optimal for the unrestricted convex program. We will refer to the
restricted convex program for a portfolio P as CP .
For the column generation to work, all programs CP it optimizes should have an

optimal solution and the KKT conditions should be necessary and sufficient. In particular,
having an optimal solution implies that the portfolio must be non-empty from the start
(since the output probabilities must add up to one, meaning that they cannot all be zero).
We formalize these assumptions in a structure called a distribution-optimizer family :

Definition 1 (distribution-optimizer family). A distribution-optimizer family (DOF)
C for an instance is a family of convex programs that is fully specified by the tuple
(Pinit , t, h, {gr}r), where the four elements of this tuple are as follows:

• Pinit is a non-empty portfolio of panels of the instance,

• t ∈ N0 is the number of auxiliary variables in each convex program,

• h : ([0, 1]n×Rt)→ R is a differentiable concave function (the objective of the convex
programs), and

• the gr : ([0, 1]n × Rt) → R for 1 ≤ r ≤ m are some number m ∈ N0 of affine
functions (defining auxiliary constraints in the convex programs).†

This tuple defines a family of convex programs C = {CP}P⊇Pinit
, which includes one

program CP for each portfolio P in the instance such that P ⊇Pinit . Each such convex
program P has variables {λP }P∈P (representing the output probabilities of panels P ),

†The functions gr can be differentiable convex rather than affine as long as the strong duality of all
convex problems CP below is still ensured, for instance by Slater’s condition.
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~p = {pi}i∈N (representing the selection probabilities of agents i), and ~x (a t-dimensional
vector of real-valued auxiliary variables), and the convex program is defined as follows:

maximize h(~p, ~x)

subject to
∑
P∈P

λP = 1 (output probabilities add to 1)

pi =
∑
P∈P
i∈P

λP ∀i ∈ N (marginals are sums of output probabilities)

gr(~p, ~x) ≤ 0 ∀1 ≤ r ≤ m (auxiliary constraints)
λP ≥ 0 ∀P ∈P (output probabilities are nonnegative).

For C to be a DOF for the instance, in addition to being defined by a tuple as specified
above, it must hold that all convex programs CP for P ⊇Pinit are solvable (i.e., they
are feasible and the optimal value is attained).

The algorithmic framework takes as input a specific instance and a DOF C for this
instance, and the framework then uses column generation to decide which convex programs
from C to run in what order to find the maximally fair distribution. Therefore, to use
the framework to optimize a specific fairness measure F on a given instance, one simply
needs to find a DOF for that instance that optimizes F (if one exists). The following
definition formally connects a fairness measure with a DOF that optimizes it:

Definition 2 (implementation of a fairness measure by a DOF). For a specific instance,
a fairness measure F for the instance is implemented by a DOF C = {CP}P⊇Pinit

if,
for any portfolio P ⊇ Pinit , each optimal solution to CP yields the probability mass
function {λ∗P }P∈P of a distribution that is maximally fair according to F among all
distributions over the support P.

As we show below, for each DOF C of an instance, it is easy to construct a fairness
measure F for that instance that is implemented by the DOF, by setting F (~p) :=
sup{h(~p, ~x) | ~x ∈ Rt,∀1 ≤ r ≤ m. gr(~p, ~x) ≤ 0}, with the convention that sup ∅ = −∞.
However, C simultaneously implements other fairness measures whose optimization
leads to the same optima (for example, the same DOF might implement the product of
probabilities and the sum of their logarithms).

Proposition 2. For a fixed instance, a DOF C = {CP}P⊇Pinit
for this instance imple-

ments the fairness measure F specified by

F (~p) := sup{h(~p, ~x) | ~x ∈ Rt,∀1 ≤ r ≤ m. gr(~p, ~x) ≤ 0}.

Proof. Fix an instance and fix a portfolio P ⊇Pinit . Denote the optimal objective value
of CP by obj ∗, and note that, by the definition of a DOF, this optimal value is attained.
We must show that, for any optimal solution of CP , the λ∗P are the probability mass

function of a distribution that is maximally fair according to F among distributions over
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the support P, i.e., that the ~p∗ optimize F . We will show this in two steps: In step (1),
we show that, if ~p is the probability allocation corresponding to an optimal solution of
CP , then F (~p) = obj ∗. In step (2), we show that, for each probability allocation ~p that
can be obtained by a distribution over P, it holds that F (~p) ≤ obj ∗. Together, these
steps imply that a probability allocation ~p is optimal according to F (among probability
allocations of distributions over P) iff F (~p) = obj ∗, and that this is the case for the
probability allocation of each panel distribution given by an optimal solution of CP .
Step (1). Consider an optimal solution ~λ∗, ~p∗, ~x∗ to CP . Note that its objective

value must be obj ∗. Furthermore, note that if we added constraints fixing each selection
probability pi to p∗i and each panel probability λP to λ∗P to the convex program CP , the
optimal objective value of the restricted problem would still be obj ∗ and would still be
attained. Since F (~p) is defined as the optimal objective value of this restricted problem,
F (~p) = obj ∗.
Step (2). Now, consider any probability allocation ~p∗ that is the result of a distribution

D over P. By fixing ~p in CP to ~p∗ and by fixing ~λ to the probability mass function of D ,
CP simplifies to the optimization problem defining F (~p), which means that the optimal
objective value obj ∗ of the full convex program CP is at least F (~p).

8.4 Definition of Framework

As described above, the algorithmic framework is an algorithm that takes as input an
instance and a DOF of that instance. The framework then computes a distribution over
panels that is maximally fair with respect to the fairness measure implemented by the
DOF, and then samples this distribution to select the final panel. The full algorithm is
specified below:
Algorithm 1: Framework
Input: an instance and a corresponding DOF C = {CP}P⊇Pinit

Output: a randomly chosen panel for the instance
1 P ←Pinit ;
2 while true do
3 let ~λ∗, ~p∗, ~x∗ denote an optimal solution for CP , and let µ∗r be the dual value

for each constraint gr(~p, ~x) ≤ 0 at this optimum;
4 for i ∈ N do
5 η∗i ← ∂

∂pi
h(~p∗, ~x∗)−

∑m
r=1 µ

∗
r

∂
∂pi
gr(~p

∗, ~x∗);

6 Pnew ← panel P maximizing
∑

i∈P η
∗
i , found by ILP (P need not be in P);

7 Pold ← some panel P ∈P such that λ∗P > 0;
8 if

∑
i∈Pold

η∗i ≥
∑

i∈Pnew
η∗i then

9 D ← distribution over P with probability mass function ~λ∗;
10 return panel drawn from D ;
11 else
12 P ←P ∪ {Pnew};
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8.5 Termination and Correctness of Framework

It remains to show that the above algorithm always terminates (Theorem 2) and that it
selects panels in a maximally fair way (Theorem 3). In the proofs of these theorems, we will
extensively use the Karush-Kuhn-Tucker (KKT) conditions for the convex optimization
problems CP . Consider a specific instance and a specific DOF C = {CP}P⊇Pinit

for
this instance. Then, we denote

• the dual variable of the constraint
∑

P∈P λP = 1 by η0,

• the dual variables of the constraints pi =
∑

P∈P:i∈P λP by ηi,

• the dual variables of the constraints gr(~p, ~x) ≤ 0 by µr, and

• the dual variables of the constraints λP ≥ 0 by νP .

Since CP satisfies strong duality, the following KKT conditions are necessary and sufficient
for optimality:∑

P∈P

λP = 1 (2)

pi =
∑
P∈P
i∈P

λP ∀i ∈ N (3)

gr(~p, ~x) ≤ 0 ∀1 ≤ r ≤ m (4)
λP ≥ 0 ∀P ∈P (5)
µr ≥ 0 ∀1 ≤ r ≤ m (6)
νP ≥ 0 ∀P ∈P (7)
µr gr(~p, ~x) = 0 ∀1 ≤ r ≤ m (8)
νP λP = 0 ∀P ∈P (9)(∑
i∈P

ηi

)
+ νP = η0 ∀P ∈P (10)

ηi =
∂

∂pi
h(~p, ~x)−

m∑
r=1

µr
∂

∂pi
gr(~p, ~x) ∀i ∈ N (11)

∇~x h(~p, ~x) =
m∑
r=1

µr∇~x gr(~p, ~x) (12)

In the following proofs, we will denote the set of all panels of the instance by P̂.

Theorem 2. Algorithm 1 terminates.

Proof. Fix the input instance and the DOF C = {CP}P⊇Pinit
. It suffices to show that

P grows in every iteration since it is always a subset of the finite set P̂ of all panels of
the instance. More specifically, we need to show that, whenever the if branch in Line 8 is
not taken, Pnew was not yet in P.

17



Note that, in Line 5 of Algorithm 1, the η∗i are set equal the dual variables ηi at the
optimum of CP by Eq. (11).‡ From complementary slackness (9) and the precondition
λPold

> 0 (Line 7), we know that νPold
= 0, and thus, by Eq. (10), that

∑
i∈Pold

η∗i = η∗0 =

(∑
i∈P ′

η∗i

)
+ ν∗P ′ ≥

∑
i∈P ′

η∗i

for all P ′ ∈P, where the last step uses Eq. (7). Since, by assumption, the if branch in
Line 8 was not taken, we know that

∑
i∈Pnew

η∗i >
∑

i∈Pold
η∗i ≥

∑
i∈P ′ η

∗
i for all P ′ ∈P,

which shows that Pnew was not yet in P.

Theorem 3. Fix any instance, and let a DOF C = {CP}P⊇Pinit
for this instance

implement a fairness measure F . Then, when Algorithm 1 is called with the instance and
C , its output distribution is maximally fair according to F .

Proof. Consider the point in the execution of Algorithm 1 just before returning, when
the algorithm defines the distribution D in Line 9. Since all computation steps so far are
deterministic, and since the algorithm subsequently just returns a panel drawn from D ,
D is the output distribution of the algorithm when given these inputs. It remains to show
that D is maximally fair according to F .

Since CP (for the value of P when the algorithm is in Line 9) satisfies strong duality,
we know that the variables ~λ∗, ~p∗, ~x∗, ~µ∗, ~η∗ can be extended by variables (ν∗P )P∈P and
η∗0 to satisfy the KKT conditions of CP .
We will extend these variables for CP to variables satisfying the KKT conditions for

the larger convex program CP̂ . In this extension, we preserve the values of all variables
already present from CP , and set λ∗P := 0 and ν∗P := η∗0 −

∑
i∈P η

∗
i for all P ∈ P̂ \P.

Next, we show that this assignment satisfies the KKT conditions for CP̂ . Most of the
conditions directly follow from the assumption that the KKT conditions hold for CP

because all variables in the equation remained the same (Eqs. (4), (6), (8), (11) and (12);
and Eqs. (5), (7), (9) and (10) for all P ∈P). The first two conditions (Eqs. (2) and (3))
are preserved because all newly introduced λ∗P are zero. Clearly, all λ∗P are nonnegative
(Eq. (5)). Similarly, the added ν∗P for P ∈ P̂ \P are nonnegative (Eq. (7)) because the
algorithm took the if branch in Line 8, which means that

∑
i∈P

η∗i ≤
∑

i∈Pnew

η∗i ≤
∑
i∈Pold

η∗i ≤

 ∑
i∈Pold

η∗i

+ ν∗Pold
= η∗0.

Complementary slackness (Eq. (9)) is satisfied because the added λ∗P are zero, and
condition (10) holds by the definition of the new ν∗P . This shows that all KKT conditions
for CP̂ are satisfied, implying the constructed assignment is optimal.

‡Thus, the algorithm could alternatively have been written as taking the η∗i directly as the optimal dual
variable values of the ηi. We do not do so to avoid ambiguity in the sign of η∗i and to stress that∑

i∈P η
∗
i can be understood as a reduced cost of the column λP , based on the gradient of the convex

function.
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Since C implements the fairness measure F , the distribution whose probability mass
function is given by the constructed λ∗P is maximally fair among distributions over the
support P̂, and therefore maximally fair among all output distributions. Since, in
extending the assignment, we only added λ∗P variables with value 0, D is equal to this
maximally fair distribution.

9 Fairness Measures

In different sub-areas of fair division, researchers have developed metrics measuring how
fairly utility is distributed over individuals by a given allocation of a resource30,37. By
casting the problem of panel selection as a fair-division problem below, we demonstrate
how these metrics can be used to quantify the fairness of probability allocations produced
by selection algorithms:

Consider each quota-compliant panel in a given instance to be a distinct public
good, and suppose that society can select exactly one of these goods, possibly
through a random lottery. Each agent in the pool has value 1 for any panel
on which they are featured, and value 0 for any panel on which they are not
featured; and an agent’s utility for a lottery over panels is their expected value
for the drawn panel.

In this setup, each pool member’s utility is exactly their selection probability, which
is determined by the selected lottery over panels. Therefore, metrics for measuring the
fairness of a utility profile in the fair division literature can be applied to measure the
fairness of a distribution over panels by giving them a probability allocation as their input
rather than a vector of utilities.

Now, we describe multiple metrics from the fair-division literature that can be used as
fairness measures in the panel-selection setting. In the subsections below, we show how
each of these fairness measures can be maximized using our framework.

Egalitarian social welfare35: Maximize the lowest selection probability, mini∈N pi.

Gini coefficient36,37: Minimize half of the relative mean absolute difference,∑
i∈N

∑
j∈N |pi − pj |

2n
∑

i∈N pi
.

Atkinson indices37,38: For a given parameter ε ∈ (0, 1), minimize

1− n∑
i∈N pi

(∑
i∈N p

1−ε
i

n

)1/(1−ε)

.§

§Note that, in our setting, minimizing the Atkinson index for ε = 1 coincides with maximizing Nash
welfare.

19



Nash social welfare30: Maximize the product of selection probabilities,
∏
i∈N pi.

Recall that our definition of a fairness measure (SI 2) assumes that higher values indicate
higher levels of fairness. Thus, the sign of the Gini coefficient and the Atkinson indices
needs to be inverted to obtain a fairness measure according to our formal definition.
Given that Nash social welfare and egalitarian social welfare are listed as fairness

measures above, one might expect utilitarian social welfare (i.e., the sum of selection
probabilities) to also appear. However, since the sum of selection probabilities is equal to
k for all probability allocations, utilitarian welfare is a constant function in our setting,
which can hardly be considered a measurement of fairness.

Another important formalization of fairness from the fair-division literature is the
leximin criterion30, which we implement in our algorithm LexiMin. Recall that the
leximin objective not only maximizes the lowest selection probability (as does egalitarian
welfare), but then breaks ties in favor of the second-lowest selection probability, the
third-lowest selection probability and so on. Since this objective cannot be represented as
the maximization of a single real-valued score30, leximin cannot formally be expressed as
a fairness measure according to our definition (SI 2). Nevertheless, the leximin criterion
defines a weak ordering of probability allocations, which is enough to define a maximally
fair probability allocation. Specifically, to compare two probability allocations {pi}i∈N
and {qi}i∈N , one represents each by a vector of probability values sorted in non-decreasing
order and compares these vectors using the lexicographic order.

9.1 Maximizing Egalitarian Welfare

For any instance, the egalitarian-welfare fairness measure is defined by

Fegal (~p) = min
i∈N

pi.

Let Po be an arbitrary panel for the instance, which can be found by ILP. We will show
that the DOF Cegal = {CP}P defined by the tuple

〈{Po}, 1, (~p, x) 7→ x, {(~p, x) 7→ x− pi}i∈N 〉

implements Fegal . Since t, h, and the gr can be read from the convex optimization problem,
it is more convenient to implicitly specify them via the parametric convex program CP :

maximize x

such that
∑
P∈P

λP = 1

pi =
∑
P∈P
i∈P

λP ∀i ∈ N

x− pi ≤ 0 ∀i ∈ N
λP ≥ 0 ∀P ∈P.
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Proposition 3. For each instance, Cegal is a DOF.

Proof. We must show that, for each P ⊇ Pinit = {Po}, the optimal value of CP is
attained. Since CP is a linear program, this reduces to showing that the program is
feasible and bounded.

For any P ⊇ {Po}, CP is feasible by setting λPo
:= 1, λP := 0 for all other P ∈P, by

setting the pi according to their functional dependency on the λP , and by setting x := 0.
Furthermore, the optimal value is bounded from above since, in any valid assignment,
fixing an arbitrary agent i ∈ N ,

x ≤ pi =
∑
P∈P
i∈P

λP ≤
∑
P∈P

λP = 1.

Proposition 4. For each instance, the fairness measure Fegal for this instance is imple-
mented by the DOF Cegal for this instance.

Proof. By Proposition 2, Cegal implements the fairness measure F given by

F (~p) = sup{x | x ∈ R,∀i ∈ N. x− pi ≤ 0}
= sup{x | x ∈ R,∀i ∈ N. x ≤ pi}
= mini∈Npi.

9.2 Minimizing the Gini Coefficient

For any instance, the Gini-coefficient fairness measure is defined by

Fgini(~p) = −
∑

i∈N
∑

j∈N |pi − pj |
2n
∑

i∈N pi
.

Again, let Po be an arbitrary panel of the instance, found by ILP. We will show that
the DOF Cgini = {CP}P⊇Pinit

implements Fgini , where Cgini is defined by setting
Pinit := {Po} and by implicitly defining t, h, and the gr through the following convex
program CP :

maximize −
∑
i<j∈N

xi,j

such that
∑
P∈P

λP = 1

pi =
∑
P∈P
i∈P

λP ∀i ∈ N

− xi,j + pi − pj ≤ 0 ∀i < j ∈ N
− xi,j − pi + pj ≤ 0 ∀i < j ∈ N
λP ≥ 0 ∀P ∈P,

where “i < j ∈ N ” is short-hand for requiring that i, j ∈ N and that i precedes j in a
canonical ordering over agents.
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Proposition 5. For each instance, Cgini is a DOF.

Proof. We must show that, for each P ⊇ Pinit = {Po}, the optimal value of CP is
attained. Since CP is a linear program, it suffices to show that the program is feasible
and bounded.

For any P ⊇ {Po}, CP is feasible by setting λPo
:= 1, λP := 0 for all other P ∈P, by

setting the pi according to their functional dependency on the λP , and by setting all xi,j
to 1 (since then, e.g., −xi,j + pi − pj ≤ −1 + pi ≤ 0). Furthermore, the optimal value is
bounded from above since, in any valid assignment, the xi,j are constrained to be at least
pi − pj and at least −pi + pj = −(pi − pj), which means that all xi,j are nonnegative and,
thus, that −

∑
i<j∈N xi,j cannot be positive.

Proposition 6. For each instance, the fairness measure Fgini for this instance is imple-
mented by the DOF Cgini for this instance.

Proof. By Proposition 2, Cgini implements the fairness measure F given by

F (~p) = sup

{
−
∑

i<j∈N xi,j

∣∣∣∣∣ {xi,j}i<j∈N ∈ R(
n
2),

∀i, j ∈ N. xi,j ≥ pi − pj and xi,j ≥ pj − pi

}

= sup

{
−
∑

i<j∈N xi,j

∣∣∣∣∣ {xi,j}i<j∈N ∈ R(
n
2),

∀i, j ∈ N. xi,j ≥ |pi − pj |

}
= −

∑
i<j∈N |pi − pj |

= −
∑

i∈N
∑

j∈N |pi − pj |
2

= Fgini(~p)n
∑

i∈N pi

= Fgini(~p)nk.

Thus, Cgini implements a fairness measure that is just Fgini times the positive constant
nk. Since multiplying a fairness measure by a positive constant does not change which
probability allocations maximize the fairness measure, Cgini also implements Fgini .

9.3 Minimizing the Atkinson Indices for 0 < ε < 1

For a fixed instance, and a fixed constant ε ∈ (0, 1), the Atkinson-index fairness measure
is defined by

Fatkinson(~p) =
n∑
i∈N pi

(∑
i∈N p

1−ε
i

n

)1/(1−ε)

− 1.

Again, let Po be an arbitrary panel of the instance, found by ILP. We will show that the
DOF Catkinson = {CP}P⊇Pinit

implements Fatkinson , where Catkinson is defined by setting
Pinit := {Po} and by implicitly defining t, h, and the gr through the following convex
program CP :
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maximize
∑
i∈N

p1−εi

such that
∑
P∈P

λP = 1

pi =
∑
P∈P
i∈P

λP ∀i ∈ N

λP ≥ 0 ∀P ∈P.

Proposition 7. For each instance, Cgini is a DOF.

Proof. We must show that, for each P ⊇ Pinit = {Po}, the optimal value of CP is
attained. Since there are no auxiliary constraints, feasibility is trivial given that P is
nonempty. Since there are no auxiliary variables, all variables are naturally bounded in
[0, 1]. Since the domain of valid assignments for ~λ and ~p is bounded and closed, thus
compact, the continuous function h attains its maximum on this domain.

Proposition 8. For each instance, the fairness measure Fatkinson for this instance is
implemented by the DOF Catkinson for this instance.

Proof. By Proposition 2, Catkinson implements the fairness measure F given by

F (~p) = sup{
∑

i∈N p
1−ε
i }

=
∑

i∈N p
1−ε
i

= n (k/n (Fatkinson(~p) + 1))1−ε .

Since F can be obtained by composing Fatkinson with a strictly monotone function, it has
the same maximally fair probability allocations. This shows that Catkinson also implements
Fatkinson .

9.4 Maximizing Nash Social Welfare

For a fixed instance, and a fixed constant ε ∈ (0, 1), the Nash-welfare fairness measure is
defined by

Fnash(~p) =
∏
i∈N

pi.

Using an ILP solver, one can determine all agents i ∈ N who appear on any panel.
If any agent i does not appear on a panel, their selection probability must be 0, which
means that Fnash is constant on all probability allocations and can be maximized by
deterministically returning any panel.¶ Thus, without loss of generality, we assume that
each agent i ∈ N is contained in a panel Pi, which can be found by n ILP calls.
¶In practice, one would instead remove all agents from the pool who are not contained in any panel,

and optimize Nash social welfare for the resulting instance with fewer agents.
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Consider the family of concave programs Cnash = {CP}P⊇Pinit
where Pinit = {Pi |

i ∈ N} and the convex program CP is given as

maximize
∑
i∈N

log pi

such that
∑
P∈P

λP = 1

pi =
∑
P∈P
i∈P

λP ∀i ∈ N

λP ≥ 0 ∀P ∈P.

We will show that, by inserting this family of concave programs into our framework,
the framework optimizes Fnash . A formal complication is that the objective function h
defined above is not real-valued for all probability allocations, since it is −∞ whenever
one selection probability is zero. Thus, this family does not quite fit into our definition of
a DOF. However, the proof of optimality of the framework still goes through given that
the CP can be optimized by a convex-program solver and that the optimal values of all
CP are real-valued:

Proposition 9. For each CP for some P ⊇Pinit , the optimal objective value is real-
valued and attained.

Proof. Fix some P ⊇ Pinit . We will first show that the optimal objective value is
not −∞. Indeed, consider the distribution obtained by selecting each panel Pi with
probability 1/|Pinit |. Since, by construction, each agent is contained in at least one
panel in Pinit , each selection probability pi is at least 1/|Pinit | ≥ 1/n. This means that
an objective value of n log(1/n) > −∞ can be attained and that the constraints are
feasible. Furthermore, it shows that any probability allocation that selects some agent i
with probability strictly less than 1/nn cannot be optimal, because its objective value∑

j∈N log pj ≤ log pi < n log(1/n) is lower than the previous value.
It remains to show that the optimal objective value can be attained. Consider the

space of all valid assignments ~λ, ~p, which is bounded and closed. By the argument above,
we do not change the optimal objective value of CP by further restricting the program
with the constraints pi ≥ 1/nn for all i, and the space of assignments for ~λ, ~p still stays
compact in this operation. Since h(~p) =

∑
i∈N log pi is real-valued and continuous on this

space, its maximum is attained.

Proposition 10. For each instance, plugging Cnash into the framework yields an output
distribution that is maximally fair according to Fnash .

Proof. Following the reasoning of the proof of Theorem 3, one shows that the probability
mass function of the output distribution is optimal according to CP̂ in Cnash . By the
reasoning of Proposition 2, this yields a probability allocation that maximizes the fairness
measure F given by
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F (~p) = sup{
∑

i∈N log pi}
=
∑

i∈N log pi

= log(Fnash(~p)).

Since this is a strictly monotone transformation of Fnash , the output distribution must
also be maximally fair for Fnash .

10 Description of LexiMin

10.1 Overview

As we discussed in SI 9, leximin is not formally a fairness measure according to our
definition, which means that it cannot be optimized with a single application of our
framework. Instead, we repeatedly invoke the framework for different auxiliary DOFs as
follows: In the first application of the framework, we maximize the minimum probability.
Subject to fixing the selection probability of a specific set of agents at this value (we
discuss below how these agents are chosen), we then maximize the minimum selection
probability among all other agents in a second application of the framework. We continue
by fixing the selection probabilities of more and more agents to their value in the leximin
allocation until all probabilities are fixed.

The crucial step in the algorithm is knowing which agents’ probabilities to fix in each
iteration. For example, the first invocation of the framework, which maximizes the
minimum selection probability, might result in a probability allocation in which multiple
agents have this minimum selection probability. In this case, not all of these agents
must have this minimum selection probability in the leximin-optimal distribution, so
it is not obvious whose selection probability should be fixed. As in previous work61,
complementary slackness allows us to identify at least one agent in each iteration whose
selection probability must be minimal across all distributions optimizing the current
iteration’s DOF. Since all leximin-optimal distributions are optimal for the current DOF,
we can fix these agents’ selection probabilities.

In the following, we first define the auxiliary DOFs and the LexiMin algorithm. Then,
we prove the correctness of the algorithm.

10.2 Definition of LexiMin

To define the algorithm, we must first specify the auxiliary DOFs used by it. Each
auxiliary DOF is a family Caux (R, ρ,Pinit) parametrized by a set R * N of agents and
by a function ρ : R → [0, 1], which together represent that the selection probability of
each agent i ∈ R has been fixed to ρ(i); and by an initial portfolio.
For a set of agents R ( N , a function ρ : R → [0, 1], and a non-empty portfolio

Pinit , the DOF Caux (R, ρ,Pinit) = {CP}P⊇Pinit
for an instance is defined via the initial

portfolio Pinit and the following optimization problem CP :
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maximize x

such that
∑
P∈P

λP = 1

pi =
∑
P∈P
i∈P

λP ∀i ∈ N

x− pi ≤ 0 ∀i ∈ N \R
pi − ρ(i) ≤ 0 ∀i ∈ R
ρ(i)− pi ≤ 0 ∀i ∈ R
λP ≥ 0 ∀P ∈P.

We will show in Lemma 1 below that, whenever LexiMin applies the framework to such
a Caux (R, ρ,Pinit), it indeed defines a DOF. Furthermore, we show in Lemma 2 that this
DOF maximizes mini∈N\R pi among all probability allocations that select each i ∈ R with
probability exactly ρ(i).
We now define the LexiMin algorithm:
Algorithm 2: LexiMin
Input: an instance
Output: a randomly chosen panel for the instance

1 Plexi ← {arbitrary panel Po found by ILP};
2 R← ∅;
3 initialize empty function ρ : R→ [0, 1];
4 D ← deterministic distribution with value Po (for analysis only);
5 while R ( N do
6 execute Algorithm 1 up to Line 9 with the instance and the DOF

Caux (R, ρ,Plexi) as input; set ~p∗, ~µ∗,D to their final values inside the
subprocedure call; and set Plexi to the final value of P in the call;

7 for i ∈ N \R do
8 if µ∗r > 0 for r corresponding to constraint x− pi ≤ 0 then
9 R← R ∪ {i};

10 ρ(i)← p∗i ;

11 return panel drawn from D ;

Note that, since N 6= ∅, the loop is executed at least once and the initialization of D in
Line 4 will never be used. However, this initialization will be convenient in the proof of
correctness. In Theorems 4 and 5, we prove that the selection algorithm terminates and
that it is indeed maximally fair according to the leximin criterion.
Our practical implementation of LexiMin deviates from the formal specification of

Algorithm 2 by the following modifications, which speed up the practical runtime while
preserving optimality: (i) implementing Lines 3 to 5 of Algorithm 1 purely in terms
of the dual linear program, by (ii) solving these linear programs using interior-point
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barrier methods (which typically allow to fix more probabilities per iteration) and by
(iii) initializing Plexi in Line 1 with multiple panels found through a multiplicative-weight
heuristic.

10.3 Proofs

Lemma 1. Whenever Algorithm 2 applies the framework with an instance and Caux (R, ρ,
Plexi), the latter is a DOF for the instance.

Proof. Fix any P ⊇ Pinit = Plexi . We must show that the optimal value of CP is
attained. Because CP is a linear program, it suffices to show that it is feasible and
bounded.
Since R ( N , the objective value x is clearly bounded from above since, for any

i ∈ N \R,
x ≤ pi =

∑
P∈P
i∈P

λP ≤
∑
P∈P

λP = 1.

It remains to show that CP is feasible. Indeed, in the very first application of the
framework, Pinit is chosen to contain any arbitrary panel Po. Since R = ∅, Caux (∅, ρ, {Po})
is equal to Cegal as defined in SI 9.1 and a DOF by Proposition 3.
In subsequent applications, Pinit is chosen to be the portfolio Plexi produced by the

previous iteration. In this case, R and ρ were updated such that the final values ~λ∗ and
~p∗ of the previous application of the framework are a feasible solution to the optimization
problem of the current application (setting λP of all P /∈Pinit to zero).

Lemma 2. Whenever Algorithm 2 applies the framework with an instance and the DOF
Caux (R, ρ,Plexi), the DOF implements the fairness measure F given by

F (~p) =

{
mini∈N\R pi if ∀i ∈ R. pi = ρ(i)

−∞ otherwise.

Proof. By Proposition 2, the DOF implements the fairness measure F ′ given by

F ′(~p) = sup{x | x ∈ R, ∀i ∈ N \R. pi ≥ x,∀i ∈ R. pi = ρ(i)}.

We will show that F ′ = F , by fixing some ~p and showing that F ′(~p) = F (~p). If
∀i ∈ R. pi = ρ(i), then

F ′(~p) = sup{x | x ∈ R, ∀i ∈ N \R. pi ≥ x} = min
i∈N\R

pi.

Else, i.e., if pi 6= ρ(i) for some i ∈ R, then F ′(~p) = sup ∅ = −∞.

Theorem 4. Algorithm 2 terminates.
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Proof. It is enough to show that the size of R ⊆ N grows in each iteration of the while
loop.
Recall that the KKT stationarity condition on ~x (12) states that

∇~xh(~p, ~x) =
m∑
r=1

µr∇~xgr(~p, ~x).

Note that ∂
∂x(x− pi) = 1, that ∂

∂x(pi − ρ(i)) =
∂
∂x(ρ(i)− pi) = 0, and that ∂

∂xh(~p, x) =
∂
∂xx = 1. Thus, the stationarity condition simplifies to

1 =
∑

r constraint of shape x− pi ≤ 0

µr.

This shows that at least one of the optimal dual variables µ∗r for a constraint x ≤ pi must
be positive, and that the size of R increases in Line 9.

Theorem 5. For any instance, the output distribution of Algorithm 2 on this instance is
maximally fair according to the leximin criterion.

Proof. We will prove the following invariant for the while loop in Line 5 of Algorithm 2:
(1) for all agents i ∈ R, ρ(i) is this agent’s selection probability in the leximin-optimal
probability allocation,‖ and (2) D is a distribution over Plexi giving each i ∈ R selection
probability exactly ρ(i).
Before proving the loop invariant, we show that it implies the correctness of the

algorithm. Indeed, when the while loop exits, R = N , which means that ρ specifies
the whole leximin-probability allocation by part (1) of the invariant. By part (2) of
the invariant, the distribution D , which is the output distribution of the algorithm,
implements the best possible probability allocation according to the leximin criterion and
is therefore itself maximally fair.

It is easy to see that the loop invariant holds when we enter the loop for the first time
since it is nearly vacuous for R = ∅. It remains to show that each iteration of the loop
preserves the loop invariant.

It follows from the definition of the leximin criterion and part (1) of the invariant that
the leximin-optimal probability allocation maximizes x = mini∈N\R pi among all possible
probability allocations guaranteeing pi = ρ(i) for all i ∈ R. By Lemma 2 and Theorem 3,
the output distribution of Algorithm 1 with the arguments as provided in Line 6 also is a
solution to this maximization problem. Fix p∗i , µ

∗
r ,D , and Plexi as in Line 6, and call the

optimal objective value x∗ = mini∈N\R p
∗
i .

To re-establish part (1) of the invariant, we must look at the agents i ∈ N \R whose
selection probability gets fixed to p∗i in Line 10. Note that the dual variable µ∗r is positive,
and, as shown in the proof of Theorem 3, that this is also an optimal assignment for
the dual variable in the problem CP̂ in Caux (R, ρ,Plexi), ranging over all panels. By
complementary slackness (8), the positivity of µ∗r implies that the constraint x ≤ pi is

‖The leximin-optimal probability allocation is uniquely determined as shown for example in Theorem 3.7
by Kurokawa et al.39.
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tight, meaning that ρ(i) is set to pi = x∗. While it follows from the application of our
framework that some agent in N \ R must have probability x∗ in the leximin-optimal
probability allocation, it is not immediately clear that this must be the case for the specific
agent i. However, µ∗r > 0 furthermore implies that the constraint x ≤ pi is tight in all
optimal solutions to CP̂ (see p. 95 of Schrijver62), and all the leximin-optimal distributions
are such optimal solutions. This shows that agent i’s selection probability is fixed to the
probability x∗ the agent receives in the leximin-optimal probability allocation, as claimed.
Part (2) of the loop invariant follows from the fact that the distribution returned by the
call to Algorithm 1 satisfies all fixed probabilities and has support Plexi .

11 Description of Legacy

The Legacy algorithm proceeds in k rounds, adding one pool member to the panel per
round. Each round begins by calculating the need of each feature f remaining in the
pool, which is defined as

needf :=
`f − (# panel members already selected with feature f)

# remaining pool members with feature f
.

Note that needf may be negative. After calculating needf for all features, the algorithm
chooses a feature fmax with maximal need and draws the next panel member uniformly
from the remaining pool members with feature fmax . The selected panel member is then
removed from the pool.

After adding this person to the panel, the panel might, for one or more features f , now
contain uf many people with feature f . In this case, all remaining pool members with
feature f are removed from the pool. If this procedure produces a quota-compliant panel
after the kth round, this panel is returned. Else, i.e., if the pool becomes empty in an
earlier round or if the final panel violates some quotas, the algorithm is restarted from
the beginning.

For intuition, note that the panel resulting from this procedure can violate quotas for
several different reasons: it could happen that the kth person is selected but not all the
lower quotas are satisfied yet, or the algorithm could run out of people of a certain type
before fulfilling a lower quota if some of these agents were previously removed when an
upper quota was reached.

The selection algorithms developed by other practitioner organizations generally follow
the same structure of selecting panel members one by one, determining which agents to
choose next based on myopic heuristics. We describe these algorithms in the following
section.

12 Description of Other Existing Algorithms

All existing algorithms we have heard about are listed below, and all select panel members
one-by-one, backtracking or restarting if they encounter a quota violation. In most cases,
a fully specified algorithmic description was not available, but we did obtain a high-level
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sketch of how each of these algorithms selects the next panel member. We list these
algorithms by organization below, and describe their basic functionality:

G1000: G1000’s algorithm works similarly to Legacy, except that it calculates the need
of a feature as a difference rather than as a ratio.

IFOK: IFOK’s algorithm is also generally similar to Legacy, but, rather than choosing
only the next panel member from the feature with greatest need and then recal-
culating need, the entire lower quota of the feature with highest need is filled at
once.

Nexus: The algorithm used by Nexus focuses less on features but rather selects uniformly
from the pool, removing people from the pool once any of their features has reached
its upper quota.

MASS LBP: MASS LBP typically uses tight lower and upper quotas on all their features.
Their algorithm uses one bin for each feature category (e.g., gender, ethnicity, . . . ),
each initially filled with k balls labeled with the correct distribution of features of
this category (e.g., k/2 women and k/2 men). In every round, one ball is drawn
from each bin. If a member of the pool has exactly this set of features, the pool
member is chosen as the next panel member. Since this will often not be possible,
MASS LBP employs elaborate (and not fully formalized) procedures of redrawing
balls and backtracking on earlier picks.4

13 Instances where Legacy is Unfair

In this section, we define a family of instances on which Legacy selects one individual
much more rarely than the others, even though it would be possible to select all agents
with equal probability. For illustration, we present one specific instance before defining
the family:
Say that we want to select an assembly of k = 200 people that includes at least 99 of

each category: women, men, liberals, and conservatives. Let the pool consist of 1,000
conservative men, 999 liberal women, and 1 conservative woman. Note that the algorithm
that selects 100 uniformly drawn women and 100 uniformly drawn men satisfies the
quotas and selects each pool member with equal probability 10%. By contrast, one can
verify that the Legacy algorithm alternates between seeing liberals and men as the
categories with highest need, skipping the conservative woman in each of the first 198
draws. Depending on how ties are broken for the last two panel selections (when all lower
quotas are met), the conservative woman might even be chosen with probability 0, but
with at most probability 0.2%.

Definition 3 below generalizes this example to a wide range of agent numbers and panel
sizes. In all these instances, it is possible to select all agents with equal probability k/n.
At the same time, depending on tie breaking, Legacy might select the conservative
woman with probability probability as low as zero (Proposition 12) or up to a selection
probability in O(1/n) (Proposition 13). Note that the ratio of this latter probability and
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the probability of equal selection k/n can be made arbitrarily small by scaling up the
size of the instance (Corollary 3).

Definition 3. Let n and k be even, positive integers, such that n ≥ 2 k. Define the
instance Alternate(n, k) as follows:

• Set the panel size to k.

• Let there be four features: female (f), male (m), liberal (`), and conservative (c).
Let each feature have a lower quota of k/2− 1 and an upper quota of k (i.e., there
are effectively no upper quotas).

• Let the pool consist of n/2 conservative men, n/2 − 1 liberal women, and one
conservative woman.

Proposition 11. For any instance Alternate(n, k), it is possible to select each agent with
equal probability k/n.

Proof. Consider the selection algorithm that chooses k/2 women and k/2 men, each
uniformly at random without replacement. It is easy to verify that this procedure will
select each woman and each man with probability k/2

n/2 = k/n. Moreover, this procedure will
always select exactly k/2 women, exactly k/2 men, between k/2 and k/2+1 conservatives
and between k/2 − 1 and k/2 liberals; which means that all panels produced by the
procedure satisfy the quotas.

Lemma 3. When Legacy is called on Alternate(n, k),

• all picks numbered 1, 3, 5, . . . , k − 3 are liberal women, and

• all picks numbered 2, 4, 6, . . . , k − 2 are conservative men.

Proof. By strong induction on the number i = 0, 1, . . . , k − 3 of panel members picked so
far.

Suppose that i is even. We will show that the next pick (the i+1th) is a liberal woman.
By the induction hypothesis, s` = i/2 liberal women and sm = i/2 conservative men have
been selected so far. The need for each of the four features is

needf = (k/2− 1− s`)/(n/2− s`)
needm = (k/2− 1− sm)/(n/2− sm)
need ` = (k/2− 1− s`)/(n/2− 1− s`)
need c = (k/2− 1− sm)/(n/2 + 1− sm).

Note that all the numerators are positive and equal, and that all the denominators are
positive. Thus, the feature with highest need is the feature with lowest denominator,
which is `. Thus, the algorithm selects a liberal, which can only be a woman.
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Now, suppose that i is odd. We will show that the next pick (the i+1th) is a conservative
man. By the induction hypothesis, s` = di/2e liberal women and sm = bi/2c conservative
men have been selected so far. The need for each of the four features is

needf = (k/2− 1− s`)/(n/2− s`)
needm = (k/2− 1− sm)/(n/2− sm)
need ` = (k/2− 1− s`)/(n/2− 1− s`)
need c = (k/2− 1− sm)/(n/2 + 1− sm).

It is easy to see that needm > need c and that need ` > needf . Furthermore,

needm
need `

=
(n/2− 1− s`)/(n/2− sm)

(k/2− 1− s`)/(k/2− 1− sm)

=
(n/2− 2− sm)/(n/2− sm)

(k/2− 2− sm)/(k/2− 1− sm)

=
1− 2/(n/2− sm)

1− 1/(k/2− 1− sm)

=
1− 2/(n/2− sm)

1− 2/(k − 2− 2 sm)

≥ 1− 2/(k − sm)
1− 2/(k − 2− 2 sm)

(k ≤ n/2)

> 1.

This shows that the feature with highest need is male (m), which implies that the next
pick must be a conservative man.

Proposition 12. If Legacy breaks ties between features with equal need in a worst-case
way, the conservative woman in Alternate(n, k) is selected with zero probability.

Proof. By Lemma 3, the conservative woman is never among the first k − 2 picks. For
the k − 1th pick, all features are exactly at their lower quota and therefore have a need
of 0. The implementation breaks ties in the order in which the features are specified, so
might break the tie in favor of liberals (`), which would mean that another liberal woman
is selected. Then, in the last pick, the categories liberal and female have negative need
because they exceed their lower quota, whereas the categories male and conservative still
have a need of 0. If the tie is broken in favor of male, the last selection is a conservative
man. Since all quotas are satisfied, the algorithm does not restart but returns this
panel. Assuming the above tie-breaking decisions, the conservative woman will never be
selected.

Proposition 13. No matter how Legacy breaks ties between features with equal need,
the conservative woman in Alternate(n, k) is selected with probability at most 8/n.

Proof. Again, Lemma 3 shows that the conservative woman is never among the first k− 2
picks. At the time of k − 1th pick, there are n/2− (k/2− 1) women left in the pool and
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n/2 + 1− (k/2− 1) conservatives. At the time of the kth pick, these numbers are at still
least n/2− k/2 and n/2+ 1− k/2. Since all quotas are already satisfied by the first k− 2
picks, the algorithm does not restart. Thus, by a union bound over the last two picks,
the selection probability of the conservative woman is at most

1

n/2− (k/2− 1)
+

1

n/2− k/2
≤ 2

n/2− k/2
≤ 2

n/2− n/4
=

8

n
.

Corollary 3. Even assuming best-case tie breaking between features with equal need, for
every ε > 0, there is an instance where it is possible to select agents with equal probability
k/n, but where Legacy selects some agent with probability at most ε k/n.

Proof. Let k be an even integer larger than 8/ε, and let n = 2 k. By Proposition 11, it is
possible to select each agent with equal probability k/n. By Proposition 13, the selection
probability of the conservative woman is at most 8/n ≤ ε k/n.

14 Comparing Legacy and LexiMin on Intersectional
Representation

While most of the paper is concerned with representation guarantees to individuals, in
this section, we consider how the selection algorithms Legacy and LexiMin impact the
representation of groups. Note that both selection algorithms must satisfy quotas, and
thus both algorithms will proportionally represent the groups delineated by the features.
Therefore, we direct our focus to groups defined by the intersection of multiple features
(e.g., “young woman”, where “young” and “woman” are the features being intersected).
Throughout this section, we study each group’s panel share, which is the expected value
of the fraction of the pool filled with that group’s members (i.e., the sum of selection
probabilities of all of its members divided by k). Ideally, to provide perfectly accurate
descriptive representation, each intersectional group’s panel share would be equal to its
share in the population.
A priori, we would expect neither LexiMin nor Legacy to accurately represent

intersectional groups in proportion to their population share, since neither of these
algorithms has precise information about the population shares of these groups, and they
do not explicitly try to give these groups accurate representation. Instead, the panel
share of an intersectional group will likely arise incidentally from the algorithms’ efforts
to ensure the satisfaction of quotas. The panel shares given by LexiMin may additionally
be impacted by its effort to equalize the selection probabilities between pool members,
which could result in groups’ panel shares being closer to their representation levels in
the pool.

In this section, we investigate how accurately each algorithm represents intersectional
groups in one real-world instance, sf(e). We find that the algorithms give similar levels
of intersectional representation overall, and in fact, the level of representation given to
each specific group is similar across the two algorithms. We then find evidence suggesting
an explanation for this similarity: for both algorithms, it seems that the panel shares of
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intersectional groups mainly reflect the quotas, rather than the frequency of groups in
the pool. We conclude by suggesting two ways in which our framework can be used for
explicitly promoting the accurate representation of intersectional groups.

We perform this analysis on only a single dataset because the analysis requires knowledge
of the population shares of all intersectional groups. Effectively, this requires a separate
survey dataset, conducted on the exact population underlying the panel and including
all features protected by the assembly’s quotas. For the instance sf(e), a nation-wide
panel in the UK, we make use of the 2016 European Social Survey (ESS)63.∗∗ We restrict
our analysis to combinations defined by two features (“2-intersections”) because, for
intersections of three or more features, many intersectional groups are so small that we
do not expect the ESS to represent their true population shares.

14.1 Level of Intersectional Representation in Legacy versus
LexiMin

ED Figure 4 compares the deviation from proportional representation given to each
individual 2-intersection by each respective algorithm. The histograms on the margins of
the plot show that these deviations are concentrated around zero, indicating that both
algorithms give fairly accurate representation to most intersectional groups. Nonetheless,
a few 2-intersections are misrepresented by more than 15 percentage points, i.e., their
true and proportional panel shares differ by more than 0.15. We compare the relative
performance of Legacy and LexiMin using the mean squared error, i.e., the mean
(calculated over all 2-intersections) of the squared difference between the population share
and the panel share. Smaller mean squared errors indicate more accurate descriptive
representation. We find that this error value is essentially the same for both algorithms,
indicating that they achieve essentially the same level of representation for these intersec-
tional groups: Legacy gives a mean squared error of 1.40 · 10−3, and LexiMin one of
1.36 · 10−3.

14.2 Explanation for Intersectional Representation in Legacy and
LexiMin

As the scatter plot in the center of ED Figure 4 shows, the points track closely with a line
of slope equal to 1, indicating that not only do LexiMin and Legacy achieve similar
overall levels of intersectional representation, but that they over- and underrepresent the
same groups by similar amounts. Indeed, the mean squared error between a group’s panel
share for Legacy and a group’s panel share for LexiMin is 1.99 · 10−4, implying that
the panel shares of a given group by the two algorithms are more closely related to each
other than to the population share. This suggests that another property associated with
the 2-intersections might determine the group’s panel share more accurately than the
population share, across both selection algorithms.

∗∗The ESS data is preprocessed as described in Appendix D.2 of Flanigan et al.28, and the population
shares of intersectional groups computed from this data are included in our code repository.
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One property of intersectional groups that might influence their panel shares across
both algorithms is their share in the pool. This is particularly relevant—and of potential
concern— for LexiMin, whose efforts to equalize individuals’ selection probabilities might
push it to overrepresent groups that are overrepresented in the pool. Our findings do not
substantiate these concerns: as measured by the mean squared error, the panel share
given by either algorithm is less closely related to the pool share (Legacy: 2.60 · 10−3,
LexiMin: 2.37 · 10−3) than to the population share, and, while this distance is smaller
for LexiMin than for Legacy, the difference is small.

In contrast to the pool share, we find that a group’s panel share as naïvely extrapolated
from the quotas does closely mirror the panel shares we observe resulting from either
algorithm. We extrapolate from the quotas to predicted panel shares by defining the
quota share (related to the ratio product defined in the methods section “Individuals
Rarely Selected by Legacy”) of the intersection of features f1 and f2 as

`f1 + uf1
2 k

·
`f2 + uf2

2 k
.

This quota share can be understood as a naïve estimation of the population share of
the 2-intersection, assuming that features f1 and f2 are uncorrelated. We find that the
mean squared error between the 2-intersections’ panel shares and their quota shares
(Legacy: 1.69 · 10−4, LexiMin: 1.76 · 10−4) are substantially smaller than the error
between panel and population shares, and on the same scale as the distance between the
panel shares of both algorithms. These findings suggest that the descriptive representation
of an intersectional group is more directly determined by the quotas of its constituent
features rather than its share in the population or the pool. These results also suggest
that the panel produced by both selection algorithms do not automatically replicate the
correlation of features found in the population, but rather tends towards a composition in
which features are closer to uncorrelated. If this phenomenon generalizes across citizens’
assemblies, this would be an argument in favor of explicitly promoting intersectional
representation, as we do in the following subsection.

14.3 Achieving Proportional Representation for Intersections with
Our Framework

In the above, we observed that neither selection algorithm happens to represent intersec-
tional groups at a high level of accuracy. This suggests that, if the accurate representation
of intersectional groups is an important consideration, one should attempt to incorporate
this goal (and the data about population shares) explicitly into the algorithm. Below,
we present two ways of using our framework to make the expected representation of
intersectional groups closer to proportional:
First, one could enforce hard constraints on the representation of these intersectional

groups by imposing lower and upper quotas on them, just as is traditionally done for
single-feature groups. In fact, practitioners already do this on occasion for intersectional
groups of particular interest. The downside of this approach is that it poorly scales to
large numbers of intersections, because it is difficult to estimate how tight these quotas
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can be before quota-compliant panels cease to exist. Moreover, the number and tightness
of these quotas trade off against the goal of equalizing selection probabilities in ways that
can be difficult to predict.

A method that side-steps these downsides is to promote the proportional representation
of intersectional groups as a soft constraint, by incorporating it into the fairness measure.
Specifically, if one has a collection of groups g, each of which is associated with a set of
pool members Ng and a population share qg ∈ [0, 1], maximizing the concave expression

−
∑

groups g

qg −∑
i∈Ng

pi/k

2

minimizes the mean square error between the panel shares given by the algorithm and the
population shares. This term can either be turned into a distribution-optimizer family
(Definition 1) that minimizes this error without consideration for individual selection
probabilities, or it can be added to the objective function of another DOF, and the user
can then optimize a linear combination of the chosen fairness measure and this mean
squared error term. In defining this objective, the user can choose how strongly they
want to prioritize intersectional representation over individual fairness by modifying the
coefficients of the linear combination.

15 Axiomatic Analysis

In searching for fair selection algorithms, we found the approach of optimizing quantitative
measures of fairness more useful than the axiomatic method. The main reason for this is
that a range of standard axioms of fair division are either trivially satisfied by all selection
algorithms or impossible to satisfy by any selection algorithm, making them useless for
delineating “good” algorithms. For example, no selection algorithm can guarantee envy
freeness30 on all instances, since the quotas of most instances preclude selecting every
agent with equal probability k/n. Pareto efficiency64, on the other hand, is trivially
satisfied by all selection algorithms, since the sum of selection probabilities is always k.
In SI 15.1 and 15.2 below, we show that the relational axioms population monotonicity64

and committee monotonicity65 are also impossible to guarantee.
Two classical axioms that are meaningful in comparing selection algorithms are equal

treatment of equals30 and a form of proportionality66. In SI 15.3 and 15.4, respectively,
we show, via standard arguments, that LexiMin satisfies both of these axioms.

15.1 Population Monotonicity

Definition 4 (population monotonicity). A selection algorithm guarantees population
monotonicity if, when additional agents are added to an instance, the selection probability
of all previously existing agents weakly decreases.

Theorem 6. No selection algorithm can guarantee population monotonicity.
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Proof. Fix a selection algorithm A, and consider an instance with six agents, k = 3, and
four features. We indicate an agent’s feature membership as a four-element Boolean
vector, where the ith entry of the vector indicates whether the agent exhibits feature i.
Using this convention, let the agents’ features be given as as agent 1: (1, 0, 0, 0), agent
2: (0, 1, 0, 0), agent 3: (1, 1, 0, 0), agent 4: (0, 0, 1, 0), agent 5: (0, 0, 0, 1), and agent 6:
(0, 0, 1, 1). For each feature f , set the lower quota `f to 1 and the upper quota to 3
(i.e., there is effectively no upper quota). This instance has quota-compliant panels, for
example the panel {agent 1, agent 2, agent 6}. Consider the probability allocation of A
on this instance. Since k = 3, agents 1, 2, 4, and 5 cannot all simultaneously have zero
selection probability. W.l.o.g., assume that agent 1 has positive selection probability.
Now, consider a modified instance in which agent 6 is removed. In this instance, one

verifies that the only quota-compliant panel is {agent 3, agent 4, agent 5}, which means
that A must select agent 1 with zero probability. This violates population monotonicity
since adding back agent 6 would strictly increase the selection probability of agent 1.

15.2 Committee Monotonicity

Definition 5 (committee monotonicity). A selection algorithm guarantees committee
monotonicity if, when an instance is modified by increasing k (and remains an instance),
the selection probability of all agents weakly increase.

Proposition 14. No selection algorithm can guarantee committee monotonicity.

Proof. Consider an instance with three agents and two features. Define the features of
the agents using the vector notation from the proof of Theorem 6 as agent 1: (1, 0), agent
2: (0, 1), and agent 3: (1, 1). If the lower and upper quotas for both features are set to 1,
the only panel for k = 1 is {agent 3}, and the only panel for k = 2 is {agent 1, agent 2}.
Thus, any selection algorithm must strictly decrease agent 3’s selection probability when
going from k = 1 to k = 2.

15.3 Equal Treatment of Equals

Definition 6 (equal treatment of equals). A selection algorithm guarantees equal treat-
ment of equals if, for every instance and for every pair of agents i1, i2 that have exactly
the same set of features, i1 and i2 are selected with equal probability.

Theorem 7. LexiMin guarantees equal treatment of equals.

Proof. Fix an instance and two agents i1, i2 with equal features. Let D denote the output
distribution of LexiMin on this instance. For the sake of contradiction, assume that i1
is selected with a probability p1 strictly higher than the selection probability p2 of i2 in
D . We will show that there exists another distribution D ′ over panels whose probability
allocation is leximin-fairer than the probability allocation of D , which will contradict the
optimality of LexiMin.
Let d denote the probability mass function of D , mapping each possible panel of the

instance to the probability with which it is returned in D . Furthermore, define for each
panel P a second panel swap(P ), in which i1 is exchanged for i2 and vice versa:
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swap(P ) :=


P \ {i1} ∪ {i2} if i1 ∈ P and i2 /∈ P
P \ {i2} ∪ {i1} if i2 ∈ P and i1 /∈ P
P otherwise.

Since i1 and i2 have exactly the same features, swap(P ) is also a quota-compliant panel.
Now, define Dswap by the probability mass function dswap with values

dswap(P ) := d(swap(P )).

For each agent i /∈ {i1, i2}, their selection probability is equal in D and Dswap , because
the agent is included in a panel P iff they are included in swap(P ). Also, the selection
probability of i1 in Dswap is p2 and that of i2 is p1.

Now define the symmetrization D ′ of D over i1 and i2 as the mixture of distributions
1
2 D + 1

2 Dswap . In this distribution, each agent i /∈ {i1, i2} is selected with the same
probability as in D , but i1 and i2 are both selected with probability (p1 + p2)/2. This
probability allocation is leximin-fairer than that of D , contradiction.

15.4 Proportionality

If a selection algorithm satisfies proportionality, each agent i should, on every instance,
receive at least a 1/n fraction of the selection probability they would receive under their
most preferred probability allocation for this instance (i.e., the probability allocation
chosen if i was a dictator66). Note that, if i is contained in some panel P , the panel
distribution that deterministically outputs P gives rise to a probability allocation in
which i is chosen with probability 1. Thus, proportionality requires that i is selected with
probability at least 1/n. Else, if i is not contained in any panel, no probability allocation
gives them positive selection probability, and proportionality does not guarantee them
any minimum selection probability. Consequently, proportionality in the panel-selection
setting can be defined as follows:

Definition 7 (proportionality). A selection algorithm guarantees proportionality if, on
all instances, each agent i has a selection probability of at least 1/n unless they are not
contained in any possible panel.

Theorem 8. LexiMin guarantees proportionality.

Proof. Fix an arbitrary instance. Partition the agents N into two sets: the agents N+

that are contained in at least one panel and the agents N− that are not contained in any
panel. Since at least one panel must exist, N+ 6= ∅.
First, consider the leximin-optimal probability allocation ~plex . Assume for the sake

of contradiction that LexiMin violates proportionality on this instance, i.e., that some
agent in N+ is selected with probability p < 1/n.

Under this assumption, we will construct another panel distribution with a probability
allocation ~palt that is strictly leximin-fairer than ~plex , which will contradict the optimality
of ~plex . For each i ∈ N+, let Pi be a panel such that i ∈ Pi. Then, consider the distribution
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over panels resulting from choosing an agent i ∈ N+ uniformly at random and returning
Pi. Call the corresponding probability allocation ~palt . Note that each i ∈ N+ will be
contained in the panel selected in this way with probability at least 1/|N+| ≥ 1/n.
Clearly, each agent in N− must receive selection probability 0 in both ~plex and ~palt .

Since the next-lower selection probability of ~palt is at least 1/n, and since the next-
lower selection probability of ~plex is p < 1/n, ~palt would be leximin-fairer than ~plex ,
contradiction.

References

47. Courant, D. Sortition and Democratic Principles: A Comparative Analysis in Legis-
lature by Lot: Transformative Designs for Deliberative Governance (Verso, 2019).

48. Rae, D. W. Equalities (Harvard University Press, 1989).

49. Mansbridge, J. Should Blacks Represent Blacks and Women Represent Women? A
Contingent “Yes”. J. Politics 61, 628–657 (1999).

50. Gleixner, A. et al. MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer
Programming Library. Math. Program. Comput. (2021).

51. Dowlen, O. Sorting Out Sortition: A Perspective on the Random Selection of Political
Officers. Political Stud. 57, 298–315 (2009).

52. Steel, D., Bolduc, N., Jenei, K. & Burgess, M. Rethinking Representation and
Diversity in Deliberative Minipublics. J. Deliberative Democracy 16, 46–57 (2020).

53. Dowlen, O. The Political Potential of Sortition: A Study of the Random Selection of
Citizens for Public Office (Imprint Academic, 2008).

54. Garey, M. R. & Johnson, D. S. Computers and Intractability: A Guide to the Theory
of NP-Completeness (Freeman, 1979).

55. Adleman, L. Two Theorems on Random Polynomial Time. In Proc. IEEE SFCS,
75–83 (1978).

56. Karp, R. M. & Lipton, R. J. Some Connections between Nonuniform and Uniform
Complexity Classes. In Proc. ACM STOC, 302–309 (1980).

57. Bradley, S. P., Hax, A. C. & Magnanti, T. L. Applied Mathematical Programming
(Addison-Wesley, 1977).

58. Gondzio, J., González-Brevis, P. & Munari, P. Large-Scale Optimization with the
Primal-Dual Column Generation Method. Math. Program. Comput. 8, 47–82 (2016).

59. Constantino, M., Klimentova, X., Viana, A. & Rais, A. New insights on integer-
programming models for the kidney exchange problem. Eur. J. Oper. Res. 231,
57–68 (2013).

60. Dickerson, J. P., Manlove, D. F., Plaut, B., Sandholm, T. & Trimble, J. Position-
Indexed Formulations for Kidney Exchange. In Proc. ACM EC, 25–42 (2016).

39



61. Nace, D. & Orlin, J. B. Lexicographically Minimum and Maximum Load Linear
Programming Problems. Oper. Res. 55, 182–187 (2007).

62. Schrijver, A. Theory of Linear and Integer Programming (Wiley, 1986).

63. Norwegian Centre for Research Data. European Social Survey Round 8 Data, data
file edition 2.1 (2016).

64. Thomson, W. Introduction to the Theory of Fair Allocation in Handbook of Compu-
tational Social Choice 261–283 (Cambridge University Press, 2016).

65. Elkind, E., Faliszewski, P., Skowron, P. & Slinko, A. Properties of Multiwinner
Voting Rules. Soc. Choice Welf. 48, 599–632 (2017).

66. Conitzer, V., Freeman, R. & Shah, N. Fair Public Decision Making. In Proc. ACM
EC, 629–646 (2017).

40


	assemblies
	Fair algorithms for selecting citizens’ assemblies

	Algorithmic framework

	Definitions

	Formulating the optimization task

	Solving the optimization task


	Deployable selection algorithm

	Effect of adopting LEXIMIN over LEGACY

	Discussion

	Online content

	Fig. 1 Algorithm optimizing a fairness measure F.
	Fig. 2 Selection probabilities.
	Fig. 3 Using LEXIMIN output to select a panel via a live uniform lottery.
	Extended Data ﻿Fig. 1 Selection probabilities for remaining instances.
	Extended Data ﻿Fig. 2 Selection probabilities up to the 100th percentile.
	Extended Data ﻿Fig. 3 Overrepresentation and LEGACY selection probabilities.
	Extended Data ﻿Fig. 4 Representation of feature intersections.
	Table 1 List of instances on which algorithms were evaluated.
	Extended Data Table 1 Gini coefficient and geometric mean of LEGACY and LEXIMIN.
	Extended Data Table 2 Share below LEXIMIN minimum probability.


	41586_2021_3788_MOESM1_ESM
	Fair algorithms for selecting citizens’ assemblies

	SpringerNature_Nature_3788_ESM.pdf
	Illustration of Definitions with Examples
	Model
	Stratified Sampling
	Desiderata for Sortition in the Political Science Literature
	Properties of Idealized Sortition
	Beyond Idealized Sortition, and the Objective of Maximal Fairness

	Related Work on Panel Selection
	Computational Hardness
	Small Optimal Portfolios Exist
	Algorithmic Framework
	Algorithmic Framework Overview and Context
	Applications of Framework to Other Problems
	Conditions for Applying the Framework
	Definition of Framework
	Termination and Correctness of Framework

	Fairness Measures
	Maximizing Egalitarian Welfare
	Minimizing the Gini Coefficient
	Minimizing the Atkinson Indices for 0 < < 1
	Maximizing Nash Social Welfare

	Description of LexiMin
	Overview
	Definition of LexiMin
	Proofs

	Description of Legacy
	Description of Other Existing Algorithms
	Instances where Legacy is Unfair
	Comparing Legacy and LexiMin on Intersectional Representation
	Level of Intersectional Representation in Legacy versus LexiMin
	Explanation for Intersectional Representation in Legacy and LexiMin
	Achieving Proportional Representation for Intersections with Our Framework

	Axiomatic Analysis
	Population Monotonicity
	Committee Monotonicity
	Equal Treatment of Equals
	Proportionality






