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ABSTRACT
In human-robot teams, humans often start with an inaccu-
rate model of the robot capabilities. As they interact with
the robot, they infer the robot’s capabilities and partially
adapt to the robot, i.e., they might change their actions
based on the observed outcomes and the robot’s actions,
without replicating the robot’s policy. We present a game-
theoretic model of human partial adaptation to the robot,
where the human responds to the robot’s actions by max-
imizing a reward function that changes stochastically over
time, capturing the evolution of their expectations of the
robot’s capabilities. The robot can then use this model to
decide optimally between taking actions that reveal its ca-
pabilities to the human and taking the best action given the
information that the human currently has. We prove that
under certain observability assumptions, the optimal pol-
icy can be computed efficiently. We demonstrate through a
human subject experiment that the proposed model signifi-
cantly improves human-robot team performance, compared
to policies that assume complete adaptation of the human
to the robot.

1. INTRODUCTION
A lot of work in robotics has focused on enabling robots to

perform useful tasks for and with people. One of the main
goals has been to make robots part of our everyday life, help-
ing people as effective members of human-robot teams. In
order to leverage recent advances in robot capabilities, hu-
man teammates should know what the robot can and cannot
do: the robot’s perceived capability should match its true
capability.

Prior work has shown that there is often a disconnect
between users’ perceptions and a robot’s true capability,
mainly due to lack of experience with working with robots
and to the influence of popular culture [8, 12, 28]. This gap
in expectation can significantly reduce human-robot team
performance [15].

For example, we consider the table-clearing task illus-
trated in Fig. 1. The user and the robot are tasked with
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Figure 1: Top: User performs a repeated table-clearing task
with the robot. The robot fails intentionally in the beginning
of the task, in order to reveal its capabilities to the human
teammate. Bottom-left: The robot drops the blue bin off the
table while moving towards the left bottle. Bottom-right:
The torques applied exceed their limits when the robot at-
tempts a grasp at an extended configuration, and the robot
stops moving.

clearing the table by placing items in the bins. The clearing
task is repeated a number of times. We call each repetition
a round. The user lacks the following information about the
robot:
• The robot does not know where the green bin is. If the

robot moves, it may collide with the green bin, inadver-
tently pushing the adjacent blue bin off the table.
• The robot cannot lift the bottle that is farthest away from

its base: the bottle is filled with water and the torques re-
quired for a lifting motion exceed the robot’s motor torque
limits. If the robot attempts to lift the bottle, the robot’s
control software will abort and the robot will stop moving.

Nikolaidis et al. [25] proposed a human-robot mutual adap-
tation formalism, where the robot builds a model of human
adaptation to guide the user towards an optimal — with re-
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spect to some objective performance metric — way of com-
pleting the task. Every time the human and the robot take
an action, the user was modeled as either completely adopt-
ing the robot policy as her1own with some probability, or
keeping her current policy. This probability was defined as
the user’s adaptability, which indicated her willingness to
adapt to the robot. The formalism allowed the robot to
infer the adaptability of its teammate through interaction,
and guide the user towards an optimal policy unknown to
them in advance.

While in [25], the human was modeled as completely
adopting the robot’s optimal policy with some probability, in
many collaborative settings human adaptation can be more
subtle. We use the table-clearing task described above as an
example, and we let the robot attempt to grasp the bottle
that is closest to its base, dropping the blue bin in the pro-
cess. This will likely cause the human teammate to change
her actions: in the next round, she will move the green or
blue bin out of the robot’s way. However, without observ-
ing the robot fail in lifting the other bottle, she still has no
information about which action to take (i.e. emptying the
bottle of water), if the robot attempts to lift the bottle.

This is an example, where the human may change their ac-
tions based on the robot actions, while not completely adopt-
ing the robot’s optimal policy.

In this paper, we propose a game-theoretic model of hu-
man partial adaptation to the robot. We assume that the
robot knows a “true” objective metric of team performance
in the form of a reward matrix. We base this assumption
on insights from early work on Stackelberg security games,
which used domain expert knowledge to specify the reward
of the defender/leader (AI agent) and the attacker/follower
(human), showing remarkable results [32].

We model the human as following a best-response strategy
to the robot action, based on their own, possibly distorted,
reward function. The human reward function changes over
time, as the human observes the outcomes of the robot and
her own actions.

The model allows the robot to reason over how the human
expectations of the robot capabilities will change based on
its own actions. The robot uses this model to compute an
optimal policy, which enables it to decide optimally between
revealing information to the human and choosing the best
action given the information that the human currently has.

We prove that, if the robot can observe whether the user
has learned at each round, the computation of the optimal
policy is simple (Lemmas 1 and 2), and can be done in time
polynomial in the number of robot actions and the number
of rounds (Theorem 1).

We show through a human subject experiment in a table-
clearing task that the proposed model significantly improves
human-robot team performance, compared to policies that
assume complete human adaptation to the robot. Addition-
ally, we show through simulations that the proposed model
performs well for a variety of randomly generated tasks.
This is the first step towards modeling the change of human
expectations of the robot capabilities through interaction,
and integrating the model into robot decision making in a
principled way.

1We use the female pronoun for the human, and the neuter
pronoun for the robot.

2. RELEVANT WORK
A lot of research in robotics has focused on one-way robot

adaptation to the human, where the robot learns a hu-
man skill or preference [1–4, 9, 24, 27]. Other approaches
enable robots to reduce the uncertainty over human in-
tention through information-seeking actions [6, 7, 20, 22, 26],
through negotiation with the human [19], or through de-
composition of a complex task into subtasks [23]. There
has also been work in human adaptation to the robot in so-
cial [13,14,18,29], and physical human-robot interaction [17].

Li et al. [21] suggest that the human-robot collaboration
problem in physical human-robot interaction can be mod-
eled as a two-player game. They assume that the human
partner exerts a force by optimizing an unknown cost func-
tion; the robot’s cost-function is then updated based on the
gradient of the error between the actual force applied by the
human and the force predicted by the robot’s cost function,
until an equilibrium is achieved. Menell et al. [16] define a
cooperative inverse reinforcement learning (CIRL) problem
as a partial information two-player game, where the robot
maximizes the unknown human reward in a cooperative set-
ting. They show that solving the game results in active
teaching and active learning behaviors. The framework has
yet to be evaluated in a human subject experiment. In con-
trast to both papers, in our work the roles are reversed,
since the human learns the robot reward through interac-
tion. In a repeated collaborative task with different actions,
human adaptation can be more subtle than in a force ex-
change scenario. Additionally, the learner (human) does not
run an inverse reinforcement learning algorithm. Instead,
we model the human as learning with some probability the
best-response to the robot action observed. This captures
how human actions change over time based on their up-
dated expectations of the robot capabilities, and it enables
the robot to decide optimally between communicating the
true rewards to the human and maximizing the immediate
reward given the current human strategy.

There is also relevant work in the social navigation do-
main: In the manuscript by Trautman et al. [33], human
and robot trajectories are jointly planned as the optimum
of a reward function that combines goal completion and col-
lision avoidance. Sadigh et al. [31] model the interaction of
a human driver with an autonomous car as a dynamical sys-
tem, where the human follows a best-response strategy to
the robot actions. By contrast, we focus on a repeated task
in a collaborative setting where the human reward function
may change over time, as the human observes the outcomes
of the robot and her own actions.

We draw upon insights from previous work on a particu-
lar class of Stackelberg games [10], the repeated Stackelberg
security games [5]. In this setting, the follower observes the
leader’s possibly randomized strategy, and chooses a best-
response. We extend this model to a human-robot collabo-
ration setting, where the leader is the robot and the follower
is the human, and we model human adaptation by having
the follower’s reward stochastically changing over time.

3. FORMAL MODEL
Consider a two-player game represented by the player set

N = {R,H}, where player R is the Robot and player H is
the Human. Each of them has a finite set of actions denoted
by AR = {aR1 , . . . , aRm} and AH = {aH1 , . . . , aHn} respectively.
The payoff associated with each pair of actions is uniquely
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identified by a matrix R = [ri,j ], (i, j) ∈ [m]× [n], where the
entry ri,j denotes the reward2 for the action pair (aRi , a

H
j )

chosen by these two players. We denote the reward vector
corresponding to row i by ri, i.e., ri = (ri,1, . . . , ri,n). Im-
portantly, the same reward is experienced together by both
players. Therefore this is an identical payoff game where the
goal is to maximize the total reward obtained in T (finite)
rounds of playing this repeated game. If the reward matrix
was perfectly known to both the agents, they would have
played the action pair that gives the maximum reward in
each round.

However, we assume that in the beginning of the game,
the robot has perfect information about the reward matrix,
whereas the human has possibly incorrect information (cap-
tured by a reward matrix RH which the human believes to
be the true reward matrix). In different rounds of the game,
the human probabilistically learns different entries of this
matrix and picks action accordingly. We will assume that
the human is capable of taking the optimal action given her
knowledge of the payoffs, e.g., if a specific row of this matrix
is completely known to the human and the robot plays the
action corresponding to this row,3 the human will pick the
action that maximizes the reward in this row. However, if
the entries of a row are yet to be learned by the human, the
human picks an action according to arg max rHi , where rHi
is the i-th row of RH .

The only aspect of this game that may change over time
is the state of the human, which we denote by xt, t ∈ [T ].
Therefore, the state of the game is simply the state of the
human agent. We denote the state space of the game as X ; it
will be instantiated below in different models of information
dissemination.

A policy π = (π1, . . . , πT ) is a sequence of robot action
functions πt : X → AR, t ∈ [T ]. The decision problem of
the robot is to find the optimal policy π∗ = (π∗1 , . . . , π

∗
T )

that maximizes the expected payoff U1 starting from round
1, defined as follows. Denoting the strategy of the human
by sH : AR ×X → AH.

U1(π|x1) , E

[
T∑
t=1

R(πt(xt), s
H(πt(xt), xt))

∣∣∣∣∣x1
]

π∗ ∈ argmax
π

U1(π|x1)

(1)

4. APPROACH
We consider a setting where, in each round, the robot

plays first by choosing a row. We model the strategy of the
human sH : AR × X → AH as maximizing a human reward
function RH. In other words, the human best responds to the
robot action, according to the (possibly erroneous) way she
currently perceives the payoffs. The human reward matrix
RH evolves over time, as the human learns the “true” reward
R through interaction with the robot. We propose a model
of human partial adaptation, where the human learns with
probability α the entries of row ri that correspond to the
robot action aRi played, and with probability (1 − α) none
of the entries. We consider the following models, based on
when the human learning occurs, and on whether the robot
directly observes if the human has learned.

2We will use the terms ‘reward’ and ‘payoff’ interchangeably.
3We will refer to this robot action as playing a row.

α 1− α

RHR aH

aR

aH

aR

...

t

t+ 1

M1

M2,3

Figure 2: Models of human partial adaptation, described in
Sec. 4. The human learns with probability α the entries of
row ri that correspond to the robot action aRi played, and
with probability 1− α none of the entries. The learning oc-
curs before her action (learning from robot action – M1), or
after her action (learning from experience – full observability
(M2) or partial observability (M3)).

M1. The human learns the payoffs immediately after the
robot plays a row, and before she takes her own action. The
robot can infer whether the human has learned the row,
by observing the reward after the human has played in the
same round. We call this learning from robot action, where
the robot has full observability of the human internal state.
This model is studied in Sec. 6.1.

M2. The human learns the payoffs associated with a row
after she plays in response to the robot’s action. The robot
can observe whether the human has learned before the start
of the next round, for instance by directly asking the hu-
man, or by interpreting human facial expressions and head
gestures [11]. We call this model learning from experience,
where the robot has full observability of the human internal
state. This model is studied in Sec. 6.2.

M3. Identically to model M2, the human learns a row after
her action in response to the robot action. However, the
robot does not immediately observe whether the human has
learned, rather infers it through the observation of human
actions in subsequent rounds of the game. This is a case of
learning from experience, partial observability.

We note that we do not define a model for learning from
robot action, partial observability case, since the robot can
always directly observe whether the human has learned,
based on the reward resulting from the human action in
the same round.

Figure 2 shows the different models. In Section 5, we
discuss the general case of partial observability (Model
M3) and formulate the problem as a Markov Decision Pro-
cess [30]. Computing the optimal policy in this case is ex-
ponential in the number of robot actions m. However, when
the robot has full observability of the human state (Models
M1,M2), the optimal policy has a special structure and can
be computed in time polynomial in m and T (Section 6).

5. THEORY: PARTIAL OBSERVABILITY
In this section we examine the hardest case, where the

human learns the payoffs associated with the row after their
choice of actions, and the robot cannot directly observe
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whether the human has learned the payoffs (model M3). In-
stead, the robot infers whether the human has learned the
row by observing the human response in subsequent rounds
of the game.

While the human state is partially observable, we can ex-
ploit the structure of the problem and reduce it to a Markov
Decision Process based on the following observation: the
probability of the human having learned a row is either 0
when it is played for the first time; α after it is played by
the robot and the human responds sub-optimally; and 1 after
the the human has played the actual best-response strategy
(according to R) for that row (which means she has learned
the true rewards in the previous round).

We define a Markov decision process in this setting as a
tuple {X , AR, P,R, T}, where:
• X ∈ {0, ψ, 1}m is a finite set of human states. A state
x is represented by a vector (x1, x2, ..., xm), where xi ∈
{0, ψ, 1} and i is the corresponding row in the matrix.
The starting state is xi = 0 for each row i. xi = ψ indi-
cates that the robot does not know whether human has
learned row i or not. In this state, the human plays the
best response in that row with probability α, or an action
defined by the strategy sH of the human with probability
(1−α). If the human plays best-response, then the robot
knows that human has learned row i, thus the entry for
that row is xi = 1.
• AR = {aR1 , . . . , aRm} is a finite set of robot actions.
• P : X × AR −→ Π(X ) is the state transition function,

indicating the probability of reaching a new state x′ from
state x and action aRi . State x transitions to a new state
x′ with all vector entries identical, apart from the element
xi corresponding to the row played. If the robot plays i for
the first time (xi = 0), the corresponding entry in the next
state x′ deterministically becomes x′i = ψ, since the robot
no longer knows whether the human has learned the pay-
offs for that row. If xi = ψ, the human may have learned
that row in the past and play the best-response strategy,
leading to a transition to x′i = 1 with probability α. If
the human does not play the best-response strategy, the
robot still does not know whether they will have learned
the payoffs after the current round, thus x′i = ψ with
probability (1 − α). If xi = 1, the corresponding entry
in all subsequent states will be x′i = 1, i.e., if the human
learns a row, we assume that she remembers the row in
the future.
• R : AR ×AH −→ R is the reward function, giving the im-

mediate reward gained by performing a human and robot
action. Note that if action i is played and the state has
xi = ψ, the reward will be based on the best response in
row i of R with probability α, and on row i of RH with
probability (1− α) — we consider the expected reward.
• T is the number of rounds.

The robot’s decision problem is to find the optimal policy
π∗ = (π∗1 , . . . , π

∗
T ) to maximize the expected payoff U1 as

defined in Eq. 1.
We observe that in the current formalism, the size of the

state-space is |X | = 3m, where m is the number of robot
actions. Therefore, the computation of the optimal policy
requires time exponential in m. In Section 6, we show that
for the case where the robot can observe whether the human
has learned the payoffs, the optimal policy can be computed
in time polynomial in m and T .

6. THEORY: FULL OBSERVABILITY
In this section, we assume that the robot can observe

whether the human has learned the payoffs. We instanti-
ate state xt as a vector (xt,1, xt,2, . . . , xt,m), where each xt,i
is now a binary variable in {0, 1} denoting the robot’s knowl-
edge in round t of whether row i is learned by the human.
In contrast to Sec. 5, there is no uncertainty about whether
the human has learned or not (therefore no ψ state).

6.1 Learning from Robot Action
This is the scenario where the human might learn the

payoffs immediately after the robot plays a row, and before
she takes her own action (Model M1 in Sec. 4). Clearly,
the robot can figure out if the human learned the row by
observing the reward for that round. Our algorithmic results
in this model strongly rely on the following lemma.

Lemma 1. In model M1, if, under the optimal policy π∗,
there exists τ ∈ {2, . . . , T} and i ∈ [m] such that xτ,i =
1 and max ri > max rj for all j such that xτ,j = 1, then
π∗t (xt) = aRi for all τ 6 t 6 T and for all xt = xτ .

This lemma says that the optimal policy for the robot is to
pick the action aRi when i is the row that yields the maxi-
mum reward among the rows already learned by the human.
As we will show in detail later, this directly leads to a com-
putationally efficient algorithm, via the following insight: if
the robot plays a row and this row is successfully revealed to
the human, the optimal policy for the robot is to keep playing
that row until the end of the game.

The main idea behind the proof below is: if at round t−1
the optimal policy plays row 2, and that row is revealed,
then it will not explore the unrevealed (higher rewarding)
row 1 afterwards. The reason is that if the optimal policy
chose to explore row 1 at some time in the future — which
is a contradiction to the lemma — then playing row 1 at
round t − 1 would have been optimal, therefore an optimal
policy would not have played row 2 at round t− 1.

Proof of Lemma 1. Assume for contradiction that the
lemma does not hold, and let t be the last round in which
the optimal policy violates the lemma, i.e., the last round in
which there are i, j ∈ [m] such that xt,i = 0 and xt,j = 1, but
the optimal policy plays row i. Without loss of generality
assume that these i and j are rows 1 and 2, respectively.
For all rounds from t+ 1 to T , it holds (by the choice of t)
that if row i is revealed to the human, the optimal policy
will continue playing aRi (if there are multiple such rows, it
plays the one with highest reward).

Let the maximum rewards corresponding to rows 1 and 2
be R1 and R2, respectively, i.e., Rk = max rk. We assume
w.l.o.g. that row 2 has the highest maximum reward among
all revealed rows. We can also assume that R1 > R2, since
a policy that moves away from a row that is simultaneously
known and more rewarding is clearly suboptimal.

If a row is not learned, the reward associated with ac-
tions aR1 and aR2 are C1 and C2, where Ck = rk[argmax rHk ].
Clearly, C1 6 R1 and C2 6 R2. Since the optimal policy
chose aR1 in round t over aR2 , the expected payoff of choosing
aR1 in round t must be larger than that of aR2 , i.e.,

α(R1 + Ut+1(π∗|(1, 1, . . .))) + (1− α) · (C1 + Ut+1(π∗|(0, 1, . . .)))
> R2 + Ut+1(π∗|(0, 1, . . .)),

where the first term on the LHS shows the expected payoff
if row 1 is learned in round t, and the second term shows
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the payoff when it is not. It follows that

α(R1 +R1 · (T − t− 1)) + (1− α) · (C1 +R2 · (T − t− 1))

> R2 +R2 · (T − t− 1).
(2)

The implication holds because from round t+ 1, we assume
(by the choice of t) that the optimal policy continues playing
the best action among the revealed rows. We make the above
inequality into an equality by adding a slack variable ε > 0
as follows.

αR1 · (T − t) + (1− α)(C1 +R2 · (T − t− 1))

= R2 +R2 · (T − t− 1) + ε. (3)

Denote the LHS of the above equality as ρ1. Note that this is
the assumed optimal value of the objective function at round
t when the state xt is (0, 1, . . .), i.e., Ut(π

∗|(0, 1, . . .)) = ρ1.
Rearranging the expressions above, we get,

αR1 · (T − t) + (1−α)C1 = R2 +αR2 · (T − t− 1) + ε. (4)

We claim that if the optimal policy chooses the action aR1
at round t, then the expected payoff in round t − 1 from
choosing the action aR1 would have been larger than that of
the action aR2 . If our claim is true, then the current policy,
which chose aR2 at t − 1, cannot be optimal, and we reach
a contradiction. To analyze the decision problem in round
t− 1, we need to consider two possible states of the game in
this round.

Case 1: xt−1 = (0, 0, . . .). In this state, playing aR1 gives an
expected payoff of

α(R1 + Ut(π
∗|(1, 0, . . .))) + (1− α)(C1 + Ut(π

∗|(0, 0, . . .)))
> α(R1 +R1(T − t)) + (1− α)(C1 + Ut(π

∗|(0, 0, . . .))).
(5)

The inequality holds because in state (1, 0, . . .), playing
aR1 yields at least R1 in every subsequent round. Playing aR2
in round t− 1 yields,

α(R2 + ρ1) + (1− α)(C2 + Ut(π
∗|(0, 0, . . .))). (6)

This expression is similar to the RHS of Equation (5), except
that the expected payoff at xt = (0, 1, . . .) is assumed to be
ρ1. We claim that the expression on the RHS of Eq. (5) is
larger than the expression in Eq. (6), for which we need to
show that

α(R1 +R1(T − t)) + (1− α)C1

> α(R2 + ρ1) + (1− α)C2

⇐⇒ αR1 +R2 + αR2 · (T − t− 1) + ε

> α(R2 +R2 +R2 · (T − t− 1) + ε) + (1− α)C2

⇐⇒ αR1 +R2 + ε > αR2 + αR2 + (1− α)C2 + αε.

In the first equivalence, we substitute the expression from
Eq. (4) on the LHS and the expression of ρ1 from Eq. (3)
on the RHS. The second equivalence holds by canceling out
one term. We see that the final inequality is true since R2 >
C2, R1 > R2, and 0 < α < 1.4

Case 2: xt−1 = (0, 1, . . .), in this state playing the action aR1
gives an expected payoff of at least

α(R1 +R1 · (T − t)) + (1− α)(C1 + Ut(π
∗|(0, 1, . . .)))

= α(R1 +R1 · (T − t)) + (1− α)(C1 + ρ1). (7)

4If α = 1, playing the row arg maxRi is optimal and the
lemma holds trivially. For α = 0, the lemma is vacuously
true. So, we assume 0 < α < 1 w.l.o.g.

This is similar to the RHS of Eq. (5) except that now we
can replace Ut(π

∗|(0, 1, . . .)) with ρ1. On the other hand,
the expected payoff of the action aR2 in round t− 1 is given
by R2+ρ1 — because at state (0, 1, . . .) in round t−1, action
aR2 gives R2 deterministically, since the human knows row
2. The state remains the same even after reaching round t.
The expected payoff at this round for this state is assumed
to be ρ1. Now to show that the expression in Eq. (7) is
larger than R2 + ρ1, we need to show that

α(R1 +R1 · (T − t)) + (1− α)(C1 + ρ1) > R2 + ρ1

⇐⇒ αR1 + αR1 · (T − t) + (1− α)C1 > R2 + αρ1

⇐⇒ αR1 +R2 + αR2 · (T − t− 1) + ε

> R2 + αR2 + αR2 · (T − t− 1) + αε

⇐⇒ αR1 + ε > αR2 + αε

The first equivalence comes from reorganizing the inequal-
ity. The second equivalence is obtained through substitu-
tion using Eqs. (3) and (4). The third equivalence follows
by canceling out two terms. The last inequality is true since
R1 > R2 and 0 < α < 1.

To summarize, we have reached a contradiction in both
cases, which are exhaustive. This proves the lemma.

6.2 Learning from Experience
Recall that in model M2, the human learns with proba-

bility α all payoffs associated with a row after she plays her
action in response to the robot playing an unrevealed row.
She does not learn with probability 1−α. This model is the
same as model M3 of Sec. 5, with an additional assump-
tion: before the robot takes its next action, it can observe
the current state.

We show that in this setting too, the optimal policy has a
special structure similar to that under model M1 (Sec. 6.1),
which can be computed in time polynomial in m and T .

Lemma 2. In model M2, if, under the optimal policy π∗,
there are τ ∈ {2, . . . , T} and i ∈ [m] such that xτ,i = 1 and
max ri > max rj for all j such that xτ,j = 1, then π∗t (xt) =
aRi for all τ 6 t 6 T and for all xt = xτ .

The proof is similar to the proof of Lemma 1. However,
the expected payoffs and the corresponding inequalities are
different. Therefore, we provide a proof sketch that identifies
the differences from the previous proof.

Proof of Lemma 2 (sketch). As before, the idea of
the proof is to show that if the optimal policy changes its
action from playing the revealed row that yields maximum
reward, aR2 , to playing an unrevealed row of higher maximum
reward, aR1 , for the last time in round t, then it must have
done so in its previous round, leading to a contradiction. In
model M2, the human does not observe the payoffs of the
row played by the robot before she plays her own action.
Therefore, we can assume w.l.o.g. that when an unrevealed
row is played, its reward is no larger than the maximum re-
ward of that row, e.g., C1 6 R1 if row 1 is played. Hence, if
the optimal policy changes its action from aR2 to aR1 in round
t when xt = (0, 1, . . .), the inequality equivalent to Eq. (2)
must be

C1 + αR1 · (T − t− 1) + (1− α)R2 · (T − t− 1)

> R2 +R2 · (T − t− 1). (8)
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After adding the slack variable, we get,

ρ1 , C1 + αR1 · (T − t− 1) + (1− α)R2 · (T − t− 1)

= R2 +R2 · (T − t− 1) + ε

=⇒ C1 + αR1 · (T − t− 1) = R2 + αR2 · (T − t− 1) + ε.

In Case 1, the expected payoff of playing aR1 is at least:
C1 + αR1 · (T − t) + (1− α)Ut(π

∗|(0, 0, . . .)). The expected
payoff of playing aR2 is: C2 + αρ1 + (1− α)Ut(π

∗|(0, 0, . . .)).
We show that the first expression is larger than the second,
i.e.,

C1 + αR1 · (T − t) > C2 + αρ1

⇐⇒ αR1 +R2 + αR2 · (T − t− 1) + ε

> C2 + αR2 + αR2 · (T − t− 1) + αε

⇐⇒ αR1 +R2 + ε > C2 + αR2 + αε.

The final inequality holds since R1 > R2 > C2 and 0 < α <
1.

Similarly for Case 2, the expected payoff of playing aR1 is
at least:

C1 + αR1 · (T − t) + (1− α)Ut(π
∗|(0, 1, . . .))

> C1 + αR1 · (T − t) + (1− α)R2 · (T − t).

On the other hand, the expected payoff of playing aR2 is
R2 +ρ1. We again show that the RHS of the first expression
is larger than the second, i.e.,

C1 + αR1 · (T − t) + (1− α)R2 · (T − t) > R2 + ρ1

⇐⇒ C1 + αR1 · (T − t− 1) + αR1 + (1− α)R2 · (T − t− 1)

+ (1− α)R2 > R2 +R2 +R2 · (T − t− 1) + ε

⇐⇒ R2 +R2 · (T − t− 1) + ε+ αR1 + (1− α)R2

> R2 +R2 +R2 · (T − t− 1) + ε

⇐⇒ αR1 > αR2,

which holds since R1 > R2 and 0 < α < 1.

Algorithm 1 Optimal Policy: Full Observability

Input: matrix R, time horizon T , parameter α
Output: optimal action a∗t in each round t
Ut(xt), a

∗
t (xt) = OptPolicy(xt, t)

procedure OptPolicy(xt, t)
if t > T then

return (0, None)

else
if xt has at least one 1 then

find a row k∗ s.t. k∗ ∈ argmax
k:xt,k=1

max rk

return (max rk∗ × (T − t), k∗)
else

find a row
i∗ ∈ argmax

k∈[m]

[α(Rk + Ut+1(ek)) + (1− α)(Ck

+ Ut+1(0))]
and its value ui∗ (for model M1)
OR
find a row
i∗ ∈ argmax

k∈[m]

[Ck +αUt+1(ek) + (1−α)Ut+1(0)]

and its value ui∗ (for model M2)
return (ui∗ , i

∗)

α 1− α

RH aH

aR

(a)

α 1− α

RH aH

aR

(b)

Figure 3: The robot reward matrix R is in dark shade and
the human reward matrix RH in light shade. (a) The robot
reveals its whole reward matrix with probability α. (b) The
robot reveals the row played (in this example row 2) with
probability α.

6.3 Design of an efficient algorithm
As advertised, using Lemmas 1 and 2, we can easily prove

the following theorem.

Theorem 1. In models M1 and M2, an optimal policy
can be computed in polynomial time.

Indeed, the algorithm is specified as Algorithm 1. Here
ek denotes the m-dimensional standard unit vector in direc-
tion k. This algorithm runs in time polynomial in m and
T since the inner else condition does not branch into two
independent computations. This is because when at least
one coordinate of xt is 1, the inner if condition is met and
the expected payoff in that case is computed without recur-
sion. Therefore, in every round the number of computations
is O(m), and the algorithm has complexity O(mT ).

7. FROM THEORY TO USERS
We conduct a human subject experiment to evaluate the

proposed model in a table-clearing task (Fig. 1). We fo-
cus on the case where the human learns from experience
(Models M2,M3). We are interested in showing that the
policies computed using the partial adaptation model will
result in better performance than policies that model the
human as completely adapting to the robot, which is an
assumption used in previous work on human-robot mutual
adaptation [25].

7.1 Manipulated Variables
Observability. We used two settings — one where the
robot does not directly observe whether the human has
learned (Sec. 5), and one where the robot observes directly
whether the human has learned (Sec. 6.2).
Adaptation. We compared the proposed partial adapta-
tion model with a model of complete adaptation, where the
robot models the human as learning all rows of the payoff
matrix with probability α after a row is played, instead of
learning only the row played (Fig. 3a).
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7.2 Hypothesis
We hypothesize that the robot policies that model the hu-

man as partially adapting to the robot will perform better
than the policies that assume complete adaptation of the hu-
man to the robot.

7.3 Experiment Setting
Table-clearing task. We test the hypothesis in the table-
clearing task of Fig. 1, where a human and a robot collabo-
rate to clear the table from objects. In this task, the human
can take any of the following actions: {pick up any of the
blue cups and place them on the blue bin, change the loca-
tion of any of the bins, empty any of the bottles of water}.
The robot can either remain idle or pick up any of the bot-
tles from the table and move them to the red bin. The goal
is to maximize the number of objects placed in the bins.

The human does not have in advance the following infor-
mation about the robot: (1) the robot does not know the
location of the green bin. Therefore, when the robot at-
tempts to grab one of the bottles, it may push the green
bin, dropping the blue bin off the table. (2) The robot will
fail if it picks up the bottle that is farthest away from it,
if that bottle has water in it. This is because of its motor
torque limits.
Model parameters. This information is represented in
the form of a payoff matrix R. The entries correspond to the
number of objects in the bins after each human and robot
action. Table 1 shows part of R; it includes only the subset
of human actions that affect the outcome. For instance, if
the robot starts moving towards the bottle that is closest to
it (action ‘Pick up closest’) and the human does not move
the green or blue bin out of the way, the robot will drop
the blue bin off the table, together with any blue cups that
the human has placed. Therefore, at the end of the task
only the bottle will be cleared from the table, resulting in a
reward of 1. If the robot attempts to pick up both bottles
(action “pick up both”) and the human does not empty the
bottle of water before the robot grasps it, the robot will fail,
resulting in a reward of 0. If the human has emptied the
bottle and moved the blue bin (action “Clear cups & move
bin & empty bottle”), the robot will successfully clear both
bottles without dropping the bin, resulting in a reward of 4
(2 bottles in the red bin and 2 cups in the blue bin).

In the beginning of the task, we assume that the human
response to all robot actions will be “Clear cups”; since the
human has not observed the robot dropping the bin or failing
to pick up the bottle, she has no reason to move the bin or
empty the bottle of water. We also assume that she does not
learn any payoffs if the robot remains idle (“Noop” action).
We set the probability of learning α = 0.9, since we expected
most participants to learn the best-response to the robot
actions after observing the outcome of their actions.
Procedure. The experimenter first explained the task to
the participants and informed them about the actions that
they could take, as well as about the robot actions. Partic-
ipants were told that the goal was to maximize the number
of objects placed in the bins at each round. They performed
the task three times (T = 3). In the full observability
setting, the experimenter asked the participants after each
round, what would their action be if the robot did the same
action in the next round. The experimenter then inputted
their response (learned or not learned) into the program
that executed the policy. When the robot failed to pick up

the bottle, the experimenter informed them that the robot
had failed. Participants were told that the error message
displayed in the terminal was: “The torque of the robot
motors exceeded their limits.” This is the generic output
of our ROS-based hardware interface, when the measured
torques exceed the manufacturer limits. We added a short,
general explanation about how torque is related to distance
and applied force. At the end, participants answered
open-ended questions about their experience in the form of
a video-taped interview.

Clear cups Clear cups &
move bin

Clear cups &
move bin &

empty bottle

Noop 2 2 2
Pick up closest 1 3 3
Pick up both 0 0 4

Table 1: Part of payoff matrix R for table-clearing task. The
table includes only the subset of human actions that affect
performance.

7.4 Subject Allocation
We recruited 60 participants from a university campus.

We chose a between-subjects design in order to avoid biasing
users towards policies from previous conditions.

8. RESULTS AND DISCUSSION
Analysis. We evaluate team performance by the accumu-
lated reward over the three rounds of the task (Fig. 4-left).
We observe that the mean reward in the partial adapta-
tion policy was 42% higher than that of the complete adap-
tation policy in the partial observability setting, and 52%
higher than that of the complete adaptation policy in the
full observability setting. A factorial ANOVA showed no
significant interaction effects between the observability and
adaptation factors. The test showed a statistically signifi-
cant main effect of adaptation (F (1, 56) = 18.58, p < 0.001),
and no significant main effect of observability. These results
support our hypothesis.

The difference in performance occurred because in the
complete adaptation model the robot erroneously assumed
that the human had learned the best-response to the “Pick
up both”action, after the robot played the row“Pick up clos-
est”. In this section, we examine the partial and complete
adaptation policies in the partial-observability setting. The
interpretation of the robot actions in the full-observability
setting is similar, and we omit it because of space limita-
tions. The robot chooses the action“Pick up both” for round
T = 1 (as well as for T = 2, 3) in the partial adaptation con-
dition5, since the loss of receiving zero reward at T = 1 is
outweighed by the rewards of 4 in subsequent rounds, if the
human learns the best-response to that action, which occurs
with high probability (α = 0.9). On the other hand, the
robot in the complete adaptation condition takes the action
“Pick up closest” at T = 1 and “Pick up both” at T = 2 and
T = 3. This is because the model assumes that the human

5Unless specified otherwise, for the rest of this section we
refer to the partial observability level of the observability
factor.
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Figure 4: Left: Accumulated reward over 3 trials of the table-clearing task for all four conditions. Center: Predicted and
actual reward by the partial and complete adaptation policies in the partial observability setting. Right: Mean reward over
time horizon T for simulated runs of the complete and partial adaptation policies in the partial observability setting. The
gain in performance from the partial adaptation model decreases for large values of T . The x-axis is in logarithmic scale.

will learn the best-response for all robot actions if the robot
plays either “Pick up closest” or “Pick up both”, and the pre-
dicted reward of 1 for the action “Pick up closest” is higher
than the reward of 0 for “Pick up both” at T = 1.

Fig. 4 (center) shows the expected immediate reward pre-
dicted by the partial and complete adaptation model for each
round in the partial observability setting, and the actual re-
ward that participants received. We see that the immediate
reward in the complete adaptation condition at T = 2 was
significantly lower than the predicted one. The reason is
that six participants out of 10 in that condition did not in-
fer at T = 1 that the robot was unable to pick up the second
bottle and did not empty the bottle at T = 2, which was the
best-response action. From the four participants that emp-
tied the bottle, two of them justified their action by stating
that “there was enough time to empty the bottle” before
the robot would grab it. The same justification was given
by three participants out of eleven in the partial adaptation
condition, who emptied the bottle at T = 1 without know-
ing that this was required for the robot to be able to pick it
up. This caused the actual reward to be higher than its pre-
dicted value of 0. Additionally, the actual reward at T = 2
was lower than the predicted value. We attribute this to
the fact that 73% of participants learned the best-response
for the robot action (emptying the bottle that was farthest
away) in that round, whereas the predicted value assumed
a probability of learning α = 0.9. In T = 3, the actual re-
ward matched the prediction closely, since all participants
eventually learned that they should empty the bottle.
Generalizability of the results. The results discussed
above are compelling in that they arise from an actual
human-subject experiment, but they are limited to one task.
We are interested in showing — via simulations — that the
proposed model performs well for a variety of tasks. We
randomly generated instances of the reward matrix R and α
values and simulated runs of the partial and complete adap-
tation policies for increasing time horizons T . The simulated
humans partially adapted to the robot, and the robot did not
observe whether they learned. For each value of T , we ran-
domly sampled 1000 reward matrices R and simulated 100
policy runs for each sampled instance of R. Fig. 4 (right)
shows the reward averaged over the number of rounds T ,
policy runs and instances of R. For T = 1, the mean reward
is the same for both models, since there is no adaptation.
The partial adaptation policies consistently outperform the
complete adaptation ones for a large range of T . For large
values of T the performance difference decreases. This is

because the human eventually learns the true payoffs and
the gain from playing the true best response outweighs the
initial loss caused by the complete adaptation model.
Selection of α. We note that the α value, which represents
the probability that the human learns the true robot capabil-
ities, is task and population-dependent. In our experiment,
participants were recruited from a university campus, and
most of them were able to infer that they should empty the
bottle, after observing the robot failing and being notified
that “the robot exceeded its torque limits.” Different partic-
ipant groups may require a different α value. The value of
α could also vary for different robot actions; we conjecture
that our theoretical results hold also when there is a differ-
ent adaptation probability αi for each row i of the payoff
matrix, which we leave as future work.

9. CONCLUSION
We presented a game-theoretic model of human partial

adaptation to the robot. The robot used this model to de-
cide optimally between taking actions that reveal its capa-
bilities to the human and taking the best action given the
information that the human currently has. We proved that
under certain observability assumptions, the optimal policy
can be computed efficiently. Through a human subject ex-
periment, we demonstrated that policies computed with the
proposed model significantly improved human-robot team
performance, compared to policies that assume complete
adaptation of the human to the robot.

While our model assumes that the human may learn only
the entries of the row played by the robot, there are cases
where a robot action may affect entries that are associated
with other actions, as well. For instance, Cha et al. [8] have
shown that conversational speech can affect human percep-
tion of robot capability in physical tasks. We are excited
to explore the structure of probabilistic graphical models of
human adaptation, and use the theoretical insights from this
work to develop efficient algorithms for the robot.
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