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Abstract. We study the stochastic matching problem with the goal of finding a maximum
matching in a graph whose edges are unknown but can be accessed via queries. This is a
special case of stochastic k-cycle packing, in which the problem is to find a maximum
packing of cycles, each of which exists with some probability. We provide polynomial-time
adaptive and nonadaptive algorithms that provably yield a near-optimal solution, using a
number of edge queries that is linear in the number of vertices.We are especially interested in
kidney exchange, with which pairs of patients with end-stage renal failure and their willing
but incompatible donors participate in amechanism that performs compatibility tests between
patients anddonors and swaps the donors of somepatients so that a large number of patients
receive compatible kidneys. Because of the significant cost of performing compatibility tests,
currently, kidney exchange programs perform atmost one compatibility test per patient. Our
theoretical results applied to kidney exchange show that, by increasing the number of
compatibility tests performed per patient from one to a larger constant, we effectively get the
full benefit of exhaustive testing at a fraction of the cost.We show, on both generated and real
data from the UNOS nationwide kidney exchange, that even a small number of nonadaptive
edge queries per vertex results in large gains in expected successful matches.
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1. Introduction
In the stochastic matching problem, we are given an un-
directed graph G � (V,E), in which we do not know
which edges in E actually exist. Rather, for each edge
e ∈ E, we are given an existence probability pe. Of in-
terest, then, are algorithms that first query some subset
of edges to find ones that exist and, based on these
queries, produce amatching that is as large as possible.
The stochastic matching problem is a special case of
stochastic k-cycle packing, inwhich each cycle exists only
whenall of its edges exist, and thegoal is tofinda (vertex
disjoint) packing of existing cycles that collectively
cover the maximum number of vertices possible.

Without any constraints, one can simply query all
edges and then output the maximum matching or pack-
ing over those that exist—hereafter, referred to as the
omniscient optimal solution. But this level of freedom
may not always be available; therefore, we are interested

in the trade-off between the number of queries and the
fraction of the omniscient optimal solution achieved.
Specifically, we ask: to perform as well as the omni-
scient optimum in the stochastic matching problem,
do we need to query (almost) all the edges; that is, do
we need a budget of Θ(n) queries per vertex, where n
is the number of vertices? Or can we, for any arbi-
trarily small ε> 0, achieve a (1 − ε) fraction of the
omniscient optimum by using an o(n) per-vertex bud-
get? We answer these questions as well as their exten-
sions to the k-cycle packing problem. We support our
theoretical results empirically on both generated and
real data from a large-fielded kidney exchange in the
United States.

1.1. Our Theoretical Results and Techniques
Our main theoretical result gives a positive answer
to the latter question for stochastic matching by
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showing that, surprisingly, a constant per-vertex bud-
get is sufficient to get ε-close to the omniscient opti-
mum. Indeed, we design a polynomial-time algorithm
with the following properties: for any constant ε> 0, the
algorithm queries at most Oε(1) edges incident to any
particular vertex, requires Oε(1) rounds of parallel
queries, and achieves (1 − ε) fraction of the omniscient
optimum. This guarantee holds as long as all the non-
zero pe’s are bounded away from zero by some con-
stant that is independent of n (see Section 9 for a
discussion of cases inwhich pe may be arbitrarily small
for a few edges). Notation Oε(1) refers to asymptotic
behavior that is constant when ε is a fixed constant.
When it is clear from the context, we use O(1) instead
of Oε(1).

The foregoing algorithm is adaptive in the sense that
its queries are conditioned on the answers to previous
queries. Even though it requires only a constant num-
ber of rounds, it is natural to ask whether a nonadap-
tive algorithm—one that issues all its queries in one
round—can also achieve a similar guarantee. We do
not give a complete answer to this question, but we
do present a nonadaptive algorithm that achieves a
0.5(1 − ε)-approximation (for arbitrarily small ε> 0) to
the omniscient optimum. In Appendix EC.1, we ex-
tend our matching results to a more general sto-
chastic model, in which the probability of existence of
an edge depends on parameters associated with its
two end points.

We also extend our results to the stochastic k-cycle
packing problem, for which we are given a directed
graph and the collection of all of its cycles of length at
most k. The goal is to find the collection of mutually
vertex-disjoint cycles, called a packing, that covers
the maximum number of vertices possible. Stochastic
matching is a special case of stochastic k-cycle packing:
each undirected edge in stochastic matching corre-
sponds to a cycle of length two, that is, k � 2. In sto-
chastic k-cycle packing, each cycle exists if and only if
all of its edges exist. That is, when p represents the
probability of a directed edge existing, then a cycle
of length � exists with probability p� although these
events are correlated across cycles that share an edge.
Our goal is to query the edges and output a collection
of existing vertex-disjoint cycles that covers a large
number of vertices.We present an adaptive polynomial-
time algorithm that, for any constant ε> 0, returns a
collection of vertex-disjoint cycles that covers a num-
ber of vertices that is at least 4

k2 (1 − ε) of the omniscient
optimumusingOε,k(1) queriesper element, hence,Oε,k(n)
queries overall.

To better appreciate the challenge we face, we note
that, even in the stochastic matching setting, we do
not have a clear idea of how large the omniscient opti-
mum is. Indeed, there is a significant body of work
on the expected cardinality of matching in complete

random graphs (see, e.g., Bollobás (2001), chapter 7),
inwhich the omniscient optimum is known to be close
to n. But, in our work, we are dealing with arbitrary
graphs in which it can be a much smaller number. In
addition, naı̈ve algorithms fail to achieve our goal even
if they are allowedmany queries. For example, querying
a sublinear number of edges incident to each vertex,
chosen uniformly at random, gives a vanishing fraction
of the omniscient optimum as we show in Section 4.
The primary technical ingredient in the design of

our adaptive algorithm is that, if, in any round r of the
algorithm, the solution computed by round r (based
on previous queries) is small compared with the om-
niscient optimum, then the current structure must
admit a large collection of disjoint constant-sized “aug-
menting” structures. These augmenting structures are
composed of edges that have not been queried so far.
Of course, we do not know whether these structures
we are counting on to help augment our current
matching actually exist, but we do know that these
augmenting structures have constant size (and so each
structure exists with some constant probability) and
are disjoint (and, therefore, the outcomes of the queries
to the different augmenting structures are indepen-
dent). Hence, by querying all these structures in par-
allel in round r, in expectation, we can close a constant
fraction of the gap between our current solution and
the omniscient optimum. By repeating this argument
over a constant number of rounds, we achieve a (1 − ε)
fraction of the omniscient optimum. In the case of
stochastic matching, these augmenting structures are
simply augmenting paths; in the more general case of
k-cycle packing, we borrow the notion of augmenting
structures from Hurkens and Schrijver (1989).

1.2. Our Experimental Results: Application to
Kidney Exchange

Our work is directly motivated by applications to
kidney exchange, a medical approach that enables
kidney transplants. Transplanted kidneys are usually
harvested from deceased donors, but as of June 10,
2018, there are 114,877 people on the U.S. national
waiting list (U.S. Department of Health and Human
Services 2018), making the median waiting time dan-
gerously long. Fortunately, kidneys are an unusual
organ in that donation by living donors is also a pos-
sibility as long as patients happen to be medically
compatible with their potential donors.
In its simplest form—pairwise exchange—two incom-

patible donor–patient pairs exchange kidneys: the
donor of the first pair donates to the patient of the
second pair, and the donor of the second pair donates
to the patient of the first pair. This setting can be rep-
resented as an undirected compatibility graph, in which
each vertex represents an incompatible donor–patient
pair, and an edge between two vertices represents the
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possibility of a pairwise exchange. A matching in this
graph specifies which exchanges take place. Modern
kidney exchange programs regularly employ swaps
involving three donor–patient pairs, which are known
to provide significant benefit comparedwith pairwise
swaps alone (Roth et al. 2007, Ashlagi and Roth 2014).
Mathematically, we can consider a directed graph, in
which an edge (u, v) means that the donor of pair u
is possibly compatible with the patient of pair v. In
this graph, pairwise and three-way exchanges cor-
respond to two-cycles and three-cycles, respectively.
See Figure 1 for a demonstration of this model.

The edges of the compatibility graph can be de-
termined based on themedical characteristics—blood
type and tissue type—of donors and patients. How-
ever, the compatibility graph only tells part of the
story. Before a transplant takes place, a more accurate
medical test known as a crossmatch test and additional
consultations with transplant centers take place. This
test involves mixing samples of the blood of the pa-
tient and the donor (rather than simply looking up
information in a database), making the test relatively
costly and time-consuming. Consequently, crossmatch
tests are only performed for donors and patients that
have been matched. Although some patients are more
likely to pass crossmatch tests than others—the proba-
bility is related to a measure of sensitization known as
the person’s panel reactive antibody (PRA)—the av-
erage is as low as 30% in major kidney exchange
programs (Ashlagi et al. 2011b, Leishman et al. 2013,
Dickerson et al. 2019). Thismeans that, ifweonly tested
a perfect pairwisematching over n donor–patient pairs,
we would expect only 0.09n of the patients to actually
receive a kidney. In contrast, the omniscient solution
that runs crossmatch tests on all possible pairwise ex-
changes (in the compatibility graph) may be able to
provide kidneys to all n patients, but this solution is
impractical.

Our adaptive algorithm for stochastic pairwise
matching uncovers a sweet spot between these two
extremes. On the one hand, it only mildly increases

medical expenses from one crossmatch test per pa-
tient to a larger, yet constant, number, and it is highly
parallelizable, requiring only a constant number of
rounds, so the time required to complete all cross-
match tests does not scale with the number of donors
and patients. On the other hand, the adaptive algo-
rithm essentially recovers the entire benefit of testing
all potentially feasible pairwise exchanges. The quali-
tative message of this theoretical result is clear: a mild
increase in number of crossmatch tests provides nearly the
full benefit of exhaustive testing. When three-way ex-
changes are considered, our adaptive algorithm for
three-cycle packing provides a (4/9)-approximation to
the omniscient optimum, using only O(1) crossmatch
tests per patient andO(n) overall. Although the practical
implications of this result are currently not as crisp as
those of its pairwise counterpart, future work may im-
prove the approximation ratio (using O(n) queries and
an exponential-time algorithm) as we explain in
Section 9.1.
To bridge the gap between theory and practice,

we provide experiments for pairwise and three-way
exchanges on both simulated and real data from
the first 169 match runs of the United Network for
Organ Sharing (UNOS) U.S. nationwide kidney ex-
change, which now includes 153 transplant centers—
approximately 66% of the transplant centers in the
United States. The exchange began matching in October
2010 and now matches on a biweekly basis. Using ad-
aptations of the algorithms presented in this paper, we
show that even a small number of nonadaptive rounds
followed by a single period during which only those
edges selected during those rounds are queried re-
sults in large gains relative to the omniscient pairwise
or three-way exchanges. We discuss the policy im-
plications of this promising result in Section 9.2.

2. Related Work
Although papers on stochastic matching often draw
on kidney exchange formotivation—or at least mention
it in passing—these two research areas are almost dis-
joint. We, therefore, discuss them separately in Sec-
tions 2.1 and 2.2.

2.1. Stochastic Matching
Prior work has considered multiple variants of sto-
chastic matching. A popular variant is the query-
commit problem, in which the algorithm is forced to
add any queried edge to the matching if the edge is
found to exist. Goel and Tripathi (2012) establish an
upper bound of 0.7916 for graphs in which no in-
formation is available about the edges, and Costello
et al. (2012) establish a lower bound of 0.573 and an
upper bound of 0.898 for graphs in which each edge
e exists with a given probability pe. Molinaro and Ravi
(2011) propose an algorithm for two-cycle matching

Figure 1. Compatibility Graphs for Pairwise and Three-
Way Exchanges

Notes. Solid gray edges represent successful crossmatch tests, dashed
gray edges represent failed crossmatch tests, and black edges represent
potential compatibilities that have not been tested. Note that, when
pairwise exchanges are considered, the number of incoming edge tests
of a node is the same as the number of its outgoing edge tests—a patient
and its willing but incompatible donor are always involved in an equal
number of tests—although in three-way exchanges the number of
incoming and outgoing edge tests may be different.
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in the query-commit model that is nearly optimal
given additional theoretical assumptions. Similarly to
our work, these approximation ratios are with re-
spect to the omniscient optimum, but the informa-
tional disadvantage of the algorithm stems purely
from the query-commit restriction.

Within the query-commit setting, another thread of
work (Chen et al. 2009, Adamczyk 2011, Bansal et al.
2012) imposes an additional per-vertex budget con-
straint by which the algorithm is not allowed to query
more than a specified number, bv, of edges incident to
vertex v. With this additional constraint, the bench-
mark with which the algorithm is compared switches
from the omniscient optimum to the constrained
optimum, that is, the performance of the best decision
tree that obeys the per-vertex budget constraints and
the query-commit restriction. In other words, the algo-
rithm’s disadvantage compared with the bench-
mark is only that it is constrained to run in polynomial
time. Here, again, the best known approximation ra-
tios are constant. A generalization of these results to
packing problems has been studied by Gupta and
Nagarajan (2013).

Similarly to our work, Blum et al. (2013) consider a
stochastic matching setting without the query-commit
constraint. They set the per-vertex budget to exactly two
and ask which subset of edges is queried by the optimal
collection of queries subject to this constraint. Theyprove
structural results about the optimal solution, which
allow them to show that finding the optimal subset of
edges to query is NP-hard. In addition, they give a
polynomial-time algorithm that finds an almost optimal
solution on a class of randomgraphs (inspired by kidney
exchange settings). Crucially, the benchmark of Blum
et al. (2013) is also constrained to two queries per vertex.

There is a significant body of work in stochastic
optimizationmore broadly, for instance, the papers of
Dean et al. (2004) (stochastic knapsack), Gupta et al.
(2012) (stochastic orienteering), and Asadpour et al.
(2008) (stochastic submodular maximization).

The preliminary version of this paper (Blum et al.
2015) motivated a recent follow-up work by Assadi
et al. (2016). In theirwork,Assadi et al. (2016) consider
the stochastic matching (two-cycle packing) prob-
lem and show that preprocessing the graph before ap-
plying our algorithmachieves the same approximation
guarantee using fewer queries per vertex. In particular,
for both our adaptive and nonadaptive algorithms, the
number of queries per vertex, even though indepen-
dent of the number of vertices, is exponential in 1/ε.
For the particular case of two-cycle matching, Assadi
et al. (2016) show that performing a vertex sparsi-
fication step before applying our algorithm obtains
a similar approximation guarantee, that is, (1 − ε) for
adaptive and 0.5(1 − ε) for the nonadaptive algorithms,
using a number of queries that is polynomial in 1/ε.

2.2. Kidney Exchange
Early models of kidney exchange did not explicitly
consider the setting in which an edge that is chosen
to be matched only exists probabilistically. Recent
research byDickerson et al. (2019) andAnderson et al.
(2015b) focuses on the kidney exchange application
and restricts attention to a single crossmatch test per
patient (the current practice) with a similar goal of
maximizing the expected number of matched vertices
in a realistic setting (for example, they allow three
cycles and chains initiated by altruistic donors who
enter the exchange without a paired patient). They
develop integer programming techniques, which are
empirically evaluated using real and synthetic data.
As opposed to that line of work, which takes into
account a single compatibility test per patient, our
work considers the benefit that multiple tests per
patient can bring to the quality of the matching.
Manlove and O’Malley (2015) discuss the integer
programming formulation used by the national ex-
change in the United Kingdom, which takes edge
failures into account in an ad hocway by, for example,
preferring shorter cycles to longer ones. To our knowl-
edge, our paper is thefirst to describe a generalmethod
for testing any number of edges before the final match
run is performed and to provide experiments on
real data showing the expected effect on fielded ex-
changes of such edge-querying policies.
Another form of stochasticity present in fielded

kidney exchanges is the arrival and departure of
donor–patient pairs over time (and the associated
arrival and departure of their involved edges in the
compatibility graph). Recent work has addressed this
added form of dynamism from a theoretical (Ünver
2010, Akbarpour et al. 2014, Anderson et al. 2015a)
and experimental (Awasthi and Sandholm 2009,
Dickerson et al. 2012a, Dickerson and Sandholm2015)
point of view. Theoretical models have not addressed
the case inwhich an edge in the current graphmay not
exist (as we do in this paper); the more recent ex-
perimental papers have incorporated this possibility
but have not considered the problem of querying
edges before recommending a final matching. We
leave as future research the analysis of edge querying
in stochastic matching in such a dynamic model.

3. The Model
For any graph G � (V,E), let M(E) denote its maxi-
mum (cardinality) matching. In the notationM(E), we
intentionally suppress the dependence on the vertex
set V because we are only interested in the maxi-
mum matchings of different subsets of edges for a
fixed vertex set. In addition, for two matchings M and
M′, we denote their symmetric difference by MΔM′ �
(M ∪M′)\ (M ∩M′); it includes only paths and cycles
consisting of alternating edges of M and M′.
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In the stochastic setting, given a set of edgesX, define
Xp to be the random subset formed by including each
edge of X independently with probability p. We as-
sume for ease of exposition that pe � p for all edges
e ∈ E. Our results hold when p is a lower bound, that
is, pe ≥ p for all e ∈ E. Furthermore, in Appendix EC.1,
we show that we can extend our results to a more
general setting in which the existence probabilities of
edges incident to any particular vertex are correlated.

GivenagraphG � (V,E), defineM(E) to beE[|M(Ep)|],
where the expectation is taken over the random draw
Ep. In addition, given the results of queries on some set
of edges T, define M E|T( ) to be E[|M(Xp ∪ T′)|], where
T′ ⊆ T is the subset of edges of T that are known to
exist based on the queries, and X � E \ T.

In the nonadaptive version of our problem, the goal
is to design an algorithm that, given a graph G � (V,E)
with |V| � n, queries a subset X of edges in parallel such
that |X| � O(n) and maximizes the ratio M(X)/M(E).

In contrast, an adaptive algorithm proceeds in
rounds and, in each round, queries a subset of edges
in parallel. Based on the results of the queries up to
the current round, it can choose the subset of edges to
test in the next round. Formally, an R-round adaptive
stochastic matching algorithm selects, in each round
r, a subset of edges Xr ⊆ E, where Xr can be a function
of the results of the queries on

⋃
i<r Xi. The objective is

to maximize the ratio E[|M(⋃1≤i≤R Xi)|]/M(E), where
the expectation in the numerator is taken over the
outcome of the query results and the setsXi chosen by
the algorithm.

4. Understanding the Challenges
To gain some intuition for our goal of arbitrarily
good approximations to the omniscient optimum and
why it is challenging, let us consider a naı̈ve algo-
rithm and understand why it fails. This nonadaptive
algorithm schedules R � O(log(n)/p) queries for each
vertex as follows. First, order all vertices arbitrarily and
start with an empty set of queries. For each vertex v, let
NR(v) be the set of neighbors of v for whom at most R
queries have been scheduled. Schedule min{R,NR(v)}
queries, each between v and an element of NR(v),
where these elements are selected uniformly at ran-
dom from NR(v).

The next example shows that this proposed algo-
rithm only achieves 5

6 fraction of the omniscient op-
timal solution as opposed to our goal of achieving
arbitrarily good (1 − ε) approximations to the omni-
scient optimal. Furthermore, in the following exam-
ple, when each edge exists with probability p> 5

6, this
algorithm still only achieves a 5

6 fraction of the om-
niscient optimal solution, which is worse than a triv-
ial algorithm of just picking one maximum matching
that guarantees a matching of size pn.

Example 1. Consider the graph G � (V,E) whose
vertices are partitioned into sets A, B, C, and D such
that |A| � |B| � n

2 and |C| � |D| � n. Let E consist of two
random bipartite graphs of degree R � O(log(n)/p)
between A and B and similarly between C and D. And
let B and C be connected with a complete bipartite
graph. Let p be the existence probability of any edge.

With high probability, there is a perfect matching
that matches A to B and C toD. For ease of exposition,
consider the algorithm at the stage when half of the
vertices have been processed. In expectation, half of
the vertices in A, B, C, and D are processed by this
point. Every vertex in B has more neighbors in C than
in A. So, at this point, with high probability, all of the
vertices of B already have R queries scheduled from
half of the vertices in C. Therefore, after this point
in the algorithm, no edges between A and B will be
queried. So half of the vertices in A remain unmatched.
Compared with the omniscient optimum—which is
a perfect matching with high probability—the appro-
ximation ratio of this algorithm is at most 5

6.
In the aforementioned example, NR(v) is restricted

to vertices that have received at most R queries to
bias the choice of queries toward vertices with fewer
scheduled queries. At a high level, this is done to avoid
scheduling queries for vertices that have already found
existing and suitable matches. In the next example, we
show that a naı̈ve algorithm that uniformly queries
o(n) neighbors of each vertex—and, therefore, does
not bias the queries toward verticeswith fewer existing
queries—suffers from even worse performance.

Example 2. Consider the graph G � (V,E) whose
vertices are partitioned into sets A, B, C, and D such
that |A| � |D| � tβ and |B| � |C| � t for some 1> β> 0.
Note that, in this graph, n � Θ(t). Let E consist of one
perfect matching between the vertices of B and C and
two complete bipartite graphs, one between A and B
and another between C and D. See Figure 2 for an il-
lustration. Let p � 0.5 be the existence probability of
any edge.

Figure 2. Illustration of the Construction in Example 2 for
t � 4 and β � 1/2
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The omniscient optimal solution can use any edge,
and in particular, it can use the edges between B and
C. Because these edges form a matching of size t and
p � 0.5, they alone provide a matching of expected
size t/2. Hence, M(E) ≥ t/2.

Now, for any α< β, consider the algorithm that
queries tα random neighbors for each vertex. For
every vertex in B, the probability that its edge to C is
chosen is at most tα

tβ+1 (similarly for the edges from C
to B). Therefore, the expected number of edges chosen
between B and C is at most 2t1+α

tβ+1, and the expected
number of existing edges between B and C, after the
coin tosses, is atmost t1+α

tβ+1.A andD each have tβ vertices,
so they contribute at most 2tβ edges to any matching.
Therefore, the expected size of the overall matching
is no more than t1+α−β + 2tβ. Using n � Θ(t), we con-
clude that the approximation ratio of the naı̈ve al-
gorithm approaches zero as n → ∞. For α � 0.5 and
β � 0.75, the approximation ratio of the naı̈ve algo-
rithm is O(1/n0.25), at best.
5.AdaptiveAlgorithm: (1 − ε)-Approximation
In this section, we present our main result: an adaptive
algorithm—formally given as Algorithm 1—that ach-
ieves a (1 − ε) approximation to the omniscient op-
timum for arbitrarily small ε> 0, using O(1) queries
per vertex and O(1) rounds.

The algorithm is initialized with the empty matching
M0. At the end of each round r, our goal is to maintain
a maximum matching Mr on the set of edges that are
known to exist (based on queries made so far). To this
end, at round r, we compute the maximum matching
Or on the set of edges that are known to exist and the
ones that have not been queried yet (step 2a). We
consider augmenting paths in Or ΔMr−1 and query all
the edges in them (steps 2b and 2c). Based on the
results of these queries (Qr), we update the maximum
matching (Mr). Finally, we return the maximum
matching MR computed after R � log(2/ε)

p2/ε rounds. (Let
us assume that R is an integer for ease of exposition.)

Algorithm 1 (Adaptive Algorithm for Stochastic Matching:
(1 − ε)-Approximation)
Input: A graph G � (V,E).
Parameter: R � log(2/ε)

p2/ε .
1. Initialize M0 to the empty matching and W1 ← ∅.
2. For r � 1, . . . ,R, do

a. Computeamaximummatching,Or, in (V,E \Wr).
b. SetQr to the collection of all augmenting paths of

Mr−1 in Or ΔMr−1.
c. Query the edges in Qr. Let Q′

r and Q′′
r represent

the set of existing and nonexisting edges.
d. Wr+1 ← Wr ∪Q′′

r .
e. SetMr to the maximummatching in V,

⋃r
j�1 Q′

j

( )
.

3. Output MR.

It is easy to see that this algorithm queries at most
log(2/ε)
p2/ε edges per vertex. In a given round r, the algorithm

queries edges that are in augmenting paths ofOr ΔMr−1.
Because there is at most one augmenting path using
any particular vertex, the algorithm queries at most
one edge per vertex in each round. Furthermore, the

algorithm executes log(2/ε)
p2/ε rounds. Therefore, the num-

ber of queries issued by the algorithm per vertex is as
claimed.
The rest of the section is devoted to proving that the

matching returned by this algorithm after R rounds
has cardinality that is, in expectation, at least a (1 − ε)
fraction of M(E).
Theorem 1. For any graph G � (V,E) and any ε> 0,
Algorithm 1 returns a matching whose expected cardinal-
ity is at least (1 − ε)M(E) in R � log(2/ε)

p(2/ε) rounds.

As mentioned in Section 1, one of the insights be-
hind this result is the existence of many disjoint aug-
menting paths of bounded length that can be used to
augment a matching that is far from the omniscient
optimum, that is, a lower bound on the number of
elements in Qr of a given length L. This observation
is formalized in the following lemma. (We empha-
size that the lemma pertains to the nonstochastic
setting.)

Lemma 1. Consider a graph G � (V,E) with two match-
ings M1 and M2. Suppose |M2|> |M1|. Then, in M1 ΔM2,
for any odd length L ≥ 1, there exist at least |M2| − (1 +
2

L+1)|M1| augmenting paths of length at most L, which
augment the cardinality of M1.

Proof. Let xl be the number of augmenting paths of
length l (for any odd l ≥ 1) found in M1 ΔM2 that
augment the cardinality of M1. Each augmenting path
increases the size of M1 by one, so the total number of
augmenting paths

∑
l≥1 xl is at least |M2| − |M1|. More-

over, each augmenting path of length l has l−1
2 edges in

M1. Hence,
∑

l≥1 l−1
2 xl ≤ |M1|. In particular, this implies

that L+1
2
∑

l≥L+2 xl ≤ |M1|. We conclude that

∑L
l�1

xl �
∑
l≥1

xl −
∑
l≥L+2

xl ≥ |M2| − |M1|( ) − 2
L + 1

|M1|

� |M2| − 1 + 2
L + 1

( )
|M1|. □

The rest of the theorem’s proof requires some ad-
ditional notation. At the beginning of any given round
r, the algorithm already knows about the existence
(or nonexistence) of the edges in

⋃r−1
i�1 Qi. We use Zr

to denote the expected size of themaximummatching
in graph G � (V,E) given the results of the queries⋃r−1

i�1 Qi. More formally, Zr �M E|⋃r−1
i�1 Qi

( )
. Note that

Z1 � M(E).
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For a given r, we use the notation EQr[X] to denote
the expected value of X, where the expectation is
taken only over the outcome of queryQr and fixing the
outcomes on the results of queries

⋃r−1
i�1 Qi. Moreover,

for a given r, we use EQr,...,QR[X] to denote the expected
value of X with the expectation taken over the out-
comes of queries

⋃R
i�r Qi and fixing an outcome on the

results of queries
⋃r−1

i�1 Qi.
In Lemma 2, for any round r and for any outcome of

the queries
⋃r−1

i�1 Qi, we lower bound the expected in-
crease in the size of Mr over the size of Mr−1 with the
expectation being taken only over the outcome of
edges in Qr. This lower bound is a function of Zr.

Lemma 2. For any r ∈ [R], odd L, and Q1, · · · ,Qr−1, it
holds that EQr[|Mr|] ≥ (1 − γ)|Mr−1| + αZr, where γ �
p(L+1)/2 1 + 2

L+1
( )

and α � p(L+1)/2.

Proof. By Lemma 1, there exist at least |Or| − (1+
2

L+1)|Mr−1| augmenting paths in Or ΔMr−1 that augment
Mr−1 and are of length at most L. The Or part of every
augmenting path of length at most L exists indepen-
dently with probability at least p(L+1)/2. Therefore, the
expected increase in the size of the matching is

EQr[|Mr|] − |Mr−1| ≥ p
L+1
2 |Or| − 1 + 2

L + 1

( )
|Mr−1|

( )
� α|Or| − γ|Mr−1| ≥ αZr − γ|Mr−1|,

where the last inequality holds by the fact that Zr,
which is the expected size of the optimal matching
with expectation taken over nonqueried edges, cannot
be larger than Or, which is the maximum matching,
assuming that every nonqueried edge exists. □

We are now ready to prove the theorem.

Proof of Theorem 1. Let L � 4
ε − 1; it is assumed to be an

odd integer for ease of exposition. Otherwise, there
exists ε/2 ≤ ε′ ≤ ε such that 4

ε′ − 1 is an odd integer. We
use a similar simplification in the proofs of other results.
By Lemma 2,we know that, for every r ∈ [R],EQr[||Mr|| ≥
(1 − γ)||Mr−1|| + αZr, where γ � p(L+1)/2(1 + 2

L+1), and α �
p(L+1)/2. We use this inequality repeatedly to derive our
result. We also require the equality

EQr−1[Zr] � EQr−1 M E|⋃r−1
i�1

Qi

( )[ ]
� M E|⋃r−2

i�1
Qi

( )
� Zr−1.

(1)

First, applying Lemma 2 at round R, we have that
EQR[|MR|] ≥ (1 − γ)|MR−1| + αZR. This inequality is
true for any fixed outcomes of Q1, . . . ,QR−1. In par-
ticular, we can take the expectation over QR−1 and
obtain

EQR−1,QR[|MR|] ≥ (1 − γ)EQR−1[|MR−1|] + αEQR−1[ZR].

By Equation (1), we know that EQR−1[ZR] � ZR−1.
Furthermore, we can apply Lemma 2 to EQR−1[|MR−1|]
to get the following inequality:

EQR−1,QR[|MR|] ≥ 1 − γ
( )

EQR−1 |MR−1|[ ] + αEQR−1[ZR]
≥ 1 − γ
( )

1 − γ
( )|MR−2| + αZR−1
( ) + αZR−1

� 1 − γ
( )2|MR−2| + α 1+ (1 − γ)( )

ZR−1.

We repeat these steps by sequentially taking expec-
tations over QR−2 through Q1 and, at each step, ap-
plying Equation (1) and Lemma 2. This gives us

EQ1,...,QR[|MR|] ≥ 1 − γ
( )R|M0| + α

(
1 + 1 − γ

( )
+ · · · + 1 − γ

( )R−1)Z1

� α
1 − 1 − γ

( )
R

γ
Z1,

where the second transition follows from the ini-
tialization of M0 as an empty matching. Because L �
4
ε − 1 and R � log(2/ε)

p2/ε , we have

α

γ
1 − 1 − γ

( )R( )
� 1 − 2

L + 1

( )
1 − 1 − γ

( )R( )

≥ 1 − 2
L + 1

− e−γR ≥ 1 − ε

2
− ε

2
� 1 − ε, (2)

where the second transition is true because e−x ≥ 1 − x
for all x ∈ R. We conclude that EQ1,...,QR[|MR|] ≥
(1 − ε)Z1. Because Z1 � M(E), it follows that the ex-
pected size of the algorithm’s output is at least
(1 − ε)M(E). □

In Appendix EC.1, we extend our results to the
setting in which edges have correlated existence
probabilities; an edge’s probability is determined by
parameters associated with its two vertices. This
generalization gives a bettermodel for kidney exchange
as some patients are highly sensitized and, therefore,
harder to match in general; this means that all edges
incident to such vertices are less likely to exist. We
consider two settings: the first in which an adver-
sary chooses the vertex parameters and the second in
which these parameters are drawn from a distribu-
tion. Our approach involves excluding from our anal-
ysis edges whose existence probability is too low.
We do so by showing that (under specific conditions)
excluding any augmenting path that includes such
edges still leaves us with a large number of constant-
size augmenting paths.

6. Nonadaptive Algorithm:
0.5-Approximation

The adaptive algorithm, Algorithm 1, augments the
current matching by computing a maximum matching
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on queried edges that are known to exist and edges
that have not been queried. One way to extend this
idea to the nonadaptive setting is the following: we
can simply choose several edge-disjoint matchings
and hope that they help in augmenting each other. In
this section, we ask: how close can this nonadaptive
interpretation of our adaptive approach take us to
the omniscient optimum?

Inmore detail, our nonadaptive algorithm—formally
given as Algorithm 2—iterates R � log(2/ε)

p2/ε times. In
each iteration, it picks a maximum matching and
removes it. The set of edges queried by the algorithm
is the union of the edges chosen in some iteration.
We show that, for any arbitrarily small ε> 0, the algo-
rithmfinds a 0.5(1 − ε)-approximate solution. Because
we allow an arbitrarily small (although constant)
probability p for stochastic matching, achieving a 0.5-
approximation independently of the value of p while
querying only a linear number of edges is nontrivial.
For example, a naı̈ve algorithm that only queries one
maximum matching clearly does not guarantee a 0.5-
approximation; itwouldguaranteeonly ap-approximation.
In addition, the example given in Section 3 shows
that choosing edges at random performs poorly.

Algorithm 2 (Nonadaptive Algorithm for Stochastic Match-
ing: 0.5-Approximation)
Input: A graph G(V,E).
Parameter: R � log(2/ε)

p2/ε .
1. Initialize W0 ← ∅.
2. For r � 1, . . . ,R, do

a. Compute a maximum matching, Or, in V,E\(
Wr−1).

b. Wr ← Wr−1 ∪Or.
3. Query all the edges in WR and output the maxi-

mummatching among the edges that are found to
exist in WR.

The number of edges incident to any particular
vertex that are queried by the algorithm is at most
log(2/ε)
p2/ε because the vertex can be matched with at most

one neighbor in each round. The next theorem estab-
lishes the approximation guarantee of Algorithm 2.

Theorem 2. Given a graph G � (V,E) and any ε> 0,
the expected size M(WR) of the matching produced by
Algorithm 2 is at least a 0.5(1 − ε) fraction of M(E).

Similar to the adaptive procedure of Section 5, the
proof of Theorem 2 relies on analyzing how much
matching Or increases the size of the expected match-
ing, M(Wr−1), at every round. As opposed to the
adaptive procedure, here we do not query the edges
in Wr−1. Hence, we need to reason about the expected
size of the matching up to round r, M(Wr−1), and the
expected size of the matching in the remaining graph,

M(E \Wr−1). The following lemma can be used to
bound M(E \Wr−1) in terms of M(Wr−1) and M(E).
Lemma 3. Let E1 be an arbitrary subset of edges of E and let
E2 � E \ E1. Then M(E) ≤ M(E1) +M(E2).
Proof. Let E′ be an arbitrary subset of edges of E and let
E′
1 � E1 ∩ E′ and E′

2 � E2 ∩ E′. We claim that |M(E′)| ≤
|M(E′

1)| + |M(E′
2)|. This is because, if T is the set of edges

in a maximum matching in graph (V,E′), then clearly
T ∩ E′

1 and T ∩ E′
2 are valid matchings in E′

1 and E′
2,

respectively, and thereby it follows that |M(E′
1)| ≥|T ∩ E′

1| and |M(E′
2)| ≥ |T ∩ E′

2|, and hence, |M(E′)| ≤
|M(E′

1)| + |M(E′
2)|. Expectation is a convex combina-

tion of the values of the outcomes. For every subset
E′ of edges in E, multiplying the previous inequality
by the probability that the outcome of the coin tosses
on the edges of E is E′ and then summing the various
inequalities, we get M(E) ≤ M(E1) +M(E2). □

To lower bound M(WR), we first show that, for any
round r, either our current collection of edges has an
expected matching size M(Wr−1) that compares well
with M(E), or in round r, we have a significant in-
crease in M(Wr) over M(Wr−1).
Lemma 4. At any iteration r ∈ [R] of Algorithm 2 and odd
L, if M(Wr−1) ≤ M(E)/2, then

M(Wr) ≥ α

2
M(E) + (1 − γ)M(Wr−1),

where γ � p(L+1)/2(1 + 2
L+1) and α � p(L+1)/2.

Proof. Assume thatM(Wr−1) ≤ M(E)/2. By Lemma 3,we
know that M(E \Wr−1) ≥ M(E) −M(Wr−1). Recall that
Or is the maximum matching left in E \Wr−1; therefore,
|Or| � |M(E \Wr−1)| ≥ M(E \Wr−1) ≥ M(E) −M(Wr−1) ≥
M(E)/2.
In a thought experiment, say at the beginning of

round r, we query the set Wr−1 and let W′
r−1 be the set

of edges that are found to exist. By Lemma 1, there
are at least |Or| − (1 + 2

L+1)|M(W′
r−1)| augmenting paths

of length at most L in OrΔM(W′
r−1) that augment

M(W′
r−1). Each of these paths succeeds with proba-

bility at least p(L+1)/2. We have

M Or ∪W′
r−1|W′

r−1
( ) − |M W′

r−1
( )|

≥ p(L+1)/2 |Or| − (1 + 2
L + 1

)|M W′
r−1

( )|( )
(3)

≥ p(L+1)/2
1
2
M(E) − 1 + 2

L + 1

( )
|M W′

r−1
( )|( )

, (4)

where the expectation on the left-hand side is taken
only over the outcome of the edges in Or. Therefore,
we haveM Or ∪W′

r−1|W′
r−1

( )≥ α
2M(E) + (1−γ)|M(W′

r−1)|,
where α� p(L+1)/2 and γ� p(L+1)/2(1+ 2

L+1). Taking
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expectation over the coin tosses on Wr−1 that create
outcome W′

r−1, we have our result, that is,

M(Wr) ≥ EWr−1 M Or ∪W′
r−1|W′

r−1
( )[ ] ≥ M(Or ∪Wr−1)

≥ α

2
M(E) + (1 − γ)M(Wr−1). □

We are now ready to prove Theorem 2.

Proof of Theorem 2. For ease of exposition, assume
L � 4

ε − 1 is an odd integer. Then, M(WR) ≥ M(E)/2, in
which case, we are done, or otherwise, by repeatedly
applying Lemma 4 for R steps, we have

M(WR) ≥ α

2
1 + 1 − γ

( ) + 1 − γ
( )2+ · · · + 1 − γ

( )R−1( )

·M(E) ≥ α

2
1 − (1 − γ)R( )

γ
M(E).

Now, αγ (1−(1−γ)R) ≥ 1− 2
L+1− e−γR ≥ 1 −ε forR� log(2/ε)

p2/ε .
Hence, we have our 0.5(1−ε) approximation. □

6.1. Upper Bound on the Performance of the
Nonadaptive Algorithm

As we explain in more detail in Section 9.1, we do not
know whether, in general, nonadaptive algorithms
can achieve a (1 − ε)-approximation with Oε(1) queries
per vertex. However, if there is such an algorithm, it
is not Algorithm 2! Indeed, the next theorem shows
that the algorithm cannot give an approximation
ratio better than 11/12 to the omniscient optimum.
This fact holds even when R � Θ(log n).
Theorem 3. Let p � 0.5. For any ε> 0, there exists n and a
graph (V,E) with |V| ≥ n such that Algorithm 2 with R �
O(log n) returns a matching with expected size of at most
11
12M(E) + ε.

Before proving Theorem 3, let us first show that
the expected size of a matching, that is, M(E), is large
in a complete bipartite graph.

Lemma 5. Let G � (U ∪ V,U × V) be a complete bipartite
graph between U and V with |U| � |V| � n. For any con-
stant probability p, M(E) ≥ n − o(n).
Proof. Denote by Ep the random set of edges formed by
including each edge in U × V independently with
probability p. We show that, with probability at least
1 − 1

n8, over the draw Ep, the maximum matching in
the graph (U ∪ V,Ep) is at least n − c log(n), where
c � 10/ log( 1

1−p), and this completes our claim.
To show this, we prove that, with probability at least

1 − 1
n8, over the draw Ep, all subsets S ⊆ U of size atmost

n − c log(n) have a neighborhood of size at least |S|. By
Hall’s theorem, our claim follows.

Consider any set S ⊆ U of size at most n − c log(n).
We call set S “bad” if there exists some set T ⊆ V of size

(|S| − 1) such that S does not have edges to V \ T. Fix
any set T ⊆ V of size |S| − 1. Over draws of Ep, the
probability that S has no outgoing edges to V \ T is at
most (1 − p)|S||V\T| � (1 − p)|S|(n−|S|+1). Hence, by union
bound, the probability that S is bad is at most

n
|S|−1
( )

(1 − p)|S|(n−|S|+1).
Again, by union bound, the probability that some

set S ⊆ U of size at most n − c log(n) is bad is at

most
∑

1≤|S|≤n−c log(n) n
|S|
( )

n
|S|−1
( )

(1 − p)|S|(n−|S|+1), and this,

in turn, is at most∑
1≤|S|≤n−c log(n)

n|S|n|S| 1 − p
( )|S|(n−|S|+1)

≤ ∑
1≤|S|≤n−c log(n)

e|S|·(2 log(n)+(n+1) log(1−p)−|S| log(1−p)).

Note that the exponent in the summation achieves
its maximum for |S| � 1. For c � 10/ log( 1

1−p), we have
that the given sum is at most exp(− n

2 log( 1
1−p)), and

hence, with high probability, no set S ⊆ U of size at
most n − c log(n) is bad. □

Proof of Theorem 3. Let (V,E) be a graph, illustrated in
Figure 3, whose vertices are partitioned into sets A, B,
C, and D such that |A| � |D| � t

2, |B| � |C| � t. The edge
set E consists of one perfect matching between vertices
of B and C and two complete bipartite graphs, one
between A and B and another between C and D. Let
p � 0.5 be the existence probability of any edge.
We first examine the value of the omniscient optimal,

M(E). Because p � 0.5, in expectation, half of the edges
in the perfect matching between B and C exist, and
therefore, half of the vertices of B and C get matched.
As we showed in Lemma 5, with high probability, the
complete bipartite graph between the remaining half
of B andA has a matching of size at least t/2 − o(t). And
similarly, with high probability, the complete bipartite
graph between remaining half of C and D has a

Figure 3. Illustration of the Graph Used in the Proof of
Theorem 3

Notes. Edges marked 1, 2, and 3 represent the matchings at rounds
1, 2, and 3, respectively. The dashed edges are never picked by the
algorithm.
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matching of size at least t/2 − o(t). Therefore,M(E) is at
least 3

2 t − o(t).
Next, we look at Algorithm 2. For ease of exposition,

let B1 and B2 denote the top and bottom halves of the
vertices in B. Similarly, define C1 and C2. Because
Algorithm 2 picks maximum matchings arbitrarily, we
show that there exists a way of picking maximum
matchings such that the expected matching size of
the union of the edges picked in the matching is at most
11
8 t (� 11

12
3
2 t).

Consider the following choice of maximum match-
ing picked by the algorithm: In the first round, the
algorithm picks the perfect matching between B1 and
C1 and a perfect matching between A and B2 and a
perfect matching between C2 and D. In the second
round, the algorithm picks the perfect matching be-
tween B2 and C2 and a perfect matching each between
A and B1 and betweenC1 andD. After these two rounds,
we can see that there are no more edges left between B
and C. For the subsequent R − 2 rounds, in each round,
the algorithm picks a perfect matching between A and
B1 and a perfect matching betweenC1 andD. It is easy to
verify that in every round, the algorithm has picked a
maximum matching from the remnant graph.

We analyze the expected size of matching output by
the algorithm. For each of the vertices in B2 and C2, the
algorithm has picked only two incident edges. For any
vertex in B2 and C2 with probability at least (1 − p)2 � 1

4,
none of these two incident edges exist. Hence, the
expected number of vertices that are unmatched in B2

and C2 is at least 1
4 (t2 + t

2) � t
4. Hence, the total num-

ber of edges included in the matching is at most
1
2 3t − t/4( ) � 11

8 t. This completes our claim. □

Despite this somewhat negative result, in Section 8,
we show experimentally on realistic kidney exchange
compatibility graphs that Algorithm 2 performs very
well for even very small values of R across a wide
range of values of p.

7. Generalization to Stochastic
k-Cycle Packing

So far, we have focused on stochastic matching, with
which the goal is equivalent to finding the largest
two-cycle packing. In this section, we generalize our
approach to the case of k-cycle packing for any k ≥ 2.

Formally, for a directed graph G � (V,E), the cor-
responding k-cycle packing instance (V,A) consists of
the set of vertices V and the collection A ⊆ V≤k of
vertices that form a directed cycle of length at most
k in G, where V≤k � ⋃k

i�1 Vi. Given graph G and its
corresponding k-cycle packing instance (V,A), a
feasible solution to the k-cycle packing instance is a
collection B ⊆ A such that the cycles in B are vertex-
disjoint. LetV(A) ⊆ V denote the largest set of vertices
that can be covered by a feasible k-cycle packing

B ⊆ A, that is, vertices in
⋃

c∈B c. Moreover, let K(A)
denote the feasible k-cycle packing B with largest |B|.
In the stochastic variant of k-cycle packing, given a

graph G � (V,E), we represent by Ep ∼ E a random
subset of edges in which each edge in E is included in
Ep with probability p independently. We represent by
(V,A(Ep)) the k-cycle packing instance that corre-
sponds to the graph (V,Ep). Note that, for any Ep,
A(Ep) ⊆ A is the set of those cycles in A whose edges
appear in Ep. We denote by V(A) � EEp∼E V(A(Ep))

⃒⃒ ⃒⃒[ ]
and K A( ) � EEp∼E K(A(Ep))

⃒⃒ ⃒⃒[ ]
, respectively, the expected

maximum number of vertices covered in a k-cycle
packing and the expected maximum cardinality of a
k-cycle packing.
Note that our goal in kidney exchange is to match

the largest number of donor–patient pairs; therefore,
our omniscient optimum benchmark is V(A). How-
ever, a k-cycle packing B such that |B| ≥ αK A( ) covers
a number of vertices that is at least 2

k αV(A) because
every cycle in B covers at least two vertices and the
cycles in A cover at most k vertices each. Therefore,
for the majority of this section, we focus on finding a
k-cycle packing whose expected size is a good ap-
proximation of K A( ), and as a result, the number of
vertices covered by it is a good approximation of V(A).
We present a polynomial-time adaptive algorithm,
Algorithm 4, that obtains a (1−ε)2k-approximation of
K A( ) and a (1−ε) 4

k2-approximation of V(A).
Theorem 4. There exists an adaptive polynomial-time al-
gorithm that, given a graph G � (V,E), its corresponding
k-cycle packing instance (V,A), and ε> 0, uses R � Oε,k(1)
rounds and Oε,k(n) edge queries overall and returns a cycle-
packing BR such that |BR| ≥ (1 − ε) 2k K A( ). Moreover,∑

c∈BR |c| ≥ (1 − ε) 4
k2 V(A).

Importantly, the statement of Theorem 1 for adaptive
stochastic matching is a special case of the statement
of Theorem 4 for k � 2. By contrast, we leave the case
of nonadaptive algorithms for k-cycle packing for
general k ≥ 2 as an open problem—despite having
presented Theorem 2 for the special case of k � 2—
and describe some of the challenges one may face in
obtaining such a general result for k> 2 in Section 9.1.

7.1. Augmenting Structures for k-Cycle Packing
Finding an optimal solution to the k-cycle packing
problem is NP-hard (Abraham et al. 2007). On the
other hand, multiple approximation algorithms are
known for k-cycle packing and its generalization to
k-set packing, in which A includes arbitrary subsets
of ≤ k elements of V. One such algorithm is a local
search algorithm of Hurkens and Schrijver (1989) that
uses a notion of augmenting structures. Given a k-cycle
packing instance (V,A) and a feasible packing
(one with disjoint cycles) B ⊆ A, (C,D) is said to be
an augmenting structure for B if removing D and
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adding C to B increases its cardinality andmaintains the
feasibility of the packing; that is, if (B ∪ C) \D is a
collection of vertex-disjoint k-cycles and |(B ∪ C) \D|>
|B|, where C ⊆ A and D ⊆ B.

Hurkens and Schrijver (1989) show that, for any η,
there is a polynomial-time (assuming η and k are
constants) approximation algorithm that repeatedly
augments a feasible solution using augmenting struc-
tures of size sη,k, a constant that depends on k and η,
and obtains a packing of cardinality ≥ (2k − η)K(A).
Hurkens and Schrijver (1989) also show that an ap-
proximation ratio better than 2/k cannot be achieved
with local search of structures of constant size. The fol-
lowing theorem summarizes the results of Hurkens
and Schrijver (1989).

Lemma 6 (Hurkens and Schrijver (1989)). Given a k-cycle
packing instance (V,A) and a feasible packing B such that
|B|< 2

k − η
( )|K(A)|, there exists an augmenting structure

(C,D) for B such that |C| ≤ |sη,k | and |D| ≤ sη,k for some
constant sη,k that depends only on η and k.

Similarly to the case of two-cycle matchings, we
require many augmenting structures because some
may fail to exist when edges appear at random. In the
following lemma, we show how to find a large
number of small augmenting structures.

Lemma 7. Given a k-cycle packing instance (V,A) and a
feasible packing B such that |B|< 2

k − η
( )|K(A)|, there are

T � 1
ksη,k

|K(A)| − |B|
2
k−η

( )
augmenting structures (C1,D1), . . . ,

(CT,DT) such that |Ct| ≤ sη,k and |Dt| ≤ sη,k for all t ∈ [T],
and the set of cycles appearing in Cts are vertex-disjoint, that
is, for all t, t′ ∈ [T] such that t �� t′ for any c ∈ Ct and
c′ ∈ Ct′ , we have c ∩ c′ � ∅. Moreover, this collection of
augmenting structures can be found in polynomial time,
assuming k and η to be constants.

Algorithm 3 (Finding Constant-Size Disjoint Augmenting
Structures for k-Cycles)
Input: k-cycle packing instance (V,A) and a collection
B ⊆ A of disjoint sets.
Output: Collection Q of vertex-disjoint augmenting
structures as described in Lemma 7.
Parameter: sη,k (the desired maximum size of the
augmenting structures).
1. Initialize A1 ← A and Q ← φ (empty set).
2. For t � 1, · · · , |A|

a. Find an augmenting structure (Ct,Dt) of size sη,k
for B on the k-cycle packing instance (V,At).
b. Add (Ct,Dt) to Q. (If Ct is an empty set, break
out of the loop.)
c. At+1 ← At \ c|∃c′ ∈ Ct, such that c ∩ c′ �� ∅{ }.

3. Output Q.

Proof. We prove this lemma using Algorithm 3. The
algorithm starts with an empty set of augmenting

structures Q. In step 2b of this algorithm, an aug-
menting structure for B gets added to Q. Further-
more, in step 2c, all cycles that share any vertex with
a cycle that is already in Q are removed. Therefore,
by design, the collection Q of augmenting structures
returned by the algorithm satisfies the property that,
for any two augmenting structures Ct,Ct′ and any
two cycles c ∈ Ct and c′ ∈ Ct′ , c ∩ c′ � ∅. It remains to
show that |Q| ≥ 1

ksη,k
(|K(A)| − |B|

2
k−η). That is, in the first T �

1
ksη,k

|K(A)| − |B|
2
k−η

( )
iterations of step 2a, we are able to find

a nonempty augmenting structure for B. Using Lemma
6, it is sufficient to show that K(At+1) ≥ |B|/(2k − η) for all
t ≤ T.

Note that, for all t, |Ct| ≤ sη,k and for each c ∈ Ct,
|c| ≤ k. Therefore, by time t + 1, there are at most t · k ·
sη,k vertices ofV that are covered by cycles that appear
in C1, . . . ,Ct. At most t · k · sη,k cycles in the largest
cardinality packing of A may have one or more of
these t · k · sη,k vertices. Note that removing these
cycles from the largest cardinality packingK(A)yields
a packing for At+1, so we have that

K At+1( ) ≥ K(A) − t · k · sη,k ≥ |B|
2
k − η

,

for all t ≤ T. Using Lemma 6 completes the proof. □

7.2. Adaptive Algorithm for k-Cycle Packing
We use the following polynomial-time algorithm for
stochastic k-cycle packing to prove Theorem 4. In each
round r, the algorithm maintains a feasible k-cycle
packingBr basedon the k-cycles that have been queried
so far. It then computes a collection Qr of vertex-
disjoint, small augmenting structures with respect
to the current solution Br (as in Lemma 7), where the
augmenting structures are composed of cycles that
may have unqueried edges. It then queries all edges
that appear in some cycle in these augmenting struc-
tures and uses those that are found to exist to augment
the current solution and removes all cycles with a failed
edge from consideration for the future rounds. The
augmented solution is fed into the next round, and the
process is repeated.

Algorithm 4 (Adaptive Algorithm for Stochastic k-Cycle
Packing)
Input: Graph G � (V,E), k ≥ 2, the corresponding
k-cycle packing instance (V,A), and ε> 0.
Parameters: η � ε

k and R � (2k−η)k·sη,k
pk·sη,k

log(2ε) (for a (1 − ε)(2k)-
approximation to K A( )).
1. Initialize r ← 1, B1 ← ∅, and A1 ← A.
2. For r � 1, . . . ,R, do

a. LetQr be the set of augmenting structures given
byAlgorithm 3 on the input of the k-cycle packing
instance of (V,Ar), the collection Br, and the pa-
rameter sη,k.
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b. For each augmenting structure (C,D) ∈ Qr

i. For all cycles c ∈ C, query all edges.
ii. If, for all c ∈ C, all edges of c exist, augment

the solution: Br+1 ← (Br \D) ∪ C.
c. Ar+1 ← Ar \ {c | One or more edges in cycle
c failed to exist}.

3. Return BR.

Similar to our matching results, for any element
v ∈ V, the number of cycles in BR that v belongs to
and are queried is at most R. Indeed, in each of the R
rounds, Algorithm 4 issues queries to vertex-disjoint
augmenting structures—vertex disjoint set of cycles—
and each such structure includes at most one cycle
that uses vertex v.

Let us first introduce some notation that is helpful
in proving Theorem 4. For a given r, we use the no-
tation EQr[X] to denote EQr[X | Q1, . . . ,Qr−1], that is,
the expected value of X, where the expectation is
taken over the outcomes of Qr when outcomes of
Q1, . . . ,Qr−1 are fixed based on queries in the first r − 1
rounds. Similarly, we use the notation EQr,...,QR[X] to
denoteEQr,...,QR[X | Q1, . . . ,Qr−1].Moreover,we denote
by K A | Q1, . . . ,Qr−1( ) the expected size of the largest
cardinality cycle-packing for (V,A) given the result of
queries in Q1, . . . ,Qr−1.

Lemma 8. For every r ∈ [R], outcome of queries Q1, . . . ,
Qr−1, and the corresponding Br−1, we have

EQr[|Br|] ≥ 1 − γ
( )|Br−1| + γ

2
k
− η

( )
K A | Q1, . . . ,Qr−1( ),

where γ � pk·sη,k
(2k−η)·k·sη,k.

Proof. By Lemma 7, Qr is a collection of at least
1

k·sη,k K(Ar) − |Br−1 |
2
k−η

( )
augmenting structures of size at most

sη,k whose cycles are all mutually vertex-disjoint. Note
that at step 2c of round 1, . . . , r − 1, we remove any
cycles that had an edge that was queried and did not
exist. Therefore, all cycles that appear in the aug-
menting structures in Qr consist of edges that either
have never been queried or have been queried and
exist. Therefore, each augmenting structure exists with
probability at least pk·sη,k . So, conditioned on Q1, . . . ,
Qr−1, the expected increase in the size of the solution
at step 2b is

EQr[|Br|] − |Br−1| ≥ pk·sη,k |Qr|

≥ pk·sη,k
k · sη,k |K(Ar)| − |Br−1|

2
k − η

( )

≥ γ
2
k
− η

( )
|K(Ar)| − |Br−1|

( )

≥ γ
2
k
− η

( )
K A | Q1, . . . ,Qr−1( ) − |Br−1|

( )
,

where the last inequality follows by the fact that
|K(Ar)| ≥ K A | Q1, . . . ,Qr−1( ). Rearranging this proves
the claim. □

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let us start with a technical ob-
servation, that, for every r,

EQr−1 K A | Q1, . . . ,Qr−1( )[ ] � K A | Q1, . . . ,Qr−2( ). (5)

Using Lemma 7 on the Rth step of Algorithm 4 and
conditioning on Q1, . . . ,QR−1, we have that

EQR[|BR|] ≥ 1 − γ
( )|BR−1| + γ

2
k
− η

( )
· K A | Q1, . . . ,QR−1( ).

Taking expectation overQR−1 in this inequality, we have

EQR−1,QR[|BR|]
≥ 1 − γ
( )

EQR−1 BR−1| |[ ]
+ γ

2
k
− η

( )
EQR−1 K A | Q1, . . . ,QR−1( )[ ]

≥ (1 − γ)EQR−1 BR−1| |[ ] + γ
2
k
− η

( )
· K A | Q1, . . . ,QR−2( )

≥ (1 − γ) (1 − γ)|BR−2| + γ
2
k
− η

( )(

· K A|Q1, . . . ,QR−2( )
)
+ γ

2
k
− η

( )
K A | Q1, . . . ,QR−2( )

≥ 1 − γ
( )2|BR−2| + γ

2
k
− η

( )
1 + 1 − γ

( )( )
· K A|Q1, . . . ,QR−2( ),

where the second transition is by Equation (5), and the
third transition is due to applying Lemma 7 on the
(R − 1)th step. Repeating these steps by sequentially
taking expectation overQR−2 through Q1 and applying
Lemma 7 and Equation (5) at each step, we have

EQ1,...,QR[|BR|] ≥ (1 − γ)R|B0| + γ
2
k
− η

( )

· 1 + 1 − γ
( ) + . . . , 1 − γ

( )R−1( )
K A( )

≥ γ
2
k
− η

( )
1 − 1 − γ

( )R( )
K A( ).

Note that, when η � ε
k and R � 1

γ log(2ε) �
2
k−η( )k·sη,k
pk·sη,k

log(2ε),
we have

γ
2
k
− η

( )
1 − 1 − γ

( )R( ) ≥ 2
k
1 − ηk

2

( )
1 − 1 − γ

( )R( )

≥ 2
k
1 − ε

2

( )
1 − ε

2

( )
≥ 2
k
(1 − ε).

Therefore, EQ1,...,QR[|BR|] ≥ 2
k (1 − ε)K A( ). We complete

the proof by noting that, because every cycle in A
(and by extension BR) has between two and k
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vertices, the resulting approximation ratio for the
optimal number of vertices covered is

EQ1,...,QR

∑
c∈BR

|c|
[ ]

≥ 4
k2

(1 − ε)V(A). □

8. Experimental Results on Kidney
Exchange Compatibility Graphs

Our theoretical results show that our adaptive and
nonadaptive algorithms recover (1 − ε) and (12 − ε)
fractions of the omniscient optimum matching using
R � Oε,p(1) queries per vertex, respectively. Although
R is a constant regardless of the number of vertices, its
dependence on ε and pmay lead to values ofR that are
impractical for a kidney exchange platform. To bridge
this gap, we use empirical simulations from two kidney
exchange compatibility graph distributions to show
that our algorithms performwell in practice even for a
number of per-vertex queries that is as low as R ≤ 5.

The first distribution, from Saidman et al. (2006),
was designed to mimic the characteristics of a na-
tionwide exchange in the United States in steady
state. Fielded kidney exchanges have not yet reached
that point, however; with this in mind, we also in-
clude results on real kidney exchange compatibility
graphs drawn from the first 169 match runs of the
UNOS nationwide kidney exchange. Although these
two families of graphs differ substantially, we find
that even a small number R of nonadaptive rounds
followed by a single period during which only those
edges selected during theR rounds are queried, results
in large gains relative to the omniscient matching.

As is common in the kidney exchange literature,
in the rest of this section we loosely use the term
“matching” to refer to both two-cycle packing (equiva-
lent to the traditional definition of matching, in which
two vertices connected by directed edges are trans-
lated to two vertices connected by a single undirected
edge) and k-cycle packing, possibly with the inclusion
of altruist-initiated chains.

This section does not directly test the algorithms
presented in this paper. For the two-cycles-only case,
we do directly implement Algorithm 2. However, for
the cases involving longer cycles and/or chains, we
do not restrict ourselves to polynomial-time algo-
rithms (unlike in the theoretical part of this paper),
instead choosing to optimally solve matching prob-
lems using integer programming during each round
as well as for the final matching and for the omni-
scient benchmarkmatching. This decision is informed
by the current practice in kidney exchange, in which
computational resources are much less of a problem
than human or monetary resources—of which the
latter two are necessary for querying edges.

In our experiments, the planning of which edges to
query proceeds in rounds as follows. Each round of

matching calls as a subsolver the matching algorithm
presented by Dickerson et al. (2019), which includes
edge failure probabilities in the optimization objective
toprovide amaximum-discounted-utilitymatching. The
set of cycles and chains present in a round’s discounted
matching are added to a set of edges to query, and
then those cycles and chains are constrained from
appearing in future rounds. After all rounds are
completed, this set of edges is queried, and a final
maximum discounted utility matching is compared
against an omniscient matching that knows the set of
nonfailing edges up front.

8.1. Experiments on Dense Generated Graphs from
Saidman et al. (2006)

We begin by looking at graphs drawn from a distri-
bution from Saidman et al. (2006), hereafter referred
to as “the Saidman generator.” This generator takes
into account the blood types of patients and donors
(such that the distribution is drawn from the general
U.S. population) as well as three levels of PRA and
various other medical characteristics of patients and
donors that may affect the existence of an edge.
Fielded kidney exchanges currently do not uniformly
sample their pairs from the set of all needy patients
and able donors in the United States as assumed
by the Saidman generator; rather, exchanges tend to
get hard-to-match patients who have not received
an organ through other means. Because of this, the
Saidman generator tends to produce compatibility
graphs that are significantly denser than those seen
in fielded kidney exchanges today (see, e.g., Ashlagi
et al. (2011a, 2013)).
Figure 4 presents the fraction of the omniscient

objective achieved by R ∈ {0, 1, . . . , 5} nonadaptive
rounds of edge testing for generated graphs with 250
patient–donor pairs and no altruistic donors, con-
strained to two-cycles only (left) and both two- and
three-cycles (right). Note that the case R � 0 corre-
sponds to no edge testing, in which a maximum
discounted utility matching is determined by the
optimization method of Dickerson et al. (2019) and
then compared directly to the omniscient matching.
The x-axis varies the uniform edge failure rate f from
0.0, at which edges do not fail, to 0.9, at which edges
only succeed with a 10% probability. Given an edge
failure rate of f in the following figures, we can
translate to the p used in the theoretical section of the
paper as follows: a two-cycle in amatching represents
both directions of an edge and, therefore, exists with
probability p2-cycle � (1 − f )2, and an edge in a three-
cycle packing only represents a single direction of com-
patibility and existswith probability p3-cycle � 1− f , and
a three-cycle exists with probability (1 − f )3.
The utility of even a small number of edge queries is

evident in Figure 4. Just a single round of testing
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(R � 1) results in 50.6% of omniscient—compared
with just 29.8%with no edge testing—for edge failure
probability f � 0.5 in the two-cycle case, and there are
similar gains in the two- and three-cycle case. For the
same failure rate, setting R � 5 captures 84.0% of the
omniscient two-cycle matching and 69.3% in the two-
and three-cycle case compared with just 22.2% when
no edges are queried. Interestingly, we found no sta-
tistical difference between nonadaptive and adaptive
matching on these graphs.

8.2. Experiments on Real Match Runs from the
UNOS Nationwide Kidney Exchange

We now analyze the effect of querying a small num-
ber of edges per vertex on graphs drawn from the
real world. Specifically, we use the first 169 match
runs of the UNOS nationwide kidney exchange,
which began matching in October 2010 on a monthly

basis and now includes 153 transplant centers—that
is, 66% of the centers in the United States—and
performs match runs twice per week. These graphs,
as with other fielded kidney exchanges (Ashlagi
et al. 2013), are substantially less dense than those
produced by the Saidman generator. This disparity
between generated and real graphs has led to dif-
ferent theoretical results (e.g., efficient matching
does not require long chains in a deterministic
dense model (Dickerson et al. 2012b, Ashlagi and
Roth 2014) but does in a sparse model (Ashlagi et al.
2011a, Ding et al. 2015) and empirical results (both in
terms of match composition and experimental trac-
tability (Constantino et al. 2013, Glorie et al. 2014,
Anderson et al. 2015b) in the past—a trend that
continues here.
Figure 5 shows the fraction of the omniscient two-

cycle and two-cycle with chains match size achieved

Figure 4. Saidman Generator Graphs Constrained to Two-Cycles Only (Left) and Both Two- and Three-Cycles (Right)

Figure 5. Real UNOS Match Runs Constrained to Two-Cycles (Left) and Both Two-Cycles and Chains (Right)

Blum et al.: Near-Optimal Stochastic Matching with Few Queries
Operations Research, 2020, vol. 68, no. 1, pp. 16–34, © 2020 INFORMS 29



by using only two-cycles or both two-cycles and
chains and some small number of nonadaptive edge
query rounds R ∈ {0, 1, . . . , 5}. For each of the 169
pretest compatibility graphs and each of the edge
failure rates, 50 different ground truth compatibility
graphs were generated. Chains can partially execute;
that is, if the third edge in a chain of length three fails,
then we include all successful edges (in this case, two
edges) until that point in the final matching. More
of the omniscient matching is achieved (even for the
R � 0 case) on these real-world graphs than on those
from the Saidman generator presented in Section 8.1.
Still, the gain realized even by a small number of edge
query rounds is stark with R � 5 achieving more than
90% of the omniscient objective for every failure rate
in the two-cycles-only case and more than 75% of the

omniscient objective when chains are included (and
typically much more).
Figure 6 expands these results to the case with two-

and three-cycles, both without and with chains. Slightly
less of the omniscient matching objective is achieved
across the board, but the overall increases resulting
from R ∈ {1, . . . , 5} nonadaptive rounds of testing is
once again prominent. Interestingly, we did not see
a significant difference in results for adaptive and
nonadaptive edge testing on the UNOS family of graphs
either.
Next we consider these experiments again, only

this time including in the analysis empty omni-
scient matchings. If an omniscient matching is empty,
then our algorithm achieves at most zero matches as
well. Previously, we removed these cases from the

Figure 6. Real UNOS Match Runs with Two- and Three-Cycles and No Chains (Left) and with Chains (Right)

Figure 7. Real UNOS Match Runs, Restricted Matching of Two-Cycles Only Without Chains (Left) and with Chains (Right),
Including Zero-Sized Omniscient Matchings

Blum et al.: Near-Optimal Stochastic Matching with Few Queries
30 Operations Research, 2020, vol. 68, no. 1, pp. 16–34, © 2020 INFORMS



experimental analysis because achieving zero matches
(using any method) out of zero possible matches
trivially achieves 100% of the omniscient matching;
by not including those cases, we provided a more
conservative experimental analysis. Here, we include
those cases and rerun the analysis.

Figure 7 mimics Figure 5. It shows results for two-
cycle matching on the UNOS compatibility graphs
without chains (left) and with chains (right) for R ∈
{0, 1, . . . , 5} and varying levels of f ∈ {0, 0.1, . . . , 0.9}.
We witness a marked increase in the fraction of omni-
scient matching achieved as f gets close to 0.9; this is
due to the relatively sparse UNOS graphs admitting
no matchings for high failure rates.

Figure 8 shows the same experiments as Figure 7,
only this time allowing both two- and three-cycles
without (left) and with (right) chains. It corresponds
to Figure 6 and exhibits similar but weaker behavior
to Figure 7 for high failure rates. This demonstrates
the power of including three-cycles in the matching
algorithm; we see that far fewer compatibility graphs
admit no matchings under this less-restrictive matching
policy.

Code to replicate all experiments is available at https://
github.com/JohnDickerson/KidneyExchange; this
code base includes graph generators but, because of
privacy concerns, does not include the real match
runs from the UNOS exchange.

9. Discussion and Future Research
In this paper, we addressed stochastic matching
and its generalization to k-cycle packing from both a
theoretical and experimental point of view. For the
stochastic matching problem, we designed an adap-
tive algorithm that queries only a constant number

of edges per vertex and achieves a (1 − ε) fraction of
the omniscient solution for an arbitrarily small ε> 0
and performs the queries in only a constant number
of rounds. We complemented this result with a
nonadaptive algorithm that achieves a (0.5 − ε) frac-
tion of the omniscient optimum.
We then extended our results to the more general

problem of stochastic k-cycle packing by designing
an adaptive algorithm that achieves a (2k − ε) fraction
(respectively, ( 4k2 − ε) fraction) of the cardinality of
(respectively, number of vertices covered in) the
omniscient optimal solution, again with only O(1)
queries per element. This guarantee is quite close to
the best known polynomial-time approximation ratio
of 3

k+1 − ε for the cardinality of the optimal k-cycle
packing in the standard nonstochastic setting (Fürer
and Yu 2014).
We adapted these algorithms to the kidney ex-

change problem and, on both generated and real
data from the first 169 runs of the UNOS U.S. na-
tionwide kidney exchange, explored the effect of a
small number of edge query rounds on matching
performance. In both cases—but especially on the real
data—a very small number of nonadaptive edge queries
per donor–patient pair results in large gains in ex-
pected successfulmatches across awide range of edge
failure probabilities.
In the theoretical part of this paper, we considered a

setting in which every edge e exists with probability
pe ≥ p for a constant value of p and gave algorithms
that queried a number of edges that increased as
p → 0. In kidney exchange, however, a small fraction
of patients may be highly sensitized; there is a low
probability that their crossmatch test with poten-
tially compatible donors would be successful. This

Figure 8. Real UNOS Match Runs, Matching with Two- and Three-Cycles Without Chains (Left) and with Chains (Right),
Including Zero-Sized Omniscient Matchings
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gives rise to compatibility graphs that include a small
fraction of edges with success probability pe ≈ 0. In
this case, setting p � mine∈E pe in our theoretical re-
sults would require a large number of tests per vertex,
leading to an impractical algorithm that tests every
edge and finds the omniscient optimal solution. To
avoid this problem, we note that, when the number
of edges with small pe is small, ignoring them affects
the size of the omniscient optimal solution only to a
small degree. This allows us to essentially recover
our theoretical approximation guarantees. Of course,
in practice, these edges are not ignored; rather they
may receive specialized treatments, hence allowing
for an even better outcome.

A related theoretical problem is the stochastic k-set
packingproblem. In this setting,weare givena collection
of sets, each with cardinality at most k. Each set s exists
with some known probability ps independently of
others, and we need to query the sets to find whether
they exist. The objective is to output a collection of
disjoint sets of maximum cardinality. Note that sto-
chastic matching is a special case of stochastic k-set
packing: each set (which corresponds to an edge) has
cardinality two, that is, k � 2. However, the exis-
tence of different k-cycles is correlated for k ≥ 3, and
therefore k-cycle packing problems are different
from k-set packing problems. Yet it is not hard to see
that, similarly to our extension to k-cycle packing, our
adaptive and nonadaptive stochastic matching al-
gorithms also extend to the case of k-set packing. We
refer interested readers to the preliminary version of
this paper (Blum et al. 2015) for more details on the
stochastic k-set packing problem.

9.1. Open Theoretical Problems
Three main open theoretical problems remain. First,
our adaptive algorithm for the matching setting
achieves a (1 − ε)-approximation in O(1) rounds and
using O(1) queries per vertex. Is there a nonadaptive
algorithm that achieves the same guarantee? Such an
algorithm would make the practical message of the
theoretical results even more appealing: instead of
changing the status quo in two ways—more rounds
of crossmatch tests, more tests per patient—wewould
only need to change it in the latter way.

Second, for the case of optimal cardinality k-cycle
packing, we achieve a (2k − ε)-approximation using
O(n) queries—in polynomial time. In kidney ex-
change, however, our scarcest resource is the ability
to query edges. In particular, computational hardness
is circumvented in many cases through integer pro-
gramming techniques (Abraham et al. 2007, Con-
stantino et al. 2013, Dickerson et al. 2016). Therefore, it
would be interesting to see if there is an exponential-
time adaptive algorithm for k-cycle packing that re-
quires O(1) rounds and O(n) queries and achieves

(1 − ε)-approximation to the omniscient optimum.
A positive answer would require a new approach
because ours is inherently constrained to constant-
size augmenting structures, which cannot yield an
approximation ratio better than 2

k − ε even if we
could compute optimal solutions to k-cycle packing
(Hurkens and Schrijver 1989).
Third, although we provided an adaptive algo-

rithm for stochastic k-cycle packing for the general
case of k ≥ 2, our nonadaptive results were restricted
to the case of k � 2. A natural question is whether
there exists a nonadaptive algorithm with a good
approximation guarantee for stochastic k-cycle pack-
ing when k> 2. One of the key ingredients in the
analysis of our nonadaptive stochastic matching al-
gorithm was to show that the benefit we drew from a
new matching (whose edges were to be tested at the
end of the algorithm) was (1) a large fraction of the
size of the matching in the remaining graph and (2)
independent of the outcome of the queries in the
earlier matchings (see Equation (4)). For the case of
k � 2, these properties hold because the optimal
matching in the remaining graph at step r is a large
fraction of the total matching, and the matching at
step r shares no edges with prior matchings. For the
case of k> 2, however, to assure that property (2)
holds, we need to choose a k-cycle packing at step r
using only those cycles that share no edges with the
k-cycle packings in steps 1, . . . , r − 1. Therefore, at
every step, we need to remove from consideration all
cycles that share an edge with an earlier packing.
However, doing so results in a graph that has a small
(or no) cycle packing, invalidating property (1). We
conclude that new algorithms and techniques may
be needed for the nonadaptive stochastic k-cycle
packing problem.

9.2. Discussion of Policy Implications of
Our Experimental Results

Policy decisions in kidney exchange have been linked
to economic and computational studies since before
thefirst large-scale exchangewasfielded in 2003–2004
(Roth et al. 2004, 2005). A feedback loop exists be-
tween the reality of fielded exchanges—now not only
in the United States but internationally as well—and
the theoretical and empirical models that inform
their operation, such that the latter has grown sub-
stantially closer to accurately representing the former
in recent years. That said, many gaps still exist be-
tween the mathematical models used in kidney ex-
change studies and the systems that actually provide
matches on a day-to-day basis.
Better approaches are often not adopted quickly, if

at all, by exchanges. One reason for this is complexity—
and not in the computational sense. Humans—doctors,
lawyers, and other policy makers who are not
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necessarily versed in optimization, economics, or
computer science—and the organizations they rep-
resent understandablywish to understand theworkings
of an exchange’s matching policy. The techniques
described in this paper are particularly exciting in that
they are quite easy to explain in accessible language,
and they involve only mild changes to the status quo.
At a high level, we are proposing to test some small
number of promising potential matches for some
subset of patient–donor pairs in a pool. As Section 8.2
shows, even a single extra edge test per pair will pro-
duce substantially better results.

Any new policy for kidney exchange has to address
three practical restrictions in this space: (i) the mone-
tary cost of crossmatches, (ii) thenumberof crossmatches
that can be performed per person as there is an inher-
ent limit on theamountofblood that canbedrawnfroma
person, and (iii) the time it takes to find the matches as
time plays a major role in the health of patients and
crossmatches become less accurate as time passes and
the results become stale. For both our nonadaptive
and adaptive algorithms, even a very small number of
rounds (R ≤ 5) results in a very large gain in the objec-
tive. This is easilywithin the limits of considerations (i)
and (ii). Our nonadaptive algorithm performs all
chosen crossmatches in parallel, so the time taken by
this method is similar to the current approach. Our
adaptive algorithm, in practice, can be implemented
by a one-time retrieval ofR roundsworth of blood from
each donor–patient pair, then sending that blood to a
central laboratory. Most crossmatches are performed
via an “immediate spin” in which the bloods are
mixed together and either coagulate (which is bad) or
do not (which is good). These tests are very fast, so a
small number of rounds could be performed in a
single day (assuming that tests in the same round are
performed in parallel). Therefore, the timing con-
straint (iii) is not an issue for smallR (such as that used
in our experiments) for the adaptive algorithm.

More extensive studies would need to be undertaken
before an exact policy recommendation can be made.
These studies could take factors such as the monetary
cost of an extra crossmatch test or variability in testing
prowess across different medical laboratories into ac-
count explicitly during the optimization process. Var-
ious prioritization schemes could also be implemented
to help, for example, hard-to-match pairs find a feasible
match by assigning them a higher edge query budget
than easier-to-match pairs.Moreover, there is a need for
a closer look at other uncertainties in kidney exchange,
such as the dynamic nature of participation of donors
and patients and how they interact with our proposed
algorithms. But the positive theoretical results presented
in this paper, combined with the promising experi-
mental results on real data, provide a firm basis and mo-
tivation for this type of policy analysis in the future.
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