Optimized Democracy (Fall 2025)

Problem Set #3
— Solutions —

Due: 10/29/2025 11:59pm ET

Instructions:

e You may discuss the problems with classmates but please write down solutions completely
on your Own.

e The solutions to many of the problems that we give can be found in papers, but, needless to
say, you should avoid reading the proof if you come across the relevant paper. If for some
reason you did see the solution before working it out yourself, please say so in your solution.

e You must not use Al in any way.

e Please type up your solution and submit to Gradescope.
Problems:

1. Recall the epistemic liquid democracy model, which was introduced and analyzed in the
“liquid democracy” lecture, slides 5-12. We saw that local delegation mechanisms cannot
satisfy do no harm (DNH) and positive gain (PG).

Now consider the following non-local delegation mechanism. For each voter ¢ = 1,...,n,
if Ag(i) # 0 (i approves other voters), the mechanism determines the lowest j such that i
approves j, that is, j = min Ag(i). Then i delegates to j if and only if j has not already
delegated their vote and there is no other voter who has already delegated to ¢ or j. Intuitively,
under this mechanism, some delegations could take place but no voter would ever have a
weight of more than 2.

For simplicity, let us fix & = 0.1 for this problem, that is, i approves j if and only if (i,j) € E
and p; > p; +0.1.

(a) [5 points] Show that the above mechanism satisfies PG.
Solution: We choose v = 1. Let there be one voter with competence 1, and two
voters with competence 0. The graph G includes one edge from one of the competence
0 voters to the competence 1 voter. It holds that Pp(G) = 0 and Py (G) = 1, hence
gain(M,G) = 1.



(b) [15 points] Show that the above mechanism does not satisfy DNH.

Note and hint: This is surprising because the mechanism prevents the problem of
voters amassing large weight. It turns out that the mechanism does satisfy DNH with
an additional assumption: for all i € N, p; € [5,1 — ] for § > 0. Here you are asked to
give a family of counterexamples that would necessarily have to violate this assumption.

Solution: The formal definition of not satisfying DNH is the following: There exists
some € > 0 such that for infinitely many n, there is a graph G,, on n vertices such that
gain(M, G,,) < —e. We choose € = 0.1. We construct a graph for all odd n = 20+ 1
with ¢ > 1. We will have ¢ voters with competence 1, £ — 1 with competence 0, one with
competence 0.4 and one with competence 0.6. In G,,, there will be an edge from the 0.4
voter to the 0.6 voter. Note that ¢ + 1 correct votes are needed for a majority. Hence,
Pp(G,,) is simply the probability that at least one of the 0.4 and 0.6 competence voters
vote correctly, which is 1 — (1 — 0.4)(1 — 0.6) = 0.76. On the other hand, under the
mechanism, the 0.4 voter delegates to the 0.6 voter, so the outcome is only the correct
one exactly when the 0.6 voter is correct, i.e., Pyf(G,) = 0.6. Therefore, for all such n,
gain(M,G,) = —0.16 < —0.1, as needed.

2. In class we discussed notions of proportionality for approval-based elections like extended
justified representation (EJR), which only guarantees that one voter in each “deserving”
coalition is satisfied. In this problem our goal is to provide guarantees that hold on average.

Recall that in the approval-based committee elections settings we have a set N of n voters
and a target committee size k, where each voter i € N approves a set of alternatives a; C A.
Let ¢ := . We say that a set of S C N of voters is £-cohesive if |S| > £-q and |[;cg ai| > L.
As in class, we write w;(W) = |W N ay.

(a) [10 points] Assume that ¢ is an integer. Suppose that a committee W C A, |W| = k,
satisfies extended justified representation (EJR), so for each 1 < ¢ < k and every (-
cohesive group S, there exists i € S with u;(W) > £. Now let S be an ¢-cohesive group
with |S| = ¢ ¢. Prove that

that is, S obtains high average utility.

Note: With more work it can be shown that it is possible to achieve average utility at
least ¢ — 1 for ¢-cohesive groups.

Solution: Let S be an ¢-cohesive group. Label S = {1,...,¢q} so that uy(W)>--- >
ugg(W). Write S; = S\ {1,...,j —1}. Note that [[;cg a;| = ¢ for each j. It follows
that for j = 1,...,¢q, S; is an (¢ — 1)-cohesive group. Applying EJR to each of them,
we find that there exists ¢ € S; with u;(WW) > £ — 1. By our labeling of voters in S, in
fact i = j works. Hence we have u;(W) > ¢ —1for j =1,...,q. Similarly, we find that
uj(W) >t —2for j=qg+1,...,2q. Continuing in this way, we see that
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(b) [15 pt] Prove that for all ¢ > 0, there exists an election such that, no matter which
committee is chosen, there is a 1-cohesive group S that has average utility at most €.
More formally, there is a set N of n voters, a set A of m alternatives, target committee
size k, and approval set o; C A for each i € N, such that the following holds. For
all committees W C A with |W| = k, there is a set of voters S with |S| > n/k and
| (M;eg il > 1 such that,

3 |;‘ui(W) <e.

€S

Note: With more work it can be shown that there exist elections such that no matter
which committee is chosen, there is an /-cohesive group with average utility at most
¢ — 1+ ¢e. This means the lower bound mentioned in the note in part (a) is tight.
Hint: Construct a family of instances with m = k + 1 alternatives where each voter
approves either one or two alternatives.

Solution: Fix an ¢ > 0. Choose k sufficiently large such that 2/(k + 1) < &; letting
k = [2/e] will do. We will construct an instance for choosing a committee of size k with
m = k + 1 alternatives and n = k(k + 1) voters. Call the alternatives ay,...,a;,. The
preferences will be as follows: for each alternative a;, there will be k — 1 voters whose
approval set is {a;}. This accounts for (k 4+ 1)(k — 1) of the voters. The remaining
m voters will each like a pair of “neighboring” alternatives {a;,a;j+1} for each j € [m]
(where, by convention, we let a;,+1 = a1, so last voter has preference {an,, a1 }).
Suppose a committee W of size k is chosen. Let a; be the alternative not in W. Note
that there are k£ 4 1 voters that approve aj, the kK — 1 with approval set {a;}, the one
with approval set {a;_1,a;}, and the one with approval set {a;,aj+1}. Since there are
k(k + 1) voters in total, these voters form a 1-cohesive group. Further, all voters in the
group only approving a; are receiving utility 0, while those approving a pair are receiving
utility 1. Hence, the average utility of this 1-cohesive group is 2/(k + 1) < £, as needed.

3. We proved (“committee elections,” slide 17) that a committee satisfying extended justified
representation (EJR) can be found through the PAV rule. But computing PAV is hard.

To efficiently compute a committee satisfying EJR, then, we’ll actually define a stronger
notion and show that it can be easily achieved:

A committee W of size k satisfies EJR+ if for all alternatives x € A\ W, if S C N is such
that |S| > ¢n/k and x € ;. g a4, then there is i € S such that u;(W) > £.

(a) [5 points] Show that EJR+ implies EJR.
Solution: Suppose for contradiction that W satisfies EJR+ but not EJR, i.e., there is
S C N is such that |S| > In/k, |(;cq il > £, and u;(W) < £ for all i € S. It follows
that there is x € A\ W such that = € (),cg a, as if all £ alternatives in (,c g a; were
in W, it would hold that u;(1W) > ¢ for all i € S (not just for one i € S). We conclude
that EJR+ is violated —a contradiction.

(b) [10 points] Show that EJR does not imply EJR~+.



Solution: Suppose there are 6 voters and 5 candidates a, b, ¢, d, e with the following

approval:
1:{a,b},2:{a,c},3:{a,d},4:{b},5:{c},6:{d}.

Consider the committee W = {b, ¢, d, e} without a.

We first verify EJR. For ¢ =1 it is trivial since every voter ¢ has u;(W) > 1. For £ > 2,
no group of voters shares two candidates in common. Thus, EJR holds for W.

However, for EJR+, consider a € A\ W and S = {1,2,3}. Consider { = 2. We have
|S| > 2n/k =3 and a € (,cg ;. On the other hand, for all i € S, u;(W) = 1 < £. Thus
W does not satisfy EJR+. We conclude EJR does not imply EJR+-.

(¢) [15 points] Consider the following greedy algorithm. The algorithm starts from W = (),
and for ¢ =k, ..., 1, it iteratively finds and adds all alternatives x € A\ W such that the
number of voters ¢ with « € a; and u;(W) < £ is at least ¢n/k. Intuitively, the algorithm
finds and adds all alternatives causing an EJR+ violation with respect to a given value
of ¢, which starts from ¢ = k and is iteratively decremented.

Prove that this algorithm outputs an EJR+ committee of size (at most) k.

Hint: The committee clearly satisfies EJR4, so the challenge is to show that at most k
alternatives are added.

Solution: Satisfying EJR+ is clear: if there were such an z violating EJR+ with
¢ = /(" at the end, this would have been detected at round ¢ (since the utility of voters
is monotonically increasing).

We now show that we add at most k alternatives. Assign each voter a budget of k/n,
so the total budget is k, and the price of each alternative is 1 and it is equally divided
between the voters responsible for adding it. It is sufficient to show that the algorithm
does not overspend the budget.

Consider any alternative x added at round ¢. Then, there exists S, C N such that
|Sz| > In/k, v € (), i, and u;(W) < £ for all ¢ € S,. Consider any i € S,. We show
that after charging the price of the alternative x, the remaining budget for voter i is still
non-negative. Including the current alternative x, voter ¢ has only been charged at some
¢" > {. Therefore, each time the price charged to voter i is at most 1/(¢n/k) = k/(¢n).
Furthermore, after adding alternative z, u;(W) < ¢, so they could have been charged at
most ¢ times. We conclude the total price charged to voter 7 is at most k/(¢n)-£ = k/n,
which is exactly their budget.

4. In the context of sortition we discussed allocation rules, which receive a set of volunteers IV,
a panel size k, a set of features I, set of values V for each f € F, and quotas uy,, £y, for all
f € F and v € Vy; they output a distribution over panels that satisfy the given quotas if one
exists. In particular, we saw that allocation rules like Leximin and Maximum Nash Welfare
lead to seemingly fair selection probabilities. But do these rules satisfy appealing axiomatic
properties? On a high level the answer is negative, but that is mostly due to strong, general
impossibility results that hold in this domain; below you are asked to establish those negative
results.

(a) [15 points] An allocation rule guarantees population monotonicity if, when additional
volunteers are added to an instance — that is, there are two sets of volunteers N and N’



such that N C N’, and the panel size, features, values and quotas remain unchanged —
the selection probabilities of all previously existing volunteers weakly decrease.

Prove that no allocation rule satisfies population monotonicity.

Solution: Fix an allocation rule A, and consider an instance with six agents, k = 3,
and four features. We indicate an agent’s feature membership as a four-element Boolean
vector, where the ith entry of the vector indicates whether the agent exhibits feature i.
Using this convention, let the agents’ features be given as:

agent 1: (1,0,0,0)

agent 2: (0,1,0,0)
agent 3: (1,1,0,0)
agent 4: (0,0,1,0)
agent 5: (0,0,0,1)

agent 6: (0,0,1,1)

For each feature f, set the lower quota ¢; to 1 and the upper quota to 3 (i.e., there is
effectively no upper quota). This instance has quota-compliant panels, for example the
panel {agent 1,agent 2, agent 6}.

Consider the probability allocation of A on this instance. Since k = 3, agents 1, 2, 4,
and 5 cannot all simultaneously have zero selection probability. WLOG, assume that
agent 1 has positive selection probability.

Now, consider a modified instance in which agent 6 is removed. In this instance, one
verifies that the only quota-compliant panel is {agent 3, agent 4, agent 5}, which means
that A must select agent 1 with zero probability. This violates population monotonicity
since adding back agent 6 would strictly increase the selection probability of agent 1.

[10 points] An allocation rule guarantees committee monotonicity if, when an instance
is modified by increasing the size of the panel —that is, there are two panel sizes k and
k' such that k¥’ > k, and the volunteers, features, values and quotas remain unchanged
(and the instance remains feasible) — the selection probabilities of all volunteers weakly
increase.

Prove that no allocation rule satisfies committee monotonicity.

Solution: Consider an instance with three agents and two features. Define the features
of the agents using the vector notation from the previous part as:

agent 1: (1,0)
agent 2: (0,1)
agent 3: (1,1)
If the lower and upper quotas for both features are set to 1, the only panel for k£ =1 is

{agent 3}, and the only panel for k = 2 is {agent 1,agent 2}. Thus, any allocation rule
must strictly decrease agent 3’s selection probability when going from k£ =1 to k = 2.



