Optimized Democracy

Spring 2021, Lecture 9, 2021-02-24

Participatory Budgeting

Dominik Peters, Harvard University

Outline

- Aside on Single Transferable Vote
- More on approval-based committee elections: Phragmén's rule
- Participatory Budgeting
- Repeating theme: Can get proportionality by explicitly dividing "voting power" equally among voters. (Rather than magically proportional PAV.)

Single Transferable Vote

Ó	4	5	2	6		4	5	
7	b	С	b	a	1	b	С	
b	С	а	а	b)	С	а	
С	а	b	С	С	•	а	b	
6	4	5	2	6		4	5	
а	b		b	a	1		С	
)		а	а			С	a	
	а	b		C	•	а		
5	4	5	2	6		4	5	
а							С	
		а	а			С		
	а			C				ĺ

Single Transferable Vote for Committees

- STV can also be used to elect a k-committee.
- Initially, each voter gets a 'budget' of \$1.
- It costs n/k to elect a candidate.
- As long as there is a candidate that is ranked first by voters who together have at least n/k, elect the candidate and charge those voters n/k.
- Otherwise, eliminate the candidate whose supporters are poorest, and repeat.
- Exercise: Show STV elects *k* candidates.

Proportionality for Solid Coalitions (PSC)

- Suppose a set $S \subseteq N$ with $|S| \geqslant \ell \frac{n}{k}$ has the same set $T \subseteq C$ of $|T| = t \geqslant \ell$ candidates they all rank top, so $T > C \setminus T$ for all $i \in S$ (not necessarily ranked in the same order).
- Then $|W \cap T| \geqslant \ell$.

• STV satisfies this! (no matter how spending is distributed)

STV satisfies PSC

- Let $S \subseteq N$ with $|S| \geqslant \ell \frac{n}{k}$ agree on $|T| = t \geqslant \ell$ candidates.
- Suppose PSC failed for *S.* Then there is a time when
 - ℓj candidates from T have been elected
 - *j* further candidates from *T* need to be elected for PSC
 - all but *j* candidates from *T* have been elected or eliminated.
- Group *S* has only paid at most $\$(\ell j)\frac{n}{k}$ thus far, so has $\$j\frac{n}{k}$ left over. So at least one of the *j* candidates has $\$\frac{n}{k}$ support, and this will remain true until all *j* candidates have been elected.

Hare vs Droop Quota

- The value " $\frac{n}{k}$ " is known as the Hare quota.
 - Intuition: electorate is split into equal-sized groups, each of which is assigned one seat.
- But we can also use $\frac{n}{k+1} + \varepsilon$, the Droop quota.
 - This works because there are at most k disjoint subsets of N of size $\frac{n}{k+1} + \varepsilon$.
 - Guarantees representation to smaller groups.
 - For k = 1, this says majority needs to be followed.
- Everything we've said works for Droop quota if we are more careful in the proofs.
 - PAV satisfies Droop EJR, Droop-STV satisfies Droop PSC

Open Problem

Does there exist a ranking-based committee rule that is monotonic and satisfies PSC?

Recap: Approval-based Committee Elections

- Proportional Approval Voting maximizes $\sum_{i} 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{|W \cap A_{i}|}.$
- PAV satisfies Extended Justified Representation: If $S \subseteq N$ with $|S| \geqslant \ell \frac{n}{k}$ agrees on ℓ candidates $T \subseteq \bigcap_{i \in S} A_i$, then $|W \cap A_i| \geqslant \ell$ for some $i \in S$.
- PAV is NP-complete to compute.
- Sequential PAV fails EJR even for $\ell = 1$.
- *Question:* Can we get something proportional in polynomial time?

Is PAV always right?

k = 12

4	5	6	10	14	18
	3		9	13	17
	2		8	12	16
	1		7	11	15
v_1	v_2	v_3	v_4	v_5	v_6
4	5	6	10	14	18
	3		9	13	17
	2		8	12	16
	1		7	11	15
v_1					v_6

EJR not strong enough to capture this!

Phragmén's Rule

• Proposed in 1894. Thiele proposed PAV in 1895. Phragmén criticized it in 1899, for a reason similar to

EDVARD PHRAGMÉN

- Phragmén's proposal:
 - Each voter starts with a bank account with \$0.
 - Fill bank accounts at the same rate, until the approvers of some unelected candidate together hold $\$\frac{n}{k}$.
 - Elect the candidate and reset approvers' accounts to \$0.
 - Stop after *k* candidates are elected.

Phragmén's Rule: Proportionality

- Phragmén's rule violates EJR (largish example with 24 voters, 14 candidates, k = 12).
- But it satisfies a weaker version ("PJR"): If $S \subseteq N$ with $|S| \geqslant \ell \frac{n}{k}$ agrees on ℓ candidates $T \subseteq \bigcap_{i \in S} A_i$, then $|W \cap \bigcup_{i \in S} A_i| \geqslant \ell$.

6	7	8	9	10
		5		
		4		
		3		
		2		
v_1	v_2	v_3	v_4	v_5

Phragmén's Rule: PJR

- If $S \subseteq N$ with $|S| \geqslant \ell \frac{n}{k}$ agrees on ℓ candidates $T \subseteq \bigcap_{i \in S} A_i$, then $|W \cap \bigcup_{i \in S} A_i| \geqslant \ell$.
- *Proof*: By the time Phragmén terminates, each voter has received at least \$1.
- If it terminates exactly at the \$1-point, then all money was spent. So S spent $\$\ell \frac{n}{k}$, and so they bought ℓ candidates from $\bigcup_{i \in S} A_i$.
- If it terminates strictly later, consider \$1-point. If then $|W \cap \bigcup_{i \in S} A_i| \le \ell 1$, then S now holds at least $\$ \frac{n}{k}$, so can purchase a candidate from T.

Proportional Rankings

- Note: you don't have to stop Phragmén after it has elected k candidates (same for SeqPAV)
- This way, we get a *proportional ranking*.
- In particular, every prefix satisfies PJR. (Or think of party-list profiles.)
- Applications:
 - Ranking comments by upvotes
 - Displaying proposal variants in LiquidFeedback
- Open Problem: Do there exist EJR rankings?

You have selected 1/4 projects.

BCYF Hyde Park Dance Studio Renovation

A renovated dance studio at the Hyde Park Community Center for children of all ages.

Estimated Cost: \$286,000

Location: BCYF Hyde Park Community Center, Hyde Park

Select

Click image for slide show

Bike Lane Installation

After a study, bike lanes will begin to be installed around Charlestown Navy Yard, Bunker Hill housing, and Charlestown High.

Estimated Cost: \$200,000

Location: Charlestown

Remove

Click image for slide

Wicked Free Wifi 2.0

Wicked free Wi-Fi 2.0 provides Wi-fi at locations with young people.

Estimated Cost: \$119,000

Location: Various High Schools and Community Centers, Dorchester, Roxbury, East Boston, Charlestown

中文

Education

Bathroom Renovations at M.S./H.S. 223

Renovation of girls' and boys' bathrooms including stalls, lighting, painting, and having walls re-glazed.

Estimated Cost: \$150,000

Location: 360 E.145th St. (Bronx - Mott Haven)

✓ Selected

Remove

Technology Upgrades

Technology upgrades for Park East High School and Central Park East High School.

Estimated Cost: \$312,000

Location: 230 E.105th; 1573 Madison Ave. (El Barrio/East

Harlem)

Select

Air Conditioning at Bronx Schools

Installation of 1 air conditioning system at 345 Brooke Avenue for schools X343, X224 & X334. Installation of 1 air conditioning system at PS 161x.

Estimated Cost: \$500,000

Location: 628 Tinton Ave, 345 Brook Ave. (Bronx - Mott

Haven & Longwood)

Air Conditioning: P.S.179, P.S.369, P352

Installation of two HVAC units at P.S. 179X, P.S. 369X and P.S. 352X.

Estimated Cost: \$500,000

Location: 468 E. 140 St. (Bronx - Mott Haven)

✓ Selected

Remove

4e arrondissement

Greedy: total utility **3 500**. Funds 5 projects, avg cost 293 000 ➡ ➡ ≜ ♠ ♥ ♥ Optimal: total utility **6 878**. Funds 14 projects, avg cost 98 928 ➡ ➡ Ⅲ Ⅲ Å Å Å ♥ ♥ ♥ ♥ ♥

Project Name	QPOP	Cost €	Votes	v/k€	Greedy	Optimal
■ Un mur végétalisé au croisement des rues Blancs Manteaux et Archiv		30 000	788	26	✓	✓
Un café solidaire dans le quartier de la tour Saint-Jacques		15 000	706	47	✓	✓
A Une salle d'arts plastiques pour l'école Saint-Merri Renard		300 000	702	2	✓	✓
Rénovation énergétique exemplaire d'une école du 4e		1 000 000	655	1	✓	_
■ Végétalisation de la rue de l'Arsenal		120 000	649	5	✓	✓
A Un collège Charlemagne accessible aux personnes à mobilité réduit		200 000	630	3	_	✓
🐾 Faire du hall d'accueil de la piscine Saint-Merri un lieu de convivia		20 000	528	26	_	✓
Des agrès sportifs place des Vosges		15 000	491	33	_	✓
■ Mise en valeur des pierres de la prison de la Bastille		20 000	473	24	_	✓
Un fauteuil roulant électrique pour rompre l'isolement		5 000	453	91	_	✓
🐾 Création d'un auvent sur une aire de jeux d'un square du 4e		150 000	410	3	_	✓
🔔 L'Ascenseur, un tiers-lieu pour l'égalité des chances ouvert sur le		350 000	315	1	_	✓
■ Baliser le passage du chemin de Compostelle dans le 4e		30 000	265	9	_	✓
→ Des arceaux vélos rue de la Reynie		10 000	240	24	_	✓
■ Faciliter l'accès au cellier d'Ourscamp		120 000	228	2	-	✓
				Total €	1 465 000	1 385 000

Participatory Budgeting: Model

- A set *C* of projects, each with a cost
- A budget limit *B*
- Outcome: set $W \subseteq C$ with $\sum_{c \in W} \operatorname{cost}(c) \leq B$.
- A set *N* of *n* voters
- Each voter $i \in N$ approves a subset $A_i \subseteq C$.
- Mostly, we say that i's utility is $u_i(W) = |A_i \cap W|$ (this is a dichotomous preference assumption).
- Unit cost assumption: cost(c) = 1 for all c.

Three interpretations of "AV"

• Optimize $\sum_{i \in N} u_i(W) = \sum_{c \in W} \text{approval-score}(c)$.

 Greedy: add projects in order of approval score, skipping unaffordable projects.

 Bang-per-buck greedy: add projects in order of approval score divided by cost.

Experiments

Budget = \$1000. Cheap = \$10. Expensive = \$10, \$30, \$90, \$190.

Experiments

\$90,000

pop 90,000

same budget

same population

same district structure

same utilities

same projects

same feasible sets

Twotown

Onetown Leftside

pop. 60k

Rightside pop. 30k

Leftside pop. 60k

Rightside pop. 30k

 $\{L_1, L_2, L_3\} \longrightarrow \text{PAV-score 110,000}$

 $\{L_1, L_2, R\} \longrightarrow \text{PAV-score 120,000}$

not proportional!

Leftside deserves \$60k

not proportional!

Rightside deserves \$30k

 $\{L_1, L_2, L_3\} \longrightarrow \text{PAV-score 110,000}$

 $\{L_1, L_2, R\} \longrightarrow \text{PAV-score 120,000}$

Phragmén for PB

- Phragmén's rule can easily be adapted:
 - Fill bank accounts
 - If the approvers of a project have enough money to finance its cost, implement the project
 - Stop when next project doesn't fit into the budget.
- Picks correct outcome in Onetown and Twotown.

• Satisfies "PJR": If $\frac{|S|}{n} \geqslant \alpha$ and $\operatorname{cost}(\bigcap_{i \in S} A_i) \geqslant \alpha \cdot B$, then $\operatorname{cost}((W \cap \bigcup_{i \in S} A_i) \cup \{c\}) \geqslant \alpha \cdot B$ for some $c \in \bigcap_{i \in S} A_i$.

- Split the city budget evenly among residents.
- Put each resident's share $\frac{B}{n}$ in a bank account.
- Repeatedly, until the budget runs out:
 - identify a project whose supporters have enough money left to afford it
 - charge the cost to supporters

- Split the city budget evenly among residents.
- Put each resident's share $\frac{B}{n}$ in a bank account.
- Repeatedly, until the budget runs out:
 - always divide the cost of a project among supporters as evenly as possible
 - find an affordable project with the lowest max payment.

- Split the city budget evenly among residents.
- Put each resident's share $\frac{B}{n}$ in a bank account.
- Repeatedly, until the budget runs out:
 - always divide the cost of a project among supporters as evenly as possible
 - find an affordable project with the lowest max payment.

- Split the city budget evenly among residents.
- Put each resident's share $\frac{B}{n}$ in a bank account.
- Repeatedly, until the budget runs out:
 - always divide the cost of a project among supporters as evenly as possible
 - find an affordable project with the lowest max payment.
- Rule X satisfies EJR!
 - Let $\frac{|S|}{n} \geqslant \alpha$, and take $T \subseteq \bigcap_{i \in S} A_i$ with $cost(T) \leqslant \alpha \cdot B$.
 - Then $u_i(W) \ge u_i(T)$ for some $i \in N$ (i.e. $|W \cap A_i| \ge |T|$.)

Additive Valuations

Motivating Example:

2019, Paris, 16th arrondissement

€560k: refurbish sports facility — 775 votes

€3k: materials for classroom project — 670 votes

— 1.15x as popular, 186x the cost!

- Utility of outcome: $u_i(W) = \sum_{c \in W} v_i(c)$.
- Phragmén: no obvious way of extending to additive utilities.
- Rule X: can extend using following idea: a voter's payment for a candidate should be proportional to the voter's utility for the candidate.
- Core may be empty!

Core for Additive Valuations

• A group $S \subseteq N$ with $\frac{|S|}{n} \ge \alpha$ blocks W if there is $T \subseteq C$ with $|T| \le \alpha \cdot B$ such that $u_i(T) > u_i(W)$ for all $i \in S$.

	Voter 1	Voter 2	Voter 3	cost
$u_i(a)$	2	1	0	\$2
$u_i(b)$	0	2	1	\$2
$u_i(c)$	1	0	2	\$2
			Budget B	\$3

- An approximation exists if we put $|T| \le \frac{\alpha}{32} \cdot B$. The factor of 32 might be improvable to 2, but not further.
- Existence open for approval utilities.

Bibliography

- On PSC: Aziz, H. and Lee, B.E., 2020. The expanding approvals rule: improving proportional representation and monotonicity. Social Choice and Welfare, 54(1), pp.1-45.
- "Is PAV always right?": Peters, D. and Skowron, P., 2020. Proportionality and the limits of welfarism. In Proceedings of the 21st ACM Conference on Economics and Computation (pp. 793-794).
- Phragmén's rule: Janson, S., 2016. Phragmén's and Thiele's election methods (p. 76). https://arxiv.org/pdf/1611.08826.pdf
- Phragmén's rule violates EJR: Brill, M., Freeman, R., Janson, S. and Lackner, M., 2017, February. Phragmén's voting methods and justified representation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1).
- Proportional rankings: Skowron, P., Lackner, M., Brill, M., Peters, D. and Elkind, E., 2017, August. Proportional rankings. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 409-415).
- Three interpretations of AV for PB: Talmon, N. and Faliszewski, P., 2019, July. A
 framework for approval-based budgeting methods. In Proceedings of the AAAI
 Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 2181-2188).
- Circleville and Rule X: Peters, D., Pierczyński, G. and Skowron, P., 2020. Proportional Participatory Budgeting with Cardinal Utilities. arXiv preprint arXiv:2008.13276.
- Core for additive valuations: Fain, B., Munagala, K. and Shah, N., 2018, June. Fair allocation of indivisible public goods. In Proceedings of the 2018 ACM Conference on Economics and Computation (pp. 575-592).