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Committee Elections

* A set C of candidates, k of which have to be
elected

* Qutcome: committee W € C, |W| = k.
* A set N of n voters
* Each voter i € N approves a subset A; € C.

* We say that i’s utility isu; (W) = |A; N W]
(this is a dichotomous preference assumption).



Thiele’s methods

* Given a sequence wq, w,, ..., select a committee W
that maximizes

Z Wi+ Wy + o Wy,
IEN
* Examples:

* Approval Voting (AV):
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Dr. T. N. Thiele,

* Chamberlin-Courant (CC):

(Meddelt i Modet den 29. November 1895,
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stort, men det meste af, hvad jeg har set, har ikke givet mig

i Proportional Approval VOting (PAV): stor Respekt for vor Samtids Forhold til denne vigtige Sag.
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stillet og rationelt behandlet; og har det end ogsaa her veret
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Suppose a party has x supporters, with x > ¢ % Then the party
deserves at least £ seats. Note that

x>x>x> >x n
17273 £k
It follows that if we elect all seats with marginal increment > %

then all parties obtain what they deserve.



Why harmonic numbers?

‘W= (1,%,%,%, ) is the unique sequence such
that Thiele’s m
list case.

ethod is proportional in the party

* PAV is the unique approval-based committee rule
that satisfies
* symmetry
* continuity
* reinforcement
 proportionality (D’'Hondt) on party list profiles

* Next: define proportionality when approval sets
can intersect.



A representation axiom that is
too strong

k=2

or n " .
if ~ voters have at least 1 candidate in common,

then one of their common candidates should be elected”



Justified Representation

IfS © N with |S]| > %have a candidate in common, [N;cs 4;] > 1,
then it cannot be that u;(W) = 0 foralli € S.

AV fails JR. CC and PAV satisfy JR.



CC satisfies JR

* Let W be the CC committee, violating JR.
e Some number n’ < n of voters is covered by W.

n
* On average, each member of W covers < -~ voters.

n
 Thus, some member ¢t € W covers < - voters.

» Remove cT, and add the candidate approved by
the JR group. This gives higher CC score.



Extended Justified Representation

IfS € N with |S| > f% have ¢ candidate in common, |N;cs 4;| > 7,
then it cannot be that u;(W) < £ foralli € S.
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AV and CC fail EJR. PAV satisfies EJR.



PAV satisfies EJR

Let W be the PAV committee. Suppose S € N has size > f%, and
u;(W) < fforalli € S, butthereisc* € N;ccA4; \W.

LetW = W U {c*}.

Note PAV—score(W) PAV-score(W) + |S | > PAV-score(W) + %
Claim: Can remove a member from W and lower PAV-score by < %

What is the average loss of PAV score from removal?

1 1 1 1
k+1ZCEW2i:C€At w, (W) o1 ZieN e ) = i1 2ien 1 <7
Hence there is some ¢ € W with PAV-score(W \ {cT}) >
PAV-score(W), contradiction.




PAV is not strategyproof

c d
b
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Theorem. No committee rule is strategyproof and
satisfies EJR.




PAV is NP-complete

e Instance: Profile P, size k, number B > 0.

* Question: Is there a committee W with |W| =k
such that PAV-score(W) > B?

* Clearly in NP. We'll show this is NP-hard by
reducing from CUBIC INDEPENDENT SET:

O
e Instance: Graph G = (V, E) with d(v) = 3 for all
v €V, size k.

* Question: Is there V' € V with |V'| = k such that
foreache = {u,v} € E,eitheru € V'orv ¢ V'?




PAV is NP-complete

* LetG = (V,E) beacubicgraphandlet1l < k < |V]|.

* Introduce candidates C = V, and voters N = E. Each
voter approves its endpoints. Set B = 3k.

 We prove: There is a k-committee with PAV-score B if
and only if G has an independent set of size k.

« &: Let V' be an independent set of size k. Then no voter
approves 2 candidates in VV'. Each candidate in V' is
approved by the 3 incident edges. So the PAV-score of
V'is 3k.

* =: Suppose W has PAV-score 3k. Each candidate is
approved by 3 voters, so can contribute at most 3 to
the PAV score. Since the total score is 3k, each member
of W contributes 3. This can only happen if no voter

approves more than 1 candidate in W, so it’s an
independent set.



PAV can be computed by ILP

* In practice, using modern solvers like Gurobi, we
can compute PAV as an integer linear program:

. k1
* Maximize Xjen Lyp=17 Xie
subject to Y5_, x;p = Dicea; Ve foralli e N

ZCEC Ye = k
v, € {0,1}, x;, € {0,1} forall i, ¢, c.

 Fun fact: If profile is single-peaked (i.e. candidates
ordered left-to-right, everyone approves an
interval), the ILP can be solved in polynomial time.


https://www.gurobi.com/

Om Flerfoldsvalg.

Sequential PAV

* Greedy procedure for calculating PAV:

e W <0
« while [W| < k do
* Find ¢ € C that maximizes PAV-score(W U {c})
W« WuUf{c}
return W

* Theorem: Let W be the optimum PAV committee, and
let W' be the committee identified by seqPAV. Then

1
PAV-score(W') > (1 — —) PAV-score(W).
e

* Proof: PAV-score is submodular, and approximation
is true in general for the greedy algorithm for
maximizing a submodular function.

fWu{ch —fW) > fW'u{ch — f(W’)
ifwcw'.
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Sequential PAV fails EJR

* This example is the smallest counterexample!
(Though for k =7/8/9,n = 35/24/17 is enough.)

* How to find such counterexamples? ILP!

* Fix k. In any given counterexample, we can relabel
alternatives such that SeqPAV selects them in the
order ¢4, Cy, ..., Cx, and does not select ¢, 1. Since

unselected candidates have no influence, we can
take C = k + 1.

* For each S € (C, add variable z¢ € Z.

* Add constraints that forj > i,
PAV-score({c4, ..., c;}) > PAV—score({cl, s Ci—1, G })

* Add constraint that zg,, ) > Z < Z.

* Minimize ). ¢ zs.



EJR not strong
enough to
capture this!




Core

* Let W be a committee.

A group S € N with |S| > f%blocks W ifthereisT € C
with |T| = € such that u;(T) > u;(W) for alli € S.

W is in the core if it is not blocked.

Core implies EJR: An EJR failure is a blocking coalition
where T € N;cs4;.

Open Problem: does there always exist a committee in the
core?

4 5 6 10 14 18
3 13 17
2 12 16
1 11 15
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