

Optimized Democracy

Spring 2021 | Lecture 17

Redistricting As Cake-Cutting

Jamie Tucker-Foltz | Harvard University

REDISTRICTING

CRACKING AND PACKING

Example from 2012 Wisconsin election, where each row represents a district.

A = Republican party, B = Democratic party.

GERRYMANDERING

Ideas to prevent it:

- Have an independent commission draw fair districts
- Use an interactive protocol with participation from both parties
- Statistically prove a map is gerrymandered

ABSTRACT MODEL

- State *S*, with set of feasible districts $\mathcal{D} \subseteq 2^S$
- Set of parties $N := \{1, 2, ..., n\}$ (today n := 2)
- Population measure $\mu: \mathcal{D} \to \mathbb{R}_{\geq 0}$
- For each $j \in N$, distribution function $v^j : \mathcal{D} \to \mathbb{R}_{\geq 0}$
- Target number of districts $m \in \mathbb{Z}_{>0}$

A partition is a set P of m disjoint* districts covering S, each of equal measure. The utility of party j is

$$u^{j}(P) := \left| \{ D \in P \mid \forall i \neq j, \ v^{j}(D) >^{*} v^{i}(D) \} \right|.$$

DISCRETE GRAPH MODEL

Graph *G* of indivisible census blocks

- $\mathcal{D} := \{D \subseteq S \mid \text{induced subgraph of } D \text{ is connected}\}$
- $\mu(D) := \sum_{b \in D} (\text{population of } b)$
- $v^{j}(D) := \sum_{b \in D} (\text{number of } j\text{-voters in } b)$

GEOMETRY-FREE MODEL

Continuous model of "placing voters in buckets" with no constraints.

•
$$S := \bigcup_{j \in N} V_j$$

 $V_j := (j, [0, p_j])$
 $\sum_{j \in N} p_j = 1$

- $\mathcal{D} := \{ \bigcup_{j \in \mathbb{N}} (j, [a_j, b_j]) \mid \forall j \in \mathbb{N}, \ 0 \le a_j \le b_j \le p_j \}$
- $\mu(D) := \sum_{j \in N} (b_j a_j)$
- $v^j(D) := b_j a_j$

PROPORTIONALITY

For all
$$j \in N$$
, $u^{j}(P) \ge \left[m \cdot \frac{v^{j}(S)}{\sum_{i \in N} v^{i}(S)} \right]$.

GEOMETRIC TARGET

For all $j \in N$, let P_{max}^j be partition maximizing u^j and let P_{min}^j be a partition minimizing u^j . Then

$$u^{j}(P) \ge \left| \frac{u^{j}(P_{\max}^{j}) + u^{j}(P_{\min}^{j})}{2} \right|.$$

Poll

In the geometry-free model, for the minority party, which is easier for a given partition to satisfy?

- Proportionality
- Geometric target

- Equivalent
- Incomparable

GEOMETRIC TARGET

Theorem: In the geometry-free model, a partition satisfies proportionality if and only if it satisfies the geometric target (up to ties).

Interactive protocol by Landau, Reid, and Yershov that uses a neutral administrator.

1. Administrator presents both parties with a series of bipartitions $(L_1, R_1), (L_2, R_2), ..., (L_{m-1}, R_{m-1})$ of S, such that each $L_i \subseteq L_{i+1}$.

2. For each $i \in [m]$, each party is asked, "Would you rather redistrict L_i , with the other party redistricting R_i , or vice versa?"

3. Try to find an i such that one party prefers redistricting L_i and the other prefers redistricting R_i . If no such i exists, randomly select an outcome at the cross-over point.

Theorem (Good Choice Property):

Restricting the feasible set of partitions to respect a given split, a party's preferred choice satisfies its geometric target.

Pros:

- Realistically implementable
- Simple party participation
- Guaranteed to be within 2 of prop. / geometric target in geometry-free model

Cons:

- Relies heavily on neutrality of the administrator
- Can be arbitrarily far from geometric target in grid-based model

CUT AND FREEZE

By Pegden and Procaccia: partition, freeze, and re-partition until all districts are frozen.

CUT AND FREEZE

Theorem: In the geometry-free model, under optimal play, each party can guarantee a number of seats as in the following graphs.

CUT AND FREEZE

Pros:

- Realistically implementable
- Approximate
 proportionality in
 geometry-free
 model
- Hard to pack specific groups into one district

Cons:

- Requires complicated strategies
- Requires several rounds of interaction

STATE-CUTTING MODEL 1

Cake-cutting analogue introduced by Benade, Procaccia, and T-F.

- S := [0, 1]
- $\mathcal{D} := \{ \text{finite unions of closed intervals} \}$
- $\mu :=$ Lebesgue measure
- $v^{j}(D) := \int_{D} f^{j}(D)$ where, for all $x \in S$,

$$\sum_{j\in N} f^j(x) = 1$$

- 1. Ask each party j to construct an optimal partition P_j .
- 2. Construct a sequence of partitions from P_1 to P_2 , each differing from the previous one on at most two districts.
- 3. Select an intermediate partition that satisfies the geometric targets of both parties.

How to achieve step 2? Bubble sort!

Can transition from P_1 to P_2 via the simplest possible partition $\{\left[\frac{k-1}{m}, \frac{k}{m}\right] \mid k \in [m]\}$ (the bottom one). Each swap modifies only two districts.

Theorem: If two partitions differ on at most two districts, the balance of power can differ by at most one.

Proof: Suppose P and P' differ on districts $D_1, D_2 \in P$ and $D'_1, D'_2 \in P'$. Suppose party 1 has a majority in D_1 and D_2 , but a minority in D'_1 and D'_2 . Then:

$$\frac{1}{m} < v^{1}(D_{1}) + v^{1}(D_{2}) = v^{1}(D_{1} \cup D_{2})$$

$$= v^{1}(D'_{1} \cup D'_{2}) = v^{1}(D'_{1}) + v^{1}(D'_{2}) < \frac{1}{m}$$

Contradiction.

STATE-CUTTING MODEL 2

Now parties are allowed to disagree over the distribution of voters!

- S := [0, 1]
- $\mathcal{D} := \{\text{finite unions of closed intervals}\}$
- $\mu :=$ Lebesgue measure
- $v_i^j(D) := \int_D f_i^j(D)$ where, for all $x \in S$ and $i \in N$,

$$\sum_{j \in N} f_i^j(x) = 1$$

STATE-CUTTING MODEL 2

Theorem: Even when parties disagree, there always exists a partition satisfying the geometric targets of both parties:

$$u_i^i(P) \ge \left[\frac{\min\limits_{P'} u_i^i(P') + \max\limits_{P'} u_i^i(P')}{2}\right]$$

- 1. Each party i computes a maximal set $X_i \subseteq S$ such that $m\mu(X_i) \in \mathbb{Z}$ and $v_i^i(X_i) = \frac{\mu(X_i)}{2}$.
- 2. Let *i* be the party with the larger *X*_{*i*} set, and let *j* be the other party.
- 3. Party j divides X_j into two pieces of equal size and equal party support according to j.
- 4. Party *i* chooses a piece for *j* to redistrict.
- 5. Party *i* redistricts the rest of *S*.

Best partition:
Divide [0, 1] into 10 $f_j^j = f_2^2$ equal districts,
winning all.

Worst partition: Divide X_2 into 7 equal districts, barely losing all. GT = |7/2| + 3 = 6.

Pros:

- Guarantees
 geometric target in
 the state-cutting
 model
- Works even when parties disagree substantially over how voters are distributed

Cons:

 Protocols are both (somewhat) specific to the state-cutting model

BIBLIOGRAPHY

J. De Silva, B. Gales, B. Kagy, and D. Offner, 2018. An Analysis of a Fair Division Protocol for Drawing Legislative Districts. arXiv:1811.05705.

Z. Landau, O. Reid, and I. Yershov, 2009. A fair division solution to the problem of redistricting. Social Choice and Welfare.

BIBLIOGRAPHY

Z. Landau and F. E. Su, 2015. Fair Division and Redistricting. In The Mathematics of Decisions, Elections, and Games. American Mathematical Society.

W. Pegden, A. D. Procaccia, and D. Yu, 2017. A partisan districting protocol with provably nonpartisan outcomes. arXiv preprint arXiv:1710.08781.

BIBLIOGRAPHY

G. Benade, A. D. Procaccia, and J. Tucker-Foltz, 2021. You Can Have Your Cake and Redistrict It Too.

http://procaccia.info/wp-content/uploads/202 1/02/gt.pdf

J. Tucker-Foltz, 2018. A Cut-And-Choose Mechanism to Prevent Gerrymandering. arXiv preprint arXiv:1802.08351.