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Bayesian Networks

Bayesian networks are graphs which reveal probabilistic relationships between events. We
can then use Bayesian inference to connect observable events to other unobservable events.
Bayesian inference is a method by which we initially have a belief called a prior which, upon
noticing some signal, we update to become our posterior belief. Formally, this process of
updating involves using conditional probabilities, which we generally calculate using Bayes’
rule.

Conditional Probabilities in Bayes Nets

A Bayesian network shows the conditional probability linkages between events. Importantly,
each random variable is conditionally independent of its predecessors given its parents; that
is, if we have random variables {Xi}ni=1 and let xi be shorthand for the event Xi = xi for
all i ∈ {1, · · · , n}, then

Pr[xi|xi−1, · · · , x1] = Pr[xi|parents(Xi)].

In other words, if we observe the values of the parents of a node Xi, then we gain no extra
information by observing other nodes in the network. Thus, the joint distribution of random
variables X1, · · · , Xn in a Bayesian net is given by

Pr[x1, · · · , xn] =

n∏
i=1

Pr[xi|parents(Xi)].

Problem 1 Consider the Bayesian network from class, shown below, depicting the rela-
tionship between two adverse events (burglary and earthquake), an alarm, and two callers
(John and Mary). The unconditional probabilities of a burglary and an earthquake are in-
dependent, and the probabilities of John and Mary calling conditional on whether or not the
alarm has sounded are also independent. Suppose we can only observe whether John calls.
If he calls, what is the probability that there was both a burglary and an earthquake?
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Sampling Methods and Likelihood Weighting

Even in relatively simple Bayes nets, the statistical inference calculations can get somewhat
lengthy and complicated. Thus, it can be useful to estimate probabilistic relationships
using sampling methods. For example, in problem 2, we could estimated Pr[B ∩ E|J ] by
first sampling B and E then sampling A and J from the given conditional distributions,
with our final estimate of being

Pr[B ∩ E|J ] =
Pr[J ∩B ∩ E]

Pr[J ]
≈ # samples where J, B, and E all occur

# samples where J occurs
.

This process is called direct sampling.

However, the accuracy of our estimates relies on having a large enough sample size in both
the numerator in the denominator; when the probability of one of the events of interest
occurring is very low, satisfying this criterion can require a prohibitively large number of
samples. We can resolve this issue by fixing the relevant random variables to the values we
want to consider.

Problem 2 Consider Algorithm 1, the algorithm for calculating likelihood weights presented
in class and answer the following questions:

1. Mathematically, what does the output w represent?

2. How do we use the Likelihood Weighting algorithm to perform statistical inference (i.e.
to estimate conditional probabilities)?
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Algorithm 1 Likelihood Weighting

Require: bn, e . Input: Bayes net, evidence variables and values
w ← 1; x← initialized from e . Initialize: weight to 1, evidence variables
for Xi ∈ {X1, · · · , Xn} do

if Xi is an evidence variable with value xi in e then
w ← w · Pr[Xi = xi|parents(Xi)] . Weight adjusted by Pr[observing evidence]

else
xi ← random sample conditioned on its parents

end if
end for
return x, w . Return the assigned variable values as well as the weight w

Hidden Markov Models (HMMs)

Consider the simple Bayes Net shown above. We are now concerned with infinite processes
defined by random variables X0, X1, ... . Our bayes net satisfies the following assumptions:

• Markov Assumption:
P[Xt|X0:t−1] = P[Xt|Xt−1]

where X0:t−1 is X0...Xt−1

• Stationarity Assumption:

P[Xt|Xt−1] = P[X ′t|X ′t−1], ∀t, t′
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We now add an additional element, which is that rather than observing the state X itself,
we can only observe evidence E. Our broad goal is to learn about X while only observing
our evidence. In addition to the assumptions we had before for the Bayes Net, we have the
Markov Sensor Assumption:

P[Et|X0:t,E0:t−1] = P[Et|Xt]

What are some of our goals with the Markov model?

• Filtering: Find P[Xt+1|e1:t+1] using et+1 and our previous calculation P[Xt|e1:t]

– In class we showed:

P[Xt+1|e1:t+1] ∝ P[et+1|Xt+1] ∗
∑
xt

Pr[Xt|e1:t] ∗P[Xt+1|xt]

• Prediction: P[Xt+k|e1:t]. Predicting state of the world sometime in the future

• Smoothing: P[Xk|e1:t] where k ¡ t. Using additional evidence to improve our
original estimate of the state at an earlier time

• Max Likelihood: Interested in finding the most likely sequence of states up to time
t

– In class we showed:

maxx0:tP[x0:t, Xt+1|e1:t+1] ∝ P[et+1|Xt+1]∗maxxtP[Xt+1|xt]∗maxx0:t−1Pr[x0:t|e1:t]

We can find this using the Viterbi algorithm shown in class

Problem 3 Consider the Markov Model below where we have two states: low (f) atmo-
spheric pressure and high (t) atmospheric pressure. Unfortunately, we don’t have a barom-
eter and can only observe our evidence: whether or not it rained with rain being true and
dry being false.
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1. What is P[X1 = t|E1 = t]?

2. What is P[X1 = f |E1 = t]?

3. Using the Viterbi Algorithm presented in lecture, find the missing edge weights in the
graph below, given that the evidence we observe is Rain, Dry, Dry for days 1, 2, and
3
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4. Using the edge weights you found (or by referring to problem 3 solution,) find the
probability that we observe each state. What is the most likely sequence of states given
the evidence we observe?

8-6


