Harvard CS 182: Artificial Intelligence October 15, 2022

Section 6: Fall 2022 Midterm Review

Authors: Janani Sekar, Mujin Kwun

Conceptual Review

Search Problems
Every search problem has:
o A set of states, where the start state is the state where we begin our search.

e At least one goal state, or a state that meets all the constraints of the problem and
ends the search algorithm.

e A successor function that maps a state to successor states. For each possible successor
state, the function also tells us the action required to get to this next state and its
cost. It returns an action, successor state, cost triplet.

We explore both tree search and graph search. You want to be familiar with the differences
between tree search and graph search and how each works.

We also distinguish uninformed and informed search problems. In uninformed search, we
cannot identify any characteristics about a state other than whether or not it is a goal state.

There are 4 search algorithms we look at in uninformed search, summarized below:

Algorithm | Complete? | Optimal? | Time | Space
BFS Yes Not Really | ©(v9) | O(v9)
uCs Sort Of Yes ob<) | (%)
DFS No No ™) | O(bm)
IDS Yes No 0% | ©e(vd)

Here, b = the branching factor, d = distance from the start node, C* = the cost of an
optimal solution, € = the cost per action, and m = the maximum depth of the state space.

Informed search algorithms use information beyond that given in the problem statement
via a heuristic function. We look at a few informed search algorithms:

o Greedy Search: At any given state, expand the node with the lowest heuristic estimate
h(z)

o A* Tree Search: Combine the heuristic h(z) from greedy search with the cost sum-
mation, g(z) to create, f(x) = h(z) + g(z). We expand the node with the lowest

().

o A* Graph Search: Expands using the same f(z) as A* tree search but keeps track of
nodes that have already been expanded in an explored set. Never expands the same
node more than once.

In terms of choosing heuristics, we consider the following properties:

e A heuristic h dominates the heuristic b’ if and only if Va, h(z) > h/(z).

o A heuristic is admissible if, V nodes z, h(z) < h*(z), where h*(x) represents the cost
of the optimal path to a goal (i.e. it either underestimates or exactly knows the cost
of the optimal path).

e A heuristic is consistent if, for any two nodes z,y, h(z) < c¢(z,y) + h(y) where c(x,y)
is the cost of the cheapest path between = and y (i.e. taking a detour is more costly
then remaining on the current path. Consistency implies admissibility when h(t) =0
for all goals t).

You will want to know the following theorem and its proof (not included here) for the
optimality of A* tree search with an admissible heuristic.

Theorem 1 A7* tree search with an admissible heuristic returns and optimal solution.

You should also know the following theorem about the optimality of A* graph search, but
will not be required to prove this.

Theorem 2 A* graph search with a consistent heuristic returns and optimal solution.

Motion Planning

Motion planning problems can be formulated as search problems, and we can use many of
the above strategies to solve motion planning problems, which typically involve finding a
path through a given space. In the motion planning problem, we’re given the following:

e A robot with configuration space C'
o A set of obstacles Cyps
e An initial configuration g;ng+

e Goal configuration ggoq-

6-2

We can break C into Cfpee and Cops, or free space and obstacles. One way to discretize
a free space is to decompose it into cells. Letting cells be nodes and letting adjacencies
between cells be edges, we can then obtain a graph.

Visibility graphs are another way to discretize C. In a visibility graph, nodes are the vertices
of the obstacles, and edges are paths between nodes that do not enter the interior of any
obstacle, which are polygonal.

Lemma 3 Consider a set S of disjoint polygonal obstacles, and start and goal positions
Qstart and Ggoq Tespectively. Any shortest path between gstart and qgoar s a polygonal path
where the inner vertices are vertices of S.

You should know the geometric proof to this lemma, and be familiar with the general idea
of path-finding through a free space with a visibility graph, as in Problem Set 1.

We also look at solving motion-planning problems through sampling-based methods, as such
Probabilistic RoadMap (PRM) and Rapidly-exploring Random Trees (RRT).

Constraint Satisfaction Problems

A constraint satisfaction problem, or CSP, has 3 main components:

e Decision variables: {Xi,..., X, } i.e. assignments that need to be made.
e Domains for each variable denoted: {Dy,..., D,} i.e. plausible values for each decision
variable.

e A set of constraints defined on subsets of variables i.e. equalities and inequalities that
limit how we assign values to decision variables.

Types of Constraints

e Unary constraint (involving 1 decision variable) e.g. X; =3
e Binary constraints (involving 2 decision variables) e.g. X; + X2 <5
e Other constraints may involve more than 2 decision variables e.g. X1 + Xo — X3 =0

Arc consistency is a way to reduce the choices we have for each decision variable by ruling
out certain assignments that violate constraints.

e A variable X; is arc-consistent with respect to variable X if for every value in D;
there exists a value in D; that satisfies the binary constraint on (X;, X;).

e A CSP is arc-consistent if every variable is arc-consistent with respect to every other
variable.

e Arc-consistency may sometimes not reduce variable domains at all. Sometimes, it
may reduce domains to the extent that there is only 1 remaining value per domain,
solving the CSP.

Backtracking search is a search algorithm used to solve CSPs by searching through com-
binations of possible assignments to the decision variables until it finds a solution that
satisfies all constraints. Note that vanilla backtracking search does not necessarily utilize
heuristics and forward-checking, but backtracking search can be combined with heuristics
and inference (e.g. forward checking) to reduce the average search time required.

Convex Optimization
1. Convex Sets

Definition: A set F C R" is convez if for all x,y € F and 0 € [0,1], x + (1 — 0)y € F.
In other words, a set is convex if and only if all convex combinations of any two elements
results in another element contained within the set.

Intuitively, for any two points in a convex set, any point on the line segment between them
must also be in the set

What we have shown previously:

e The intersection of any collection convex sets is a convex set
e The union of convex sets is not necessarily convex

e A set is convex if and only if its intersection with any line is convex

2. Convex Functions

Definition: A function f : R” — R is conver if and only if for any x,y € R™ and 6 € [0, 1],

fOx+ (1—=0)y) <0f(x)+(1—06)f(y)

For functions f that are twice differentiable, f”(x) > 0 for all x € R

Examples:

e Exponential Function: f(z) = e

f"(x) = a%* >0 forall z € R.

e Euclidean Norm: f(x) = ||x]|]2 = /D i (i)
e Weighted Sums of Convex Functions
3. Convex Optimization Problem
Definition: A convex optimization problem is a specialization of a general optimization

problem minf(x) such that x € F where the objective function f : R" — R is a conver
X

function, and the feasible region F is a conver set.

Examples

e Linear Programming: The linear programming problem can be formulated as finding

minclx such that Ax = a and Bx < b,
X

where x € R" is the optimization variable, and ¢ € R", A € R™*" a € R™,
B € R¥*" b € RF are the problem data.

e Weber Point
e Max Flow
Integer Programming

Find 1, ..., z; to maximize:

l
max Z ijj
j=1
such that
l
Vi € [k],Zaijxj < b;
7j=1
Vjell],z; € Z.

In other words, the Integer Programming Optimization Problem asks to find values for all
x; such that all £ constraints are satisfied and the optimization function is maximized.

Integer programming is not convex because the possible solutions are discrete points, so the
feasible set is not convex.

Game Theory
1. Normal Form Game

The normal form of a game is defined as:

e Set of players N = {1,...,n}

e Strategy set .S: The strategies that the players can take

e Utility function of player i: u; : S™ : R, the utility player i will have when each j € N
plays the strategy s; € S

Definition 4 Dominance refers to a strategy s = (s1,...,Sy) where each player i chooses
a strategy s; that maximizes their utility u; regardless of the strategy sj used by any other

player j € N\ {i}.

2. Nash Equilibrium

Definition 5 A vector of strategies s = (s1,...,8,) € S™ such that for all i € N and for
all s, € S the following is true: u;(s) > u;(s1, ..., Si—1, S, Si+1,---,5n)

In other words, in a Nash equilibrium, no player wants to unilaterally deviate from their
current strategy.

3. Hotelling Model
Imagine that we can visualize political spectrum on the real line below.

«—— Votes for 1 ‘>:<— Votes for 2 —’:<— Votes for3 ——

X1 X2 X3

Figure 1: Political Spectrum

There is a nonatomic distribution of voters with each voter taking a point on the real line.
Similarly, candidates are players who take positions on the spectrum, x1,z2, and x3 in the
example above. Each candidate attracts voters with positions closest to them on the real
line with ties being split equally.

Consider the case with two players/candidates z1 and xs:

1. Let their individual utilities be 1 if they win, 0 if they lose, and % if they tie.

2. Let m represent the median voter position (for simplicity assume that it is unique.)

Depending on xo’s position, x1’s best position is as follows:

e If o < m, the best response for player 1 is to take any position x1 such that:

T + X9
1 > To and

<m

e Similarly, if z9 > m, the best response for player 1 is to take any position x; such
that:

T+ X2
2

1 < To and

>m

e Finally, if xo = m, the best response for player 1 is to take any position x; such that:
r1=m
Therefore, the unique Nash equilibrium is at (m,m)

4. Mixed Strategies

A mixed strategy is a probability distribution over (pure) strategies.

e Distribution of strategies:

z;(si) = P(iplays s;)
e Utility of player i € N:

Wi (T, ey Tp) = Z ui(sl,...,sn)H:Uj(sj)

(S15eeey8n)ES™

which is the expectation over the distribution of mixed strategies.

Practice Problems

Search Problems

1. True of False

e Iterative deepening search is guaranteed to expand more nodes than BFS (on
any graph whose root is not the goal)

e A* gsearch with a heuristic that is not completely admissible may still find the
shortest path to the goal state

e A* search with the heuristic h(n) = 0 is equivalent to the uniform-cost search

e If there are two sets of admissible heuristic values, hy h2, for the same search
problem, then the heuristic hs = (hy + h2)/2 is consistent and admissible.

e Greedy best-first search (sort queue by h(n)) is both complete and optimal when
the heuristic is admissible and the path cost never decreases.

e For a search problem, the path returned by uniform cost search may change if
we add a positive constant C to every step cost.

2. Informed Search:

For a given search problem, we have the following state space representation, where
the blue nodes are all the possible states that can be visited, and the numbers along
the edges are the true cost of traveling to a state along the edge (e.g. the cost of going
from node a to node e is 7). The start state is node s at the top of the graph, and
there are 3 possible goal states t',¢”,t"”, which may or may not be optimal.

We are given a heuristic h, which evaluates the cost of traveling to each node as the
following:

h(s) =38
h(a) =9
h(b) =1
h(c) =3
h(d) =4

6-8

h(e) =1
h(f)=5
h(t') =h(t") =h({t") =0
Using the given heuristic and the actual edge costs provided in the graph above,
evaluate the order in which the nodes are expanded and which identify which goal is
reached using:

e Greedy Search
e A* Tree Search

3. Heuristics:

Consider the following modified version of the Tower of Hanoi problem, where there
are 3 disks of different sizes, and 3 possible pegs they can be placed on. The rules of
the game are that a disk may only be moved if it is on the top of a stack, and it can
only be placed on an empty peg or a larger disk.

To formulate this as a search problem, let the disks be called S (small), M (medium),
and L (large). We will represent the states as 3 ordered sets (one for each peg, called
1, 2, and 3), where the first element of the set is the top disk, and the last element
the bottom disk. (Obviously, the sets can also be empty.)

We also assume that S weighs 1 unit, M weighs 2 units, and L weighs 3 units. The
cost of a move is the weight of the disk, multiplied by the distance of the move (1 for
a neighboring peg, 2 for a peg 2 steps away).

For this search problem, which of the following heuristics is admissible? Additionally,

of the admissible heuristics, which one dominates the rest?

e The number of disks on peg

e The number of disks NOT on peg

e The weight of the disks NOT on peg

e The weight of the disks NOT on peg 3 multiplied by their distances from peg 3.

Constraint Satisfaction Problems

1. True or False

e Value and variable ordering can decrease the number of expansions performed
when using search to determine that a CSP has no solution.

e Value and variable ordering can decrease the number of expansions performed
when using search to determine that a CSP has a solution.

2. Formulating a CSP

The Harvard Administration wants to hear student opinions on a given issue and
is organizing group meetings with Dean Khurana. There are n groups with a total

6-9

capacity of m students across all groups. They want to hear from students in all 12
houses. We want to assign enough group spots to students in each house (e.g. bigger
houses should get more spots).

We also want to make sure all the students from the same house are in the same
group. We will assume there are 12 houses. We will define s; as the number of spots
that house i gets, and g; as the number of spots in group 4.

Formulate this problem as a CSP by defining your variables, domains, and constraints.

. Solving a CSP

Halloween is coming up and there is going to be a potluck! A is hosting the potluck
and asks her guests to pick one of the following items to bring:

e Pumpkin pie

Spooky jello
e Caramel apples
e Candy corn
e Mysterious punch
e Gummy worms
A has invited her friends B, C, D, and E. All 5 of the potluck attendees (A included)

are responsible for choosing 1 item from the list above. However, there are a few
constraints on what they can bring:

e C and D are very competitive, so if C brings the same item as another friend, it
cannot be D.

E is allergic to pumpkins, so he can’t bring pie.

D can’t bring jello, apples, or worms.

C can’t bring jello, candy corn, or worms.

B can’t bring punch or worms.

e A will only bring an item that is earlier in the list than B.

A also can’t bring worms.

B and C will only bring items that start with the same letter (e.g. candy corn
and caramel apples).

e D will only bring an item that is later in the list than E.

A and B want to be unique and therefore will not bring the same item as anyone
else.
Which of these constraints are unary constraints and which are binary constraints?

Set up the CSP by defining the variables and domains after enforcing all of the unary
constraints.

What values remain in each of the domains after enforcing arc-consistency?

6-10

Convex Optimization

Convex Sets and Convex Functions

1. A norm is any function [|*|| : R" — R such that:
(a) [lz] =0
(b) [|z|| =0 if and only if 2 =0
(©) [laz] = lalllz]|, Ya € R
(d) [lz +yll < =l + llyll

Show that the unit norm ball , {z|||z|| < 1} is convex, regardless of norm chosen.

2. Let f,g : R — R and h be the composition: h(x) = f(g(z)). State whether h is convex

or concave in each of these scenarios and explain why

(a) fis monotonically increasing and both f and g are convex
(b) fis monotonically decreasing, f is convex and g is concave

(c) fis monotonically decreasing, f is concave and g is convex

3. Using your results from part 2, is the following function convex or concave?

, forx >1

fle) = log(z)

Integer Programming

Felonious Gru decides to abandon his life of crime and rebrands himself as Farmer Gru,
starting a new farm: Rich Minion Fields. He needs help choosing which crops to grow.
Each crop has a starting cost, failure risk, and expected profit (as a percentage of starting

cost) included below

e Spinach: starting cost: 1.3, profit rate: 10%, failure risk 6%

Potato: starting cost: 0.8, profit rate: 20%, failure risk 4%

Rhubarb: starting cost: 0.6, profit rate: 20%, failure risk 6%

Cavendish Banana: starting cost: 1.8, profit rate: 10%, failure risk 5%

Red Banana: starting cost: 1.2, profit rate: 10%, failure risk 5%

Blue Banana: starting cost: 2.4, profit rate: 10%, failure risk 4%

Gru is strapped for cash and can’t afford to spend more than 4 units of money. Additionally,
Gru’s business partner, Dr. Nefario, refuses to agree to a crop portfolio with an average
failure risk of over 5%. Gru needs help finding an optimal selection of crops. Formulate

this as an integer programming problem

6-11

	1. Convex Sets
	2. Convex Functions
	3. Convex Optimization Problem
	1. Normal Form Game
	2. Nash Equilibrium
	3. Hotelling Model
	4. Mixed Strategies

