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1 Game Theory

1.1 Nash Equilibrium

Definition 1 (Nash Equilibrium) A vector of strategies s = (s1,...,8,) € S™ such that
for alli € N and for all s; € S the following is true: u;(s) > wi(s1,-..,Si—1, S, Sit1,---,Sn)

In other words, a Nash equilibrium exists when no player in the game is incentivized by
their utility function u; to unilaterally deviate from the strategy they are currently playing
s; to another s, given the strategies of all other players denoted s; or all j # 7. This means
that each of the N players can say that from their perspective, their strategy is optimal
(utility maximizing) given the strategy being played by all other players.

A Nash equilibrium is not necessarily an efficient outcome meaning that it may not maximize
the total utility of players in the game (e.g. prisoner’s dilemma), but it is set of strategies
where all players have no regrets about their strategy choices i.e. they are playing the best
strategy given the strategies of all the other players.

1.2 Strategy Dominance

1. Strictly Dominant - A strategy is said to be strictly dominant if it is the player’s
best choice regardless of what other players choose i.e. it has higher payoffs in all
settings than any other possible strategy the player might adopt

2. Weakly Dominant - A strategy s is said to weakly dominant another strategy s’ if
s has payoffs that are at least as high as s’ regardless of what other players choose,
and in at least one case higher



Theorem 2 (Nash’s Theorem) In any finite game there exists at least one (possibly
mized strategy) Nash equilibrium. A finite game is a game with a finite number of players
each having a finite number of pure strategies.

1.3 Pure and Mixed Strategies

1. Pure Strategy: A strategy profile where a player always plays a specific action e.g.
always playing paper in rock-paper-scissors

2. Mixed Strategy: A strategy profile where a player plays actions according to a
randomized distribution over the possible actions available e.g. play R, P and S with
equal (1/3) probability of rock-paper-scissors

It can be shown that a best response to any strategy is a pure strategy. Therefore, if a
mixed strategy Nash equilibrium exists where both players play mixed strategies, it must
be a strategy that player 1 plays, which makes player 2 indifferent between their various
pure strategy options. In such a case, if player 1 plays a mixed strategy, then player 2 might
also choose a mixed strategy since it can have the same expected utility as a best response
from selecting a pure strategy.

For an intuitive understanding of this condition and approach, consider the following. Given
player 1’s strategy, let the payoffs of player 2’s pure strategy options be x1, ..., z,. Player 2’s
best response therefore is to select the argmax of this payoffs vector as their best response.
Selecting as a strategy any other option cannot result in a NE since player 2 would have an
incentive to change their strategy and do better by selecting the argmax strategy. Therefore,
the only way for a NE to occur and for player 2 to play a mixed strategy is if there was
more than one pure strategy option that had equal expected value, in which case, selecting
some weighted combination of them (i.e a mixed strategy) will result in the same expected
utility as selecting anyone of them which will not create an incentive to deviate. The same
logic can be applied the other way around for player 1 to want to play a mixed strategy.
Satisfying both conditions simultaneously i.e. that the strategy played by the one player
makes the expected value of the other’s pure strategy options equal, will allow us to recover
a mixed strategy NE.

Problem 1 Consider the following payoff matriz. Identify any pure strategy Nash equilibria
if any exist. Identify the mized strategies that player 1 and player 2 could play that would
lead to a mixed strategy Nash equilibrium.

A | 2 0

Player 1
B | -1 1
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1.4 Supplemental Examples and Problems

Example 1 Alice and Bob are both CS concentrators and also both always eat dinner at
the dining hall at 6pm. The CS department is hosting a social event this Friday at 6pm.
They are good friends and therefore enjoy each other’s company. Going to the CS social
event together will be more fun than going to the dining hall together, but either is preferable
to going to separate locations. What should Alice and Bob do on Friday night? Identify the
Nash equilibrium(s) in the following payoff matriz that describes this setting:

CS Event Dining Hall

CSEvent | 10 D | 3

Bob

Dining Hall | 3 | 5

Here there are 2 pure strategy NEs: Both going to the CS department social event or both
going to the dining hall. Notice, that if Alice goes to the CS event, but Bob does not, she
would have been better off going to the dining hall instead and if Bob goes to the dining hall,
but Alice does not, then he would have been better off going to the CS event instead. The
only arrangements where neither would have been happier making a different choice is when
they both end up choosing the same Friday night destination. Both choosing the dining hall
is a NE, but not an efficient outcome because both would be happier having both gone to the
CS event instead.

Example 2 The Ultimatum Game - Yasmine and Zach have $100 to split between them.
Yasmine writes down on a piece of paper the amount to give Zach and the rest she keeps.
Zach writes down on a piece of paper simultaneously whether he will accept the offer without
knowing what Yasmine wrote. Zach can either choose to accept the proposal and the 3100
will be split accordingly, or Zach can refuse the offer and neither get anything. What is the
pure strategy Nash equilibrium?

In this case, the only pure strateqy Nash equilibrium is for Yasmine to offer Zach $0 and
to keep $100 and for Zach to accept the offer. Zach is no worse off accepting than rejecting
with a proposal of $0 for him to keep and Yasmine would be better off always offering Zach
less given that he accepts the proposal. Both strategies are weakly dominant.
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Problem 2 Suppose there is a mature market where there are only 2 major sellers (called
a duopoly). If they both advertise they both incur high costs with no extra sales. If they both
do not advertise, they will both have higher profits. If one advertises but the other does not,

then one will take significant market share from the other. Identify the pure strategy Nash
equilibrium for this game:

Advertise  No Ads

Advertise | -1 9
Seller A

No Ads | -5 5
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2 Al Game Playing

2.1 Extensive form games

Extensive-form is a game-tree used to represent sequential games, games involving a se-
quence of turns. Consider the below example from lecture — the extensive form is on the
left. It is sequential, rather than normal form which is simultaneous.

Compromise Nuclear war

Respond 2 l

Ignore

(Ignore, Nuclear War) is a Nash Equilibrium in a simultaneous, normal-form game where
both players decide at once. But if this game is sequential, and players take turns making
decisions, the USSR only continues playing if the US "Responds”. Then, the USSR chooses
between Compromise and Nuclear War, and Compromise clearly dominates Nuclear War.
Thus, the threat of Nuclear War is not a credible threat, because if the USSR is actually
called upon to make a decision, she will choose Compromise over Nuclear War. So does it
make sense for (Ignore, Nuclear War) to be a Nash Equilibria?

2.2 Sub-game perfect Nash Equilibrium

The concept of subgame perfect Nash equilibrium is a refinement of Nash Equilibrium
that deals with this problem. To define it, we need the idea of a subgame: every decision
state in a game tree (including the initial state) defines a subgame. The above Cold War
game has two subgames: one rooted in the US’s decision state, and one rooted in the
USSR’s decision state. A set of strategies is a subgame perfect equilibrium if it is a Nash
equilibrium in each subgame.

We can find subgame-perfect equilibria using backward induction, illustrated below.
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4-[ Take any pen-terminal node |
3

Pick one of the payoff vectors (moves) that gives
‘the mover’ at the node the highest payoff

l Assign this payoff to the node at the hand; |
!

Eliminate all the moves and the
terminal nodes following the node

Any non-termina
node

No

The picked moves

Concept Check: How does this apply to the Cold War Game?

2.3 Minimax search

Definition 3 (Minimax search) Minimax search, intuitively, is backward induction for
a zero-sum game- you alternate between the min and max players’ decisions. There is a
mazimum player and a minimum player and the goal of the maximum player is to mazximize
the final value and the minimum player wants to minimize the final value. The players
alternate moves and this algorithm is better understood with pseudocode and examples.

function MaxEval (node n)
if n is a leaf then return PAYoFF(n)
vV & —co
for all children n’ of n
v « Max(v,MINEVAL(n))
return v

function MinEval (node n)
if n is a leaf then return PavoFr(n)
T ¢« Co
for all children n’ of n
v < MIN(v,MAXEVAL(N'))
return v



Example 3 For an example, let us consider this diagram:

A is the initial state of the tree. Suppose mazimizer takes first turn which has worst-case
initial value =- infinity, and minimizer will take next turn which has worst-case initial value
= +infinity.

Maximizer

Minimizer

Maximizer

Terminal
node

Terminal values

Now, we have the turn of the max player- its initial value is -infinity so we chooose the
maximum between each node and —oo.

e For node D, max(—1,—00) => maz(—1,4) =4
e For node E, max(2,—00) => max(2,6) =6
e For Node F, max(—3,—00) => maz(—3,—5) = —3

(
e For node G, max(0,—00) = max(0,7) =7

o-7



Maximizer

Minimizer

Maximizer

node

Terminal values

Now, the minimizer will play- they compare each node value and pick the minimum and will
provide the third layer node values.

e For node B =min(4,6) =4

e For node C = min(—3,7) = —3

Maximizer

Minimizer

Maximizer

Terminal
node

Terminal values
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Finally, Mazimizer will play, and it will again choose the maximum of all nodes value and
find the mazximum value for the root node.

For node A = maz(4,-3) = 4.

Maximizer

Minimizer

Maximizer

Terminal

node

Terminal values

From https://www.javatpoint.com/mini-maz-algorithm-in-ai.

2.4 Alpha-Beta Pruning

Definition 4 (Alpha-Beta Pruning) Alpha-Beta pruning builds on minimaz search.
There are parameters «, 8 that we update and these guarantee ranges- the maximum player
guarantees that the final value will be > a and the minimum player guarantees that the final
value will be < B so if a value node does not satisfy these conditions, we will prune that
node and its descendants (will not search those spaces).

A branch will be pruned if f < « as these nodes will not be reached in actual play. Like
minimaz search, it is better explained with pseudocode and examples.
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function MaxEval (node n, numbers a,f)
// max can guarantee >«
// min can guarantee <pf
if n is a leaf then return Pavorr(n)
vVea
for all children n’ of n
v « Max(v,MINEvAL(n', v, B))
if v = then return v
return v

function MinEval (node n, numbers a,f)
if n is a leaf then return Pavorr(n)
vef
for all children n’ of n
vV & MIN(v,MAXEVAL(N, @, v))
if v <a then return v
return v

Example 4 Alpha-Beta Pruning example

MAX

MIN

MAX

1. The initial call starts from A. The value of alpha here is -INFINITY and the value
of beta is +INFINITY. These values are passed down to subsequent nodes in the tree.
At A the mazximizer must choose max of B and C, so A calls B first

2. At B it the minimizer must choose min of D and FE and hence calls D first.

3. At D, it looks at its left child which is a leaf node. This node returns a value of 3.
Now the value of alpha at D is max( -INF, 3) which is 3.

4. To decide whether its worth looking at its right node or not, it checks the condition



10.

11.

12.

15.

betaj=alpha. This is false since beta = +INF and alpha = 3. So it continues the
search.

D now looks at its right child which returns a value of 5.At D, alpha = maz(3, 5)
which is 5. Now the value of node D is 5

D now looks at its right child which returns a value of 5.At D, alpha = max(3, 5)
which is 5. Now the value of node D is 5

D returns a value of 5 to B. At B, beta = min( +INF, 5) which is 5. The minimizer
is now guaranteed a value of 5 or lesser. B now calls E to see if he can get a lower
value than 5.

At E the values of alpha and beta is not -INF and +INF but instead -INF and 5
respectively, because the value of beta was changed at B and that is what B passed
down to E

Now E looks at its left child which is 6. At E, alpha = max(-INF, 6) which is 6. Here
the condition becomes true. beta is 5 and alpha is 6. So betaj=alpha is true. Hence it
breaks and E returns 6 to B

Note how it did not matter what the value of E‘s right child is. It could have been
+INF or -INF, it still wouldn’t matter, We never even had to look at it because the
minimizer was guaranteed a value of 5 or lesser. So as soon as the maximizer saw
the 6 he knew the minimizer would never come this way because he can get a 5 on the
left side of B. This way we didn’t have to look at that 9 and hence saved computation
time.

E returns a value of 6 to B. At B, beta = min( 5, 6) which is 5. The value of node B
is also 5

MAX (Al

5/"‘/ =
MIN B 1 C )

J

3 -

“é é% éé éé

B returns 5 to A. At A, alpha = maz( -INF, 5) which is 5. Now the mazimizer is
guaranteed a value of &5 or greater. A now calls C to see if it can get a higher value
than 5.

At C, alpha = 5 and beta = +INF. C calls F
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1.

15.

16.

17.

18.

19.

At F, alpha = 5 and beta = +INF. F looks at its left child which is a 1. alpha = max(
5, 1) which is still 5.

F looks at its right child which is a 2. Hence the best value of this node is 2. Alpha
still remains 5

F returns a value of 2 to C. At C, beta = min( +INF, 2). The condition beta j= alpha
becomes true as beta = 2 and alpha = 5. So it breaks and it does not even have to
compute the entire sub-tree of G.

The intuition behind this break off is that, at C the minimizer was guaranteed a value
of 2 or lesser. But the maximizer was already guaranteed a value of 5 if he choose B.
So why would the maximizer ever choose C and get a value less than 2 ¢ Again you
can see that it did not matter what those last 2 values were. We also saved a lot of
computation by skipping a whole sub tree.

C now returns a value of 2 to A. Therefore the best value at A is maz( 5, 2) which is
a d.

Thus, the optimal value that the maximizer can get is 5
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From  https://www.geeksforgeeks. org/minimaz-algorithm-in-game-theory-set-4-alpha-beta-
pruning/.
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Problem 3 Carry out alpha-beta pruning on this tree.

\ \9 OA o

2.5 Supplemental Examples and Problems

Problem 4 Consider the below extensive game involving splitting 10 dollars. What are the
sub- game perfect equilibria of this game?

(5.5) (0,0) (%.1) (0.0)



