Harvard CS 182: Artificial Intelligence September 14, 2022

Section 2: Informed Search and Motion Planning

Lecturer: Stephanie Gil Authors: Lauren Cooke and Chris Lee

Informed Search

Unlike the uninformed search algorithms we discussed last week, informed search algorithms
use information beyond that given in the problem statement via a heuristic function.

e We can think of a heuristic as a shortcut strategy to find our solution within a quan-
tifiable window of accuracy. These shortcuts can be useful in situations where looking
for the exact answer with a more brute force method will take too long and where
your heuristic will provide a solution that is close enough to the true answer you are
looking for.

Example 1 One way we can think about the benefits of using a heuristic would be in cal-
culating tip after eating out at a restaurant. Say your bill comes out to $25.13, and tax
ends up being $2.60. If your goal is to leave a 20% tip, knowing that sales tax percentage
is roughly between 8% and 11%, you could apply the heuristic of calculating your tip by
doubling the tax amount. In this case, you would be leaving $5.20, or a 20.7% tip; which is
close enough to your target and saves you from the hassle of doing long division.

Problem 1 You find yourself on the main road in a city that you have never been to
before, and you are really hungry. This road has 100 restaurants. Your goal is to find the
best restaurant on this road, as you are looking for somewhere delicious to eat. You could
hypothetically go eat at every single restaurant on the street, but this would take a long time
and be quite expensive. What heuristic could you employ to solve this problem?

Informed Search Algorithms

Different informed search algorithms will take advantage of unique heuristics in trying to
solve problems:

e For Greedy Search, we expand the node of our search problem closest to the goal
node, measuring this closeness using a heuristic estimate h(z). The lower the output
of h(x), the closer state z is to the goal state.

Problem 2 Find the path from the start state, s, to the goal state, g using the greedy
search algorithm and the heuristic h values located inside each node. (From Source 2)

e For A* Tree Search, we combine the closeness heuristic h(z) from greedy search with
the cost summation, g(z) from uniform cost search from last week to create a new
heuristic, f(x) = h(x) + g(z). We choose to sum these two values to get a rough
understanding of the total cost of a path through node z:

— h(x) estimates the distance from the current node z to the goal state
— g(x) estimates the cost from the start node to the current node x

o A* Graph Search is largely similar to A* Tree search, as it uses the same heuristic
in making its expansion decisions. However, this strategy avoids the problem of ex-
panding the same node more than once in different branches by using graph search to
keep track of nodes that have already been expanded and therefore never expanding
the same node more than once.

Problem 3 Find the path from the start state, s, to the goal state, g, using the A* graph
search algorithm, heuristic h values per node, and edge weights specified in the graph below
(from source 2):

2-2

Heuristic Quality and Optimality

We can categorize the quality of a heuristic both in terms of the problem space and in terms
of other heuristics:

e A heuristic h dominates the heuristic A’ if and only if Va, h(z) > h/(z). A heuristic A’
is therefore dominated by heuristic h because h will produce a larger or equal value
than A’ for all inputs.

o A heuristic is admissible if, V nodes z, h(z) < h*(z), where h*(x) represents the cost
of the optimal path to a goal. In other words, a heuristic is admissible when it either
underestimates or is exactly correct with its estimate of the cost of the optimal path.

e A heuristic is consistent if, for every 2 nodes x,y, i.e. h(x) < ¢(x,y) + h(y) where
c(z,y) is the cost of the cheapest path between x and y. In other words, a heuristic
is consistent if taking a detour is more costly then remaining on the current path.

e Note that consistency implies admissibility when h(t) = 0 for all goals ¢.

Using these definitions for heuristic quality, we can assert the following about optimality
for our different A* Search strategies:

Theorem 1 A* tree search with an admissible heuristic returns and optimal solution.

Proof: Let the suboptimal goal ¢ be expanded before the optimal goal ¢*. Then 3 a
node x on the optimal path to t* that has been discovered but not expanded because t is
suboptimal. So:
f(z) = g(x) + h(z) by definition of f
< g(z) + h*(z) by admissibility
=g(t*) < g(t) because not yet on the optimal path
(t) because ¢(t) = f(t) because h(t) =0

Therefore, f(z) is strictly smaller than f(¢), and thus x should have been expanded before
t, meaning A* tree search with an admissible heuristic returns an optimal solution. B

Theorem 2 A* graph search with a consistent heuristic returns an optimal solution.

Motion Planning

We will now see how it is possible to apply search algorithms to the task of motion planning,
e.g. programming a robot to move to a goal while avoiding some obstacles. This brings
with it a two main challenges:

e Practical challenges: Physical limitations robots, and often times there are many
degrees of freedom, creating a high-dimensional state space

2-3

e The search space is often continuous, meaning that there would naively be infinitely
many nodes that are infinitesimally close to one another

To rectify both problems, the main idea is to determine a better way of modeling the state
space. The two main methods discussed in lecture were to represent the search space as a
configuration space and to discretize the state space.

Problem 4 What is the problem with treating every possible location as its own node?
Notably, search algorithms can be directly used on other infinite state spaces — what is it
about this particular problem formulation that gives these algorithms difficulty?

Configuration Space

Often times, the variables that the robot can directly control are nontrivial to convert into
3D space. For example, consider a robot with n joints; the variables it is able to directly
control are the angles of each of these joints, which is difficult to visualize in space. Thus,
it is often easier to solve the search problem within this n-dimensional space rather than
by using x, y, and z-coordinates.

Problem 5 Consider the search space below, where the our robot is the yellow triangle in
the bottom left and the gray rectangle is an obstacle. Suppose our robot cannot rotate or
flip, and let the configuration space be all the (x,y)-coordinates that the bottom left corner
of our robot can occupy. What will the configuration space look like?

Visibility Graphs

A wisibility graph is a convenient way of representing search spaces in which all obstacles are
polygonal. In a visibility graph, the nodes are the vertices of the obstacles as well as start
and goal, and the edges are the paths between nodes that do not enter the interior of any
obstacle (including those between vertices on the same object, i.e. the edges’ obstacles).

The benefit of this representation is that the shortest path on this graph will always be
optimal. This can be seen (as in lecture) through a proof by contradiction, by considering

an ‘optimal’ path that has a vertex in free space or on an edge of an obstacle. Thus, we
can use any optimal graph search algorithm to find the shortest path.

This method unfortunately does not generalize to 3D space — finding the optimal path in
3D space is NP-hard.

Problem 6 Consider the following two hexagonal obstacles below and the red equilateral
triangles that can be formed from some of their vertices. Consider two different state spaces,
each with one of these obstacles and start and goal nodes in random locations. Suppose we
draw the wvisibility graphs as if the triangles (and not the hexagons) are the obstacles. Will
either of these wvisibility graphs lead to the optimal solution in their respective state space?

2-5

