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ATl Game Playing

Problem from 2021 Midterm

Problem 1 The following game tree describes a zero-sum game between a maz-player (up
triangles) and min-player (down triangles). Assign payoffs (for the maz player) to the leaves
in such a way that alpha-beta pruning would have to examine all 8 leaves, i.e. no pruning
will take place. Assume leaves are examined from left to right.
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1. Refer to the 2021 midterm solutions for the solution to the first part of the problem.
There are many possible solutions that work. Notice that the general order that works has
the poorer payoffs at leaves that are further left.
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More alpha beta pruning

Problem 2 In the following game tree representing a 2-player zero-sum game, up-triangles
represent the mazx player, and down-triangles represent the min player. The different final
outcomes or leaves have been provided in the image below. Fill out the game tree all the
way to the top node. Then, use alpha-beta pruning to reduce the number of nodes you would
have had to explore.
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2. We prune the leaf with payoff 2 and the entire rightmost subtree with leaves 7 and 8. If
you filled out the tree before pruning, the values at the nodes, going top to bottom and left
to right are: 5, 5, 4, 5, 6, 4, 8

Social Choice

Problem 3 Create a voter preference profile and alternatives to demonstrate that Borda
count is not a Condorcet consistent voting rule.
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3. There are many different preference profiles that could work for this question, but the
example from the Social Choice lecture is one such case depending on how you break ties.

Problem 4 Consider a voting rule where voters award 1 point to their most preferred

alternative and -1 points to their least preferred alternative. Is this voting rule Condorcet
consistent? If yes, explain why. If no, give a counterexample.

4. This voting rule is not Condorcet consistent. Consider the following preference profiles:

e 3 voters prefer: A, B, D, C
e 2 voters prefer: C, A, B, D

e 2 voters prefer: C, B, D, A

The Condorcet winner here is C. However, with our strange voting rule, the scores for each
of the alternatives are A=1, B=0, C=1, D=-2. If we break ties alphabetically, for example,
A wins with this voting rule instead of C.

Bayesian Networks

Problem 5 Consider the following Bayes net and answer the following questions:

P[R]
Sprinkler A t| .80
.20

(a) What is P(Grass wet = True | Cloudy = True)?
(b) Suppose we did likelihood weighting on this network, where we observe evidence C = t,

W = f and we sample S =t, R = f. What is the weight of this sample?

5. Using the diagram above, we have
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(a) Using LOTP we have

PW=T|C=T|=PW=T|IC=T,S=T,R=T]-P[S=T,R=T|C =T]
+PW=T|IC=T,S=T,R=F]|-P[S=T,R=F|C =T)
+PW=T|IC=T,S=F,R=T]-P[S=F,R=T|C =T
+PW=T|C=T,S=F,R=F|-P[S=FR=F|C=T]

Because in a Bayes net, each random variable is conditionally independent of its
predecessors given its parents, this simplifies to
PW=T|IC=T|=PW=T|S=T,R=T]|-P[S=T,R=T|C =T]
+PW=T|S=T,R=F]-P[S=T,R=F|C =T]
+PW=T|S=F,R=T|-PI[S=F,R=T|C =T]
+PW=T|S=F,R=F]-P[S=F,R=F|C=T]

Plugging in the probabilities given gives

099-01-08409-0.1-024+09-09-0.8+0

(b) At first w = 1. Since C' is evidence, w = 1-0.5 = 0.5. Then we sample S =¢, R = f
and so W is false with probability 0.1. Therefore w = 0.5- 0.1 = 0.05.

HMM

Problem 6 Mr. Red is happy some days and angry others. We can observe when he
smiles, frowns, laughs, and yells, but not his actual emotional state. There can only be one
state transition per day. It can be to the happy state or angry state. The HMM is shown
below and the probability Mr. Red is happy on day 0 is 0.5.

P(smile|Happy) =0.5 P(smile|Angry)=0.1

P(frown|Happy)=0.1 P(frown|Angry)=0.5
P(laugh|Happy)=0.2 P(laugh|Angry)=0.2
P(yell|Happy) = 0.2 P(yell|Angry) =0.2 /
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Let sy be the state on day t and let e; be the observation on day t. Suppose ey = Frown.
Then what is the probability sy = Happy?

6. First we look for the probability sy = Happy given e; = Frown.

P[sy = Happyle1 = Frown| « Ple; = Frown|s; = Happy| - (P[so = Happy| - P[s1 = Happy|so = Happy]
+ P[so = Angry| - P[s1 = Happy|so = Angry])
=0.1-(0.5-0.840.5-0.8)
=0.08

Now we look for the probability sy = Angry given e; = Frown.

P[s; = Angryle; = Frown] < Ple; = Frown|s; = Angry| - (P[so = Happy| - P[s1 = Angry|so = Happy]
+ P[sog = Angry| - P[s1 = Angry|so = Angry])
=0.5-(0.5-0.240.5-0.2)
=0.1

. o . o1 _ . _ . 0.08 _ 4
In conclusion, after normalizing, the probability sy = Happy given e; = Frown is g = 3-

MDPs/Reinforcement Learning
Problem 7 Which of the following statements are true for an MDP? Briefly explain why.

(a) If one is using value iteration and the values have converged, the optimal policy based
on the current values must have converged as well.

(b) Policies found by wvalue iteration are superior to policies found by policy iteration,
assuming that both algorithms have converged.

(a) Yes! Since the values have converged, the values don’t change anymore. Therefore,
the policy between iterations also stops changing.

(b) False. Assuming both algorithms have converged, policies found by value iteration
and policy iteration should be equal.

This is because both value iteration and policy iteration improve the policy until
no improvements can be made. In other words, they find an optimal policy. If value
iteration found a superior policy, then policy iteration wouldn’t have found the optimal
policy.
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Linear Classification

Problem 8

(5 points) Higher Dimensions. Let’s figure out how to linearly separate the interior of an
arbitrary circle or ellipse from its surroundings. The general equation for a circle (and
hence the decision boundary) is (v1 — a)? + (x2 — b)%2 —r%2 = 0, and the general equation for
an ellipse is c(xr1 — a)? + d(xg — b)? — 1 = 0.

(a)

(b)

Ezxpand out the equation for the circle and show what the weights w; would be for the
decision boundary in the four-dimensional feature space $1,$2,$%,$%. FExplain why
this means any circle is linearly separable in this space.

Do the same for ellipses in the same feature space (v1, 22,12, 13, ¥172).

Expanding out the equation for the circle gives

($1—0)2+($2—b)2—7’2:0
212 — 201 + a® + 29% — 2bao + 0% — 12 =0
212 + 192 — 2am1 — 2bzy +a® + b2 — 1> =0

For the decision boundary in the four-dimensional feature space 1, x2, 12, 222, the
weights are —2a, —2b, 1, and 1 respectively.

Any circle is linearly separable in this four-dimensional feature space because while

the decision boundary isn’t linear in terms of x1,xo, it is clearly linear in terms of

2 2
X1, T2, T17, L2".

Expanding out the equation for the ellipse gives

clxy —a)® +d(zy — b2 —1=0
c(x12 — 2ax1 + a2) + d(ac22 — 2bxg + b2) —1=0
cx1? — 2acxy + ca® + dxo® — 2bdry +db®> —1 =0
cr1? — 2acxy + dwo® — 2bdzg +ca® +db* —1 =0

For the decision boundary in the five-dimensional feature space x1, 2, x1%, 22, T122,
the weights are —2ac, —2bd, ¢, d, and 0 respectively.

Any ellipse is linearly separable in this five-dimensional feature space because while
the decision boundary isn’t linear in terms of x1,x2, it is clearly linear in terms of

2 2
T1,T2,T1,X27,T1T2.
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Decision Trees

Problem 9 Using the table above, answer the following question:

Day | Weather | Temperature Humidity Wind Play?

1 sunny Hot High Weak No
2 Cloudy Hot High Weak Yes
3 Sunny Mild Normal Strong Yes
4 Cloudy Mild High Strong Yes
5 Rainy Mild High Strong No
6 Rainy Cool Normal Strong No
7 Rainy Mild High Weak Yes
8 sunny Hot High Strong No
9 Cloudy Hot Normal Weak Yes
10 Rainy Mild High Strong No

What is the information gain from splitting on humidity? What is the information gain
from splitting on wind?

9. We find (1) the information gain from splitting on humidity and (2) the information
gain from splitting on wind.

(a) Splitting on humidity gives two different subsets of examples: High with probability

1—70, Normal with probability % Note that if humidity’s High, we play % of the time;

if humidity’s Normal we play % of the time. Therefore

, 7 3 3 2
Gain(weather) =1 — [10 - B <7> + 0 B (3)}

(b) Splitting on wind gives two different subsets of examples: Weak with probability %,
Strong with probability 1%. Note that if wind’s Weak, we play % of the time; if wind’s
Strong we play % of the time. Therefore

. 4 3 6 2
Gain(weather) =1 — [10 - B <4> + 0 B (6)}
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Problem 10 Master Yoda is concerned about the number of Jedi apprentices that have
turned to the Dark Side, so he’s decided to train a decision tree on some historical data to
help identify problem cases in the future. The following table summarizes whether or not
each of the 12 initiates turned to the Dark Side based on their age when their Jedi training
began, whether or not they completed their training, their general disposition, and their
species.

Dark Side | Age Started Training | Completed Training | Disposition Species
0 5 1 Happy Human
0 9 1 Happy Gungan
0 6 0 Happy Wookiee
0 6 1 Sad Mon Calamari
0 7 0 Sad Human
0 8 1 Angry Human
0 5 1 Angry Ewok
1 9 0 Happy Ewok
1 8 0 Sad Human
1 8 0 Sad Human
1 6 0 Angry Wookiee
1 7 0 Angry Mon Calamari

(a) What is the initial entropy of Dark Side?

(b) What attribute would the decision-tree building algorithm choose to use for the root of
the tree? (You can use intuition here or actually calculate out the information gain
of splitting on each feature).

10. Using the chart we get

(a) —% log % — % log % = 0.9798

(b) Using intuition and eyeballing, we see that splitting on Completed Training, every-
one who hasn’t completed their training goes to the Dark Side. This doesn’t happen
with any of the other features. Therefore, it seems like a good idea to first split on
Completed Training.

Fairness

Problem 11 (Fill in the Blank Problem). [BLANK] requires the outcome to be indepen-
dent of the attribute G € {0, 1}.

11. Looking at the definition of Demographic Parity, it’s clear that demographic parity
requires the probability of getting an outcome to be independent of attribute G (probability
of some outcome is the same whether you have G =0 or G = 1).
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