
Harvard CS 182: Artificial Intelligence November 3, 2022

Section 9: Markov decision processes and Reinforcement Learning

Lecturer: Ariel Procaccia Authors: Mujin Kwun and Catherine Cui

Markov Decision Processes

So far, we have considered search problems where state transitions were deterministic.
However, this assumption is often unrealistic in practice when we might have to model
randomness where taking an action from a given state might lead to a set of different
possible successor states.
Markov Decision Processes (MDP) construction:

• S: a set of states

• s0: an initial state

• A(s): A set of actions for each state s ∈ S

• P (s′|s, a): A transition model that gives us the probability of reaching state s’ if action
a is taken from state s

• R(s): A reward function that gives us the reward for state s

We assume that the agent’s utility is the sum of rewards for now.

A policy π specifies action π(s) ∈ A(s) for each state s. We are interested in finding the
optimal policy π∗ that maximizes the expected utility.

Discounted Utilities

Most often, we assume that there is an infinite horizon (the process goes on forever,)
and that we have a discount factor γ ∈ [0, 1] such that for an infinite sequence of states
s0, s1, s2..., the utility is R(s0) + γR(s1) + γ2R(s2)...

This is ideal for because the ”math looks nicer” and because there are many real-world
cases where it makes intuitive sense to weight immediate rewards more heavily than future
rewards.

Let r∗ ≥ R(s), ∀s ∈ S. Then if γ < 1, the utility is bounded by:

∞∑
t=0

γtr∗ =
r∗

1− γ

9-1

Bellman Equations

For any state s, we can find the utility given by the optimal policy, U(s) using the Bellman
equations:

U(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a) ∗ U(s′)

Once we have found U(s) for all s ∈ S, we can find the optimal policy by taking:

π∗(s) ∈ argmaxa∈A(s)
∑
s′

P (s′|s, a) ∗ U(s′)

Value Iteration

In the Bellman equations above, we see that our values for U(s) depend on one another.
How can we compute the utility of the optimal policy and use this to find our optimal
policy? To do so, we start with an initial function U and iteratively update our utility
estimates as follows:

Ui+1(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a) ∗ Ui(s′)

Given some acceptable ε > 0, our stopping condition is:

max
s∈S
|Ui+1(s) + Ui(s)| <

ε(1− γ)

γ

Thm: If we choose our stopping condition above, with γ < 1, value iteration terminates
with utility estimates Ut such that:

|U(s)− Ut(s)| < ε

Policy Iteration

Alternatively, we can use a different algorithm, policy iteration, to iteratively compute
policies directly. Beginning with initial policy π0:

Step 1: Policy Evaluation Given policy πi we can calculate its utility Ui

Ui(s) = R(s) + γ
∑
s′

P (s′|s, πi(s)) ∗ Ui(s′)

9-2

Step 2: Policy Improvement Using this Ui, calculate an updated policy πi+1

πi+1(s) ∈ argmaxa∈A(s)
∑
s′

P (s′|s, a) ∗ Ui(s′)

We repeat these steps until there is no change in utilities.

Linear Programming

Finally, we can also solve for the optimal utility program by framing it as a linear program-
ming problem.

min
s∈S

U(s)

s.t.∀s ∈ S, a ∈ A(s)

U(s) ≥ R(s) + γ
∑
s′

P (s′|s, a) ∗ U(s′)

However, this often yields a running time larger than that of Value and Policy iteration, so
in most cases, it is not as practical

9-3

Problem 1 Consider the grid world above where the agent can choose to move up, down,
left, or right. Assume that if an agent chooses to carry out an action, there is a 0.7 chance
it performs this desired action and 0.1 chance it performs each of the other three. There is
one square with a reward of +10. If the agent moves into the red wall, it receives a reward
of -1.

1. What is the value for a and b after one round of value iteration, assuming a discount
factor of 0.9 and initial rewards of 0 for all non-labelled states?

2. If we choose an ε of 0.1, what is our stopping condition?

3. Considering the grid below with labelled states a,b,c,d and a policy that specifies moving
up from the middle square, s’, write out the equation for policy evaluation at the middle
state in terms of Ua, Ub, Uc, Ud. Assume that R(s′) = 0.5

9-4

4. Explain why Policy Iteration is guaranteed to converge.

5. Prove that policy iteration converges at the optimal policy and value function

1.

1. For iteration 0: all blank squares have reward of 0.

Value after iteration 1:

State a: U1(a) = R(a) + 0.9 ∗ (0.7 ∗ 10 + 0.1 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 0) = 6.3
This is because our optimal action is to move right to the reward state of 10. This
happens with probability 0.7 which we multiply by the reward of 10. For the other
three actions from state a, the reward will be 0 with probability 0.1, which is reflected
in the above equation. We multiply the sum of probabilities and their rewards by the
discount factor of 0.9. Our current R(a) is 0

9-5

State b: U1(b) = R(b) + 0.9 ∗ (0.7 ∗ 10 + 0.1 ∗ −1 + 0.1 ∗ 0 + 0.1 ∗ 0) = 6.21
We use the same reasoning as above, except now the optimal action is to move to the
left and one of the suboptimal moves with probability 0.1 has a reward of -1 from
hitting the red wall.

2. Our stopping condition would be that if the maximum change across states between
Ui and Ui+1 is less than ε∗(1−γ)

γ = 0.1∗0.1
0.9 = 0.0111, then we stop value iteration

3.
U(s′) = R(s′) + p(Up) ∗ U(c) + p(R) ∗ U(b) + p(D) ∗ U(d) + p(L) ∗ U(a)

= 0.5 + 0.7 ∗ U(c) + 0.1 ∗ U(b) + 0.1 ∗ U(d) + 0.1 ∗ U(a)

4. Intuitively, policy iteration is guaranteed to converge because at every iteration (before
convergence) your policy can only improve by definition. This means that we will
never encounter the same policy twice. The total number of candidate policies is
(#actions)#states. After this many iterations, you are guaranteed to have converged.

5. Let πk be the policy that we have after convergence. Then, by definition, πk(s) =
πk+1(s), ∀s ∈ S. In addition, if we were to evaluate our policy πk, our utility Uk
would be:

Uk(s) = R(s) + γ
∑
s′

P (s′|s, πk(s)) ∗ Uk(s′)

Because policy iteration has converged, the action, a, that πk will take at state s is the
one that maximizes

∑
s′ P (s′|s, a)∗Uk(s′). Otherwise, policy improvement would have

found this action. Note that this means this is identical to the Bellman equations.

In lecture we saw that we can use the bellman equation to find the optimal policy:

π∗(s) ∈ argmaxa∈A(s)
∑
s′

P (s′|s, a) ∗ Uk(s′)

This is the same equation we would use to find πk+1 which we have shown is identical
to πk. Therefore, πk = π∗

Reinforcement Learning

Reinforcement learning refers to getting feedback through rewards. Note that this differs
from MDP: MDP also have rewards, but the environment is known. In contrast, reinforce-
ment learning focuses on learning to act in an unknown environment, which is represented
as an MDP with unknown transitions and rewards. Reinforcement learning can either be
passive or active, model-based or model-free.

9-6

Passive Reinforcement Learning

In passive reinforcement learning, we’re given a fixed policy π, and we want to find the
utility of π. To do this, we sample many possible trajectories by following π many times
and use this information to estimate the utility of π.

Depicted above is an example of a fixed policy π and examples of possible sampled trajec-
tories.

Model-based, Passive RL

The goal is to learn an estimate Û(s) of the utility Uπ(s) of each state s for the fixed policy
π where Uπ(s) is the utility under π if we start from state s and follow π.

We observe the reward R(s) when we visit a state s and we estimate the transition function
P̂ (s′|s, π(s)) from s to s′ by observing how many times state s′ was reached when taking
action π(s) in s and normalizing. Using these values, we compute Û for all s ∈ S:

Û(s) = R(s) + γ
∑
s′∈S

P̂ (s′|s, π(s)) · Û(s′)

Problem 2 Below, we have two sampled trajectories based on some fixed policy. What are
the estimated transition probabilities? Suppose we start in the bottom left square.

9-7

2.

Model-free, Passive RL (Temporal-Difference Learning)

Similarly to the model-based passive RL, we observe the fixed policy π acting in the world.
Each time we transition from s to s′, update Û(s) in the following way:

Û(s)← (1− α)Û(s) + α
(
R(s) + γÛ(s′)

)
Note that we are essentially updating Û(s) with a convex combination of the new estimate
and old estimate. The learning rate α is a function of the number of times state s is visited,

9-8

ks. As ks increases, α should decrease because we become more confident in Û(s) and thus
give less weight to the new observation. When α decreases appropriately as ks increases, Û
converges to Uπ.

Active Reinforcement Learning

In active reinforcement learning, our goal is to find a food policy in an unknown environment
by observing what happens as we act in the world. Similarly to passive reinforcement
learning, we have model-based and mode-free.

Model-based, Active RL

For now, we take a random action at each step. We estimate P̂ (s′|s, a) by observing how
many times s′ was reached when taking action a in s and normalizing. Using these values,
we solve the Bellman equations for each s ∈ S to achieve the optimal policy:

Û(s) = R(s) + γ max
a∈A(s)

∑
s′∈S

P̂ (s′|s, a) · Û(s′)

Problem 3 Using the equations above, we want to derive an optimal policy. How can we
do this?

2. Note that the equations above are exactly the Bellman equations, except instead of the
transition probabilities, we have the estimated transition probabilities. Therefore, all the
methods discussed earlier (value iteration, policy iteration) all work.

Model-free, Active RL (Q-learning)

Instead of estimating the utility for each state, Û(s), we’ll instead estimate Q(s, a) for each
state-action pair and for all s ∈ S, we choose the action

π(s) ∈ max
a∈As

argmaxQ(s, a)

In equilibrium, optimal Q values satisfy Bellman-like equations for all s ∈ S, a ∈ As:

Q(s, a) = R(s) + γ
∑
s′∈S

P (s′|s, a) max
a′∈As′

Q(s′, a′)

Instead of following a fixed policy π, take a random action at each step. Each time we
transition from s to s′ through action a update Q(s, a) in the following way:

Q(s, a)← (1− α)Q(s, a) + α

(
R(s) + γmax

a′
Q(s′, a′)

)
where α once again is the learning rate. Now, α depends on the number of takes action a
was taken in state s.

9-9

Exploration vs. Exploitation

So far, we assume we take a random action at every stage. This is nice because we will
reach every state and give us information about the transition function. In other words,
our Q-learning agent currently only explores. What if this Q-learning only exploited and
always selected the action argmaxaQ(s, a)?

In that case, we may not find “larger” or riskier rewards: example below.

Example 1 This is an example where if we only exploited, we may end up going to the
desert every time and miss out on the larger rewards to the further left.

So what should we do? We need to maintain a balance between exploring and exploiting.
To satisfy the exploration requirement and make sure that all state action pairs are visited
infinitely often, there are two methods we discuss in this course:

1. ε-exploration: Use argmaxaQ(s, a) with probability 1 − ε and a random action wirh
probability ε

2. Softmax: Choose each action with probability

eQ(s,a)/θ∑
a′∈As

eQ(s,a′)/θ

If all state action pairs are visited infinitely often and α(ksa) goes to zero appropriately,
then Q-learning converges to an optimal policy!

9-10

	Model-free, Passive RL (Temporal-Difference Learning)

