
Harvard CS 182: Artificial Intelligence September 28, 2022

Section 4: Convex Optimization, Integer Programming

Lecturer: Ariel Procaccia Author: Max Guo, Eric Helmold, Christopher Lee

1 Convex Optimization

Definition 1 (Convex Optimization Problem) A convex optimization problem is a
specialization of a general optimization problem min

x
f(x) such that x ∈ F where the ob-

jective function f : Rn → R is a convex function, and the feasible region F is a convex
set.

1.1 Convex Sets

Definition 2 (Convex Sets) A set F ⊆ Rn is convex if for all x,y ∈ F and θ ∈ [0, 1],
θx + (1− θ)y ∈ F . In other words, a set is convex if and only if all convex combinations of
any two elements results in another element contained within the set.

Intuitively the definition of convex sets is: for any two points in the set, if I draw the line
between the two points, every point in the line must be in the set. Now we’ll provide some
examples of convex sets:

Example 1 Prove that

F = {x ∈ Rn : ∀i = 1, . . . , n, a ≤ xi ≤ b}

is a convex set.
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Proof: Let x,y ∈ F , and θ ∈ [0, 1]. For all i = 1, . . . , n, a ≤ xi and a ≤ yi, so
θxi + (1 − θ)yi ≥ θa + (1 − θ)a = a. Similarly, θxi + (1 − θ)yi ≤ θ(b) + (1 − θ)b = b.
Therefore, θx + (1− θ)y ∈ F .

Moreover, intersections of convex sets are convex. An argument works likes this: for any
two points within the intersection of several convex sets, the line between them is (because
each of the sets is convex) also withing each of the convex sets, so the line must be in the
intersection, which proves the intersection is a convex set.

Note that it is not true that the union of convex sets is convex.

Problem 1 Give an example where the union of convex sets is not convex.

1. Consider two convex sets S1 and S2 that do not intersect. Their union will not be convex
because the line segment connecting a point in S1 to a point in S2 will traverse through
(S1 ∪ S2)C , and thus S1 ∪ S2 is not convex.

Problem 2 Show that a set is convex if and only if its intersection with any line is convex.

2. Suppose that set S is convex and choose any line `. If S ∩ ` = ∅, then the forward
condition holds trivially since the empty set is convex, so assume the intersection is not
empty. Choose any two points x,y ∈ S ∩ ` and θ ∈ [0, 1]. By the definition of convexity,
θx + (1− θ)y ∈ S. Furthermore, by definition of a line, θx + (1− θ)y ∈ `. Thus,

θx + (1− θ)y ∈ S ∩ `,

and thus S ∩ ` is convex.

For the converse, suppose that S is some set, not necessarily convex. Suppose we take any
two arbitrary points x,y ∈ S with x 6= y, and let ` be the line that connects x with y.
By the statement of the converse, we have that S ∩ ` is convex. This means that for any
θ ∈ [0, 1], θx+(1−θ)y ∈ S∩ ` ⊆ S. Because we arbitrarily chose x and y, we have satisfied
the condition of convexity for any two points x,y ∈ S, and thus S is a convex set.

Problem 3 Are the following sets convex?
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1. A set of the form {x ∈ Rn|α ≤ wTx ≤ β}.

2. The set of points closer to one point than another (by Euclidean distance), i.e.,

{x|dist(x, S) ≤ dist(x, Z)},

where S,Z ∈ Rn.

1. Suppose we have a set S = {x ∈ Rn|α ≤ wTx ≤ β} for some α, β ∈ R, w ∈ Rn and
choose some x, y ∈ S and θ ∈ [0, 1]. Then

wT · θx+ wT · (1− θ)y = θ(wTx) + (1− θ)(wT y) ≥ θα+ (1− θ)α = α

and similarly

wT · θx+ wT · (1− θ)y = θ(wTx) + (1− θ)(wT y) ≤ θβ + (1− θ)β = β.

Thus, θx+ (1− θ)y ∈ S, so S is convex. Notably this means that the set of solutions to a
set of linear inequalities is convex.

2. Assume without loss of generality that S is at the origin, and let the coordinates of
T = (xZ1 , · · · , xZn ). Then for any x = (x1, · · · , xn) ∈ Rn,

dist(x, S) ≤ dist(x, Z)⇐⇒

√√√√ n∑
i=1

(xi − 0)2 ≤

√√√√ n∑
i=1

(xi − xZi )2

⇐⇒
n∑

i=1

x2i ≤
n∑

i=1

x2i − 2
n∑

i=1

xZi xi +
n∑

i=1

(
xZ1
)2

⇐⇒ 0 ≤ −2
n∑

i=1

xZi xi +
n∑

i=1

(
xZi
)2

⇐⇒ 2(xZ)Tx ≤ (xZ)T (xZ)

Since the xZi are constants, this is just a set of linear inequalities, which as shown in part
(1) means that the set of points that satisfy these conditions is convex.

1.2 Convex Functions

Definition 3 (Convex Function) A function f : Rn → R is convex if and only if for any
x,y ∈ Rn and θ ∈ [0, 1],

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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For functions that f : R → R that are twice differentiable, this definition is equivalent to
saying that f ′′(x) ≥ 0 for all x ∈ R (this may have been the definition you have seen before
in calculus courses!)

Finally, f is concave if and only if (−1)f is convex.

Now let’s give some examples for convex functions:

Example 2

• Exponential. f(x) = eax. We can show this is convex via the second derivative:

f ′′(x) = a2eax ≥ 0 for all x ∈ R.

• Euclidean Norm. f(x) = ||x||2 =
√∑n

i=1(xi)
2. We can show this is convex via the

definition (and via the triangle inequality):

||θx + (1− θ)y||2 ≤ ||θx||2 + ||(1− θ)y||2
= θ||x||2 + (1− θ)||y||2

We also have that weighted sums of convex functions are convex:

Example 3 Let f(x) =
∑m

i=1 aifi(x), where fi is convex and ai ≥ 0 for all i = 1, . . . ,m.
Then f is convex.

Proof:

f(θx+ (1− θ)y) =
∑
i

aifi(θx+ (1− θ)y)

≤
∑
i

ai(θfi(x) + (1− θ)fi(y))

=
∑
i

aifi(x) + (1− θ)
∑
i

aifi(y)

= θf(x) + (1− θ)f(y)

4-4



Problem 4 Suppose that f : R → R is increasing and convex on its domain (a, b). Let g
denote its inverse, i.e., the function with domain (f(a), f(b)) and g(f(x)) = x for a < x < b.
Suppose that f and g are differentiable. What can you say about the convexity or concavity
of g?

4. Then, choose any x, y ∈ (a, b) and θ ∈ [0, 1]. Since f is increasing on its domain,
y > x⇐⇒ f(y) > f(x). Notably, letting y′ = f(y)⇒ g(y′) = y and x′ = f(x)⇒ g(x′) = x,
this is equivalent to g(y′) > g(x′)⇐⇒ y′ > x′, so g is also an increasing function. Because
of the convexity of f , we have f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). Since g is increasing,
we can apply it to both sides of the inequality to get

g(f(θx+ (1− θ)y)) ≤ g(θf(x) + (1− θ)f(y))

θx+ (1− θ)y ≤ g(θx′ + (1− θ)y′)
θg(x′) + (1− θ)g(y′) ≤ g(θx′ + (1− θ)y′)

Since f : (a, b)→ (f(a), f(b)) is a bijection, this is true everywhere on the domain of g, and
thus g is a concave function.

1.3 Convex Optimization Problems

Let’s give a few examples of convex optimization problems.

Example 4 (Linear Programming) The linear programming problem can be formulated
as finding

min
x

cTx such that Ax = a and Bx ≤ b,

where x ∈ Rn is the optimization variable, and c ∈ Rn, A ∈ Rm×n, a ∈ Rm, B ∈ Rk×n,
b ∈ Rk are the problem data.

Verbally, we are trying to minimize a (convex) linear objective function subject to linear
constraints (which gives us a convex set). Taking the dot product of x with c gives us our
objective function evaluated at an input of x, the pairing A and a encode a set of equality
constraints and the pairing B and b encode a set of inequality constraints.

Problem 5 Consider the example of a manufacturer of animal feed who is producing feed
mix for dairy cattle. In our simple example the feed mix contains two active ingredients and
a filler to provide bulk. One kg of feed mix must contain a minimum quantity of each of
four nutrients as below:
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Nutrient A B C D

gram 90 50 20 2

The ingredients have the following nutrient values and cost:

A B C D Cost/kg

Ingredient 1 (gram/kg) 100 80 40 10 40

Ingredient 2 (gram/kg) 200 150 20 0 60

What should be the amounts of active ingredients and filler in one kg of feed mix? Model
this as an LP.

5. Let x1 and x2 be the number of kilograms of ingredients 1 and 2 respectively that we
include in the feed. Then, assuming that we want to minimize cost, the appropriate LP for
this situation is

min
x1,x2

40x1 + 60x2

such that

100x1 + 200x2 ≥ 90

80x1 + 150x2 ≥ 50

40x1 + 20x2 ≥ 20

10x1 ≥ 2

x1 + x2 ≤ 1

x1, x2 ≥ 0

2 Integer Programming

2.1 Introduction

Definition 4 (Feasibility Problem) Find x1, . . . , xl such that

∀i ∈ [k],
l∑

j=1

aijxj ≤ bi

∀j ∈ [l], xj ∈ Z.
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Definition 5 (Integer Programming Optimization Problem)

max

l∑
j=1

cjxj

such that

∀i ∈ [k],

l∑
j=1

aijxj ≤ bi

∀j ∈ [l], xj ∈ Z.

Example 5 (Envy-Free) Suppoes we have players N = {1, . . . , n} and items M =
{1, . . . ,M}, and player i has value vij for item j. Partition the items into bundles
A1, . . . , An. We say that the A1, . . . , An is envy-free iff

∀i, i′,
∑
j∈Ai

vij ≥
∑
j∈Ai′

vij .s

Formulate this as an IP.

Proof: Let xij ∈ {0, 1}, xij = 1 iff j ∈ Ai. Then our feasibility problem is:

Find x11, . . . , xnm such that

∀i ∈ N, ∀i′ ∈ N,
∑
j∈M

vijxij ≥
∑
j∈M

vijxi′j

∀j ∈M,
∑
i∈N

xij = 1

∀i ∈ N, j ∈M,xij ∈ {0, 1}

Problem 6 Recall the 8 queens puzzle: on an 8× 8 grid, place 8 queens such that no two
are in the same row, column, or diagonal. Formulate this as an integer program.

6. Let xi,j be the indicator variable for whether there is a queen in the ith row and jth
column, i.e. it equals 1 if there is a queen in cell (i, j) and 0 otherwise. Then, we can
formulate each of the conditions as enforcing that the sum over each of the rows, columns,
and diagonals equal 1, ensuring that there is exactly one queen in that set of grid cells.

Find
xi,j ∀i, j ∈ {1, 2, · · · , 8}
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such that

xij ∈ {0, 1} ∀i, j ∈ {1, 2, · · · , 8}
8∑

i=1

xi,j ≤ 1 ∀j ∈ {1, 2, · · · , 8} (columns)

8∑
j=1

xi,j ≤ 1 ∀i ∈ {1, 2, · · · , 8} (rows)

min(8,k−1)∑
i=max(1,k−8)

xi,k−i ≤ 1 ∀k ∈ {2, 3, · · · , 16} (diagonals from bottom left to top right)

min(8,k+8)∑
i=max(1,1+k)

xi,i+k ≤ 1 ∀k ∈ {−7,−6, · · · , 6, 7} (diagonals from top left to bottom right)

8∑
i=1

8∑
j=1

xij = 8 (8 total queens)
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