1.5em Opt

Harvard CS 182: Artificial Intelligence November 10, 2022

Section 10: Decision Trees and Linear Classification

Lecturer: Ariel Procaccia Authors: Janani Sekar and Catherine Cui

Decision Tree

Classification is the task of learning a classifier function f whose range is a discrete, finite
set. When the cardinality of the range is 2, the task is a binary classification task; otherwise,
it’s a multi-class classification.

An example of binary classification is the spam filter in email. An example of a multi-class
classification problem is identifying sorting pictures of animals (snakes, lions, etc.)

We can represent any classifier using a decision tree, although some may require a large
tree. Specifically, a decision tree reaches an output (in the leaves) through a sequence of
tests on the input attributes (in the internal nodes). When building a decision tree, the big

question(s) are: what features should we split on and in what order?

Consider the following data set:

EXAMPLE: RESTAURANT WAITING

Input Features Output
Example
Alt Bar Fri Hun Pat Price Rain Res Type Est Wait

x@® Y N N Y Some $$$ N Y French 0-10 y® =y
x® Y N N Y Full $ N N Thai 30-60 y® =N
x® N Y N N Some $ N N Burger 010 y® =y
x® Y N Y Y Full $ Y N Thai 10-30 y® =y
x® Y N Y N Full $$$ N Y French >60 y® =N
x® N Y N Y Some $$ Y Y Italian ~ 0-10 y® =y
x? N Y N N None $ Y N Burger 0-10 y™ =N
x® N N N Y Some $$ Y Y Thai 0-10 y®=y
x® N Y Y N Full $ Y N Burger >60 y©® =N
) Y Y Y Y Full $$$ N Y Italian 030 YO =nN
x4 N N N N None $ N N Thai 0-10 y@b=p
) Y Y Y Y Full $ N N Burger 30-60 y(2 =y

On the left, we split on the feature type of restaurant and on the right, we split on the
feature Patrons?. Note that intuitively, splitting on Patrons? seems better because now,
if the answer is no patrons, all examples are negative; if the answer is some, all examples
are positive.

10-1

000000
00000®
[Patrons? |

None Some Full

0000 0O
00 00090

[No | Hungry?

No, Yes

[+ X12)
00 00

We hope to encode how good splitting on a certain feature is using a function; for now, we
take this function IM PORTANCE as a black box.

Below, we present an algorithm for learning a decision tree.

Algorithm 1 Learning Decision Trees
Require: examples, features, parent_examples
if examples = () then
return PLURALITY-VALUE((parent_exzamples)
else if all examples have the same label then
return that label
else if features = () then
return PLURALITY-VALUE(ezamples)
else
A — argmazqe featuresIMPORTANCE (a, examples) tree < new decision tree with
root test A
for each value v of A do
new_examples — {e€ examples : e.A = v}
subtree — LEARN-DT (new_examples, features \ {A}, examples)
add branch to tree with label A = v and subtree
end for
return tree
end if

First, examine the else branch. In this branch, we use our IMPORTANCE function to
discover the most “important” feature A for some definition of important we discuss more
later on. Then we create a new decision tree with the root as feature A. For each value v of
A, the function creates a new set of examples new_examples consisting of all the examples

10-2

where of value of A is v. Then we repeat the process by calling LEARN_DT on this new set
of examples, the set of all features except A since it’s already been split on, and examples
(which now becomes the set of parent examples). This returns to us a subtree. We add a
branch to our overall tree with label A = v and subtree.

In the if statement, we deal with the case in which our examples set is empty; the heuristic
is to return the plurality value of the parent examples. Similarly, in the second else if
statement, we deal with the case in which our features set is empty; the heuristic is to
return the plurality value of the examples. Lastly, in the first else if statement, we've
reached our goal.

Information Gain

Now we discuss the IMPORTANCE function. We use the notion of entropy, which is
measured in bits. The entropy of random variable V' that takes each value v with probability

P(v) is
=> P(v))log ZP)log P(v
For example, the entropy of a biased coin with 99% heads is:
H(Biased) = —(0.9910g0.99 4+ 0.0110g 0.01) ~ 0.08
Denote the entropy of a Bernoulli random variable that is true with probability w by
B(q) = —(qlogg+ (1 — g)log(1 — q))

If a training set contains p positive eamples and n negative, the entropy of the output
variable is

p
H(Output) = B
(Output) (pM)

Feature A with d values divides the training set into d subsets, each with pg positive
examples and ny negative. The entropy after testing A is

d
Remainder(A) = Pe "k g (Pk)
- ptn Pk + Nk

The information gain from testing A is
Gain(A) =B <p> — Remainder(A)
p+n
In LEARN-DT, our IMPORTANCE function is based on information gain.

10-3

Day | Weather | Temperature Humidity Wind Play?

1 Sunny Hot High Weak No
2 Cloudy Hot High Weak Yes
3 Sunny Mild Normal Strong Yes
4 Cloudy Mild High Strong Yes
5 Rainy Mild High Strong No
6 Rainy Cool Normal Strong No
7 Rainy Mild High Weak Yes
8 Sunny Hot High Strong No
9 Cloudy Hot Normal Weak Yes
10 Rainy Mild High Strong No

Practice Problems using Decision Trees

Problem 1 Below, we have a table of data we will be working with for the next few prob-
lems. What is the information gain from splitting on weather? What is the information
gain from splitting on temperature?

1. We find (1) the information gain from splitting on weather and (2) the information
gain from splitting on temperature.

1. Splitting on weather gives three different subsets of examples: Sunny with probability
1—30, Cloudy with probability 1%, and Rainy with probability %. Note that if it’s Sunny,
we play % of the time; if it’s Cloudy we play % of the time; if it’s Rainy, we play i of

the time. Therefore

3 1 3 3 4 1
Gai ther)=1—|—-B| = — B = — B -
ain(weather) [10 <3> + 10 <3) + 10 (4>]
2. Splitting on temperature gives three different subsets of examples: Hot with prob-
ability %, Mild with probability 1—50, Cool with probability %. Note that if it’s Hot,

we play 7 of the time; if it’s Mild we play % of the time; if it’s Cool, we play % of the
time. Therefore

) 4 2) 3 1 0
Gain(weather) =1 — [10 - B (4) + o B <5> + TR B (1>]

10-4

Problem 2 Draw how a decision tree might look like after splitting on weather.

Problem 3 What are some of the issues with Decision Trees? How can we combat these
problems?

3. If we split on too many features, we are at risk of overfitting. The risk is that you’d
construct a very detailed tree to perfectly classify a small number of examples, some of
which happen to be outliers. Such a tree wouldn’t do well on the underlying distribution.

Linear Classification

Linear classification is classification using linear functions. We are trying to find a linear
function that can separate our data into classes, e.g. we have positive and negative examples
and want to separate them. We define our hypothesis as the following:

hw(x) = Threshold(w - x)

Where x is a data point, and w is a weight parameter. The threshold function is a sign
function, defined as the following;:

+1 ifz>0

Threshold(z) :{ " 0
— z<

10-5

We find a linear separator using a linear program to find w such that:
vx® e D, w- x>0
vx® ¢ D, w- xW < —¢

In other words, we find a w such that for positive examples of x, w - x positive, and for
negative examples of x, w - x is negative.

Problem 4 We want to find a linear classifiers to represent the binary AND, OR, and
XOR operators that separate True examples from False examples. In other words, Thresh-
old(True) is positive, while Threshold(False) is negative. Below, we have the truth tables
for these binary operators using data points x = (x1,x2) where True = 1 and False = 0.

AND:
T ‘ T9 ‘ r1and x9
1 1 1
110 0
0| 1 0
0| 0 0
OR:
T ‘ T2 ‘ I10T T2
1 1 1
10 1
0| 1 1
0| 0 0
XOR:
T ‘ X9 ‘ T1T0T I
1 1 0
1 0 1
0| 1 1
01 0 0

In other words, for each operator AND, OR, XOR, find a w = (w1, w2) and "bias term” wy
such that w-x;+wqo > 0 when the result of the binary operation is True, and w-x;+wg < 0
when the result is False, or explain why there no such w exists in 2 dimensions. (It may
help to plot the values in the truth tables and visualize what a separator would look like for
each of these cases.)

4. AND:

10-6

One set of possible values for wg, wi, woy is (—%, 1, 1). Then, for (1,1), w-x + wy = % For
(0,1) and (1,0), w - x + wo = —%. And for (0,0), w - x +wy = —3.

OR:

10-7

21
P G
&+ L t
-2 0 2 4
21
44

One set of possible values for wg, wy, ws is (—%, 1, 1). Then, for (1,1), w-x + wy = % For

(0,1) and (1,0), w - x + wp = % And for (0,0), w - x + wp = —%.

XOR:

10-8

For binary data, XOR is not linearly separable.

Perceptron

The Perceptron Learning Rule gives us a way to find a linear separator.

Perceptron learning rule: V(z,y), classify § = Threshold(w - z). If § # y, update
w=w-+Y-T.

In other words, if a point is not correctly classified, we update w to take into account the
correct label for that point.

Theorem 1 (Perceptron Mistake Bound) Given a dataset {(x®,y@)}m if [|z®]| <
R, Yi,w* such that ||w*|| = 1 and, ¥i, y)(w * 2(i)) > v, the number of mistakes made by
Perceptron is at most %

For linearly separable data, geometrically - is the absolute value of the minimum distance
of an example from the separator, or the margin. So if the data can be separated by a
margin 7y, we can also bound the number of mistakes that Perceptron makes. If the margin
is very very small, it is more difficult to separate the data, so it makes sense that Perceptron
makes more mistakes for a small v and finds a solution faster with a large ~.

10-9

Problem 5 Suppose we have the following data. We randomly initialize our weights w
to (1, 1). Iterate through the data in the table (use all the points exactly once) using the
Perceptron Learning Rule to update w. Does the weight vector at the end of this process
give us an accurate linear classifier?

5. The initial w = (1,1). We take the first data point in our table, (z,y) = ((4,3),1).
Applying the Perceptron Learning Rule, (w - x) =4 + 3 = 7. Because Threshold(7) = +1
which is the same as y for this point, w remains unchanged. Now we take the next point
in our data set (z,y) = ((1,3),—1). (w-x) =1+ 3 = 4. Because Threshold(4) = +1, but
the corresponding y = —1, we have to update the weight. w = (1,1) — (1,3) = (0, —2).
The next point is (z,y) = ((—2,0),—1). (w-x) =0+ 0 = 0. Threshold(0) = +1 (because
this is how we break ties for values on the boundary), but the label on this point is actually
negative, so we update w once more. w = (0, —2)+(2,0) = (2, —2). Finally, we take the last
point ((2,2),1). (w-x) =4+ —4 = 0. This is correctly classified (again on the boundary)
so we don’t update w. At this point, every data point should be correctly classified.

Support Vector Machines

SVM is an algorithm that works by finding the maximum margin separator for a set of
data. The maximum margin is defined by support vectors, which are the examples that
that lie on the boundary of the margin.

Problem 6 Consider the following data, where the blue points are positive examples, and
the red points are negative examples. Which of the following separators is the mazximum
margin separator for this data?

10-10

5 L]
4 @
3]
2 (]
1
0 T T
0 1 2 3 4

What are the weights wa, w1, wo for the mazximum margin separator? Again, wq s is called
a bias term (which basically allows us to construct a separator that does not have to go
through 0). The decision boundary equation for the separator should be of the form:

waoko + wix1 +wo =0

If you scaled this separator by a positive constant k (i.e., replace wa, wy,wy with
kwa, kw1, kwg), would it still be a mazimum margin separator?

6. The maximum margin separator is the blue line. In order to find the maximum margin
separator, one approach we can take is considering the positive and negative examples that
are closest together, and find a separator that is directly between them, to maximize the
distance from both points. In this case, we can take either (1,5) and (3,4) or (1,3) and
(3,2) since the distance between these pairs of points is the same. Let’s just take the first
pair. The point directly between these two points is (2, 4.5), so we know that our maximum
margin separator has to go through this point. To maximize the distance between the next
closest pair of points, we also have to make sure our separator goes through (2, 2.5). The
line that accomplishes this is simply 1 = 2, or 1 — 2 = 0. Then, in order to satisfy
wo + wir] + wexe = 0, we get w; = 1, we = 0, wy = —2.

Scaling the separator by some factor £ would still result in a valid separator. kxy = 2k still
satisfies wg + wix1 + woxe = 0.

Higher Dimensions

Given a set of data that is not linearly separable in the dimension that it is currently in,
we have a couple of different strategies we can use to find a linear separator.

10-11

The first is transforming the data to a higher dimension. In lecture, we saw that we
could transform data that was not linearly separable in 1-dimension by mapping it to a
2-dimensional space.

Problem 7 As we saw earlier in section, the XOR operator in 2 dimensions is not separable
in 2 dimensions. Is there a transformation we can make to the 2-dimensional data that would
allow us to separate the data in 8 dimensions? You do not have to actually find the linear
separator. Just find a transformation that would make the data separable and reason why it
would work.

7. A transformation we could consider is mapping (1, z2) to (1,22, (1 — 22)?). Then (1,
1) and (0,0) would map to a point with z = 0, while (0,1) and (1,0) would map to a point
with z = 1. To make this a little more intuitive, here’s a 3D plot of the transformed XOR,
with (1,0) and (0,1) higher along the z-axis. Any plane that is located below these points
but above the other two would be a valid linear separator in 3 dimensions.

OO

Logistic Regression
At a conceptual level, a second approach to handling non separable data is through soft
margins. We can enable soft margins through different activation functions.

Kind of like we did with the binary logic operators, in order to do this, we take negative
labels to be 0 and positive labels to be 1.

In contrast to using the threshold function which labels anything below 0 as 0 and anything
above zero as 1, we can use the logistic function. The logistic function is defined as

1
U<z) - l+e 2z

10-12

This function is continuous and less ”decisive” e.g. instead of assigning a label of 0 or 1 to a
data point, it will give us some value on the continuous interval [0,1]. In logistic regression,
instead of plugging w - x into the Threshold function like we did before, we plug it into the
logistic function, and interpret the output as the probability of having a positive label.

For some w, the probability of observing {(xW, y®)} =

HO—(W x@)) (1~ g(w - xD))tv?

This is the product over all the points in the data set of the probability of observing 1 when
the label is 1, or 0 when the label is 0 (i.e. the probability of the the example matching its
given label). We derive the log-likelihood function by taking the log of this expression:

LL(w) =" yDlogo(w - x) + (1 - yD)log (1 — o(w - xD))

We want to find the w that makes the observed labels as likely as possible. We can do this by
finding the that maximizes the log-likelihood. We can maximize the log-likelihood function
using gradient ascent, or taking steps in the direction of the gradient until a maximum is
reached.

10-13

