CS 182 FALL 2022, PROBLEM SET 4
Due: November 28, 2022 11:59pm

This problem set covers Lectures 15 through 19. The topics include Markov decision pro-

cesses, reinforcement learning, decision trees, linear classification, and neural networks.

1. Markov Decision Processes. (25 points) In class we claimed that the utility estimates
Ui(s) under value iteration converge to U(s) for all s € S, where U is the utility of the

optimal policy. Here we will prove this.

(1) (15 points) For any estimate of the utility function U : S — R, we define the
Bellman backup operator B which takes U as input and returns a new utility estimate
BU : S — R, defined for each s € S as

BU(s) = R(s) + vy max P(s' | 5,a)U(s").
a€A(s) ves
Prove that for any two utility estimates U’, U” (i.e., two arbitrary functions from S
to R),

ma§<|BU'(s) — BU"(s)| < 7 max |U'(s) — U"(s)].
ElS se
Hint: You might find the following inequality useful:

[max f(x) — max g()| < max|f(x) — g(x)

(2) (10 points) Let Uy, Uy, Us, ... be the utility estimates under value iteration, starting
from an arbitrary Uy. Using the previous part, prove that for all € > 0 there exists
T € N such that for all t > T', maxses |U(s) — Us(s)] < e.
Hint: U,,; = BU, and U = BU. The former equality is the definition of value
iteration; the latter equality is not completely trivial but you may use it without

proof.

2. Reinforcement Learning. (20 Points) In this problem, you will be implementing various
planning and reinforcement learning algorithms on OpenAl’s Frozen Lake Environment. You
will need the packages gym==0.21.0, IPython==7.29.0, and matplotlib==3.4.3.

In this environment, an agent controls the movement of a character in a 4x4 grid world.
Some tiles of the grid are walkable (S, for start, F', for frozen, G, for goal), and others lead
to the agent falling into the water (H, for hole). The agent is rewarded +1 for reaching the
goal state and 0 otherwise.

We will work with a few variations of the Frozen Lake environment. In the first version, the
parameter is_slippery is set to False, so every action leads to a deterministic tile. When
is_slippery is set to True, the movement direction of the agent is uncertain. In particular,
if an agent chooses to go in one direction, there is a 1/3 probability the agent goes in the
intended direction and a 1/3 probability that the agent goes in each of the directions that are
perpendicular to the intended direction. If an agent is on the edge of the map and attempts

to move off the map, it simply stays in place.

(1) (2 points) Model this problem as a Markov Decision Process (MDP), formally specify
the states (including terminal states), actions, and transition and reward functions.

(2) (5 points) Implement value iteration in pset4a.py by filling out the method value_iteration
within the class DynamicProgramming. You may find updated_action_values to be
a useful helper function when writing this.

(3) (5 points) Report the mean and variance of the rewards over 1000 episodes of the final
policy using the parameters gamma = 0.9, epsilon = 0.001. For an agent using the
policy found by value iteration, plot a histogram (include this in your PDF write-up)
of the number of steps it takes an agent to reach the goal over those 1000 episodes
using the final policy. If the agent falls into a hole in the ice and never reaches the
goal state, let that be recorded as a zero. Does this agent always reach the goal?
Why or why not? Use the map to inform your explanation.

(4) (5 points) Implement active, model free reinforcement learning in the form of Q-
learning in pset4a.py by filling out the functions choose_action and q_learning
within the class QLearning. Use a(ks,) = min(0.1, 10k2%)".

(5) (3 points) Plot the mean returns over 100 episodes of the Q-learning agent that
acts solely based on max-Q values after every 1000 episodes (this should be done

by using the compute_episode_rewards function). Use the parameters gamma =

IThe technical conditions in order to theoretically guarantee convergence is that sza,:l a(ksq) = 0o and
szazl a(ksq)? < 00, and while you are welcome to change this so long as you converge to the correct value,

this rate was chosen by staff as one that seems to work well in practice for this environment.
2

https://gym.openai.com/envs/FrozenLake-v0/

0.9,epsilon = 0.01. How does your Q-learning agent compare to the value-iteration

agent following the policy derived from part 37

3. Decision Trees. (15 points)

(1) (9 points) Consider the following dataset comprised of three binary input attributes
A, B, and (', and one binary output. Use the algorithm Learn-DT to learn a decision
tree for this data. Show the computations made to determine the attribute to split

at each node and draw the resulting decision tree.

Example | Attribute A | Attribute B | Attribute C | Output
T 1 0 0 0
To 0 1 0
T3 0 1 0 0
Ty 1 1 1 1
s 1 1 0 1

(2) (6 points) A decision graph is a generalization of a decision tree that allows nodes
(i.e., attributes used for splits) to have multiple parents, rather than just a single
parent. The resulting graph must still be acyclic. Now consider the XOR (or parity)
function of three binary input attributes, which produces the value 1 if and only if
an odd number of the three input attributes has value 1.

(a) (3 points) Draw a minimal-sized decision tree for the three-input XOR function.

(b) (3 points) Draw a minimal-sized decision graph for the three-input XOR function.

4. Linear Classification. (20 Points)

(1) Logistic Regression. (10 points) Use the LogisticRegression module of the sklearn
Python library to implement a logistic regression model on the Iris dataset. Starter
code is provided in psetda.py. The Iris data set contains data about iris flowers.
Each data point in the data set represent a separate flower examined. The X data
describes the flower in terms of petal length and width. Our response vector y is a
boolean vector of Os and 1s indicating the true species classifications of these flowers
into 2 distinct categories. Our goal is to build a model to classify iris flowers into
these 2 species categories based on their petal dimensions alone. Our model will be
both descriptive and predictive.

(a) (4 points) Plot this dataset with blue dots for y = 0 and orange dots for y = 1.
Then run a logistic regression using the features x; = petal_length and zy =
petal_width and plot the resulting decision boundary. Be sure to label your
plot axes, include a legend and a title. Include this plot in your PDF write-up.
Note: Use the keyword argument penalty=’none’ when instantiating from the
LogisticRegression class to avoid adding regularization.

(b) (3 points) What are the estimated logistic model coefficients and intercept?

(c) (3 points) What is the in-sample accuracy of your model at distinguishing be-
tween these 2 species? What is the baseline accuracy that you’d achieve by
simply choosing the majority class every time? Does this logistic regression
model provide a substantial improvement to that baseline?

(2) Perceptron. (10 points)

(a) (7 points) Implement the Perceptron algorithm with initial weights @ = (1,1, 0)
using the toy data set contained in the starter code of pset4a.py. Please write
down how many passes through the data it took for your algorithm to converge.

(b) (3 points) Does your algorithm converge when you add the point ((x,z2),y) =
((2.5,0),1) to you dataset? Why or why not?

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html

5. Neural Networks. (15 points)

(1)

Comprehension. (5 points) Consider the following input “image”:

1121
0121
1121

Suppose we run this input through a forward pass of a simple convolutional neural

network. The first layer is a convolution with kernel

1/-1
1(-1

with stride 1 and padding of 1 on all four sides. The second layer is an average
pooling with 2 x 2 filters and stride 2. What is the output of these two layers?

Programming. (10 points) In this problem, you will get practice training a neural
network model on the MNIST dataset using the TensorFlow deep learning library.
MNIST is a very famous dataset in neural networks and computer vision for demon-
strating the power of deep learning on the task of image recognition. The dataset is
composed of 10s of thousands of 28x28 hand-written digits 0 to 9 and our objective
is to build an image classifier that is able to distinguish between them with very high
accuracy. In pset4b.py, implement the train and predict methods of a object-
oriented approach to building a network. The autograder will verify that you obtain

at least 0.95 accuracy on the test dataset.

https://en.wikipedia.org/wiki/MNIST_database
https://www.tensorflow.org/api_docs/python/tf/keras

6. Collaboration, Calibration and References (5 points).

(1) With whom did you work on this problem set? What (if any) references and/or
resources did you use beyond the course lecture slides and textbook?
(2) (5 points) Approximately how long did it take you to complete this problem set?

Please complete this brief survey worth 5 points, graded for completion.

https://forms.gle/ZNZXCydWp4Py9Qen6

