
CS 182 FALL 2022, PROBLEM SET 4

Due: November 28, 2022 11:59pm

This problem set covers Lectures 15 through 19. The topics include Markov decision pro-

cesses, reinforcement learning, decision trees, linear classification, and neural networks.

1. Markov Decision Processes. (25 points) In class we claimed that the utility estimates

Ut(s) under value iteration converge to U(s) for all s ∈ S, where U is the utility of the

optimal policy. Here we will prove this.

(1) (15 points) For any estimate of the utility function Û : S → R, we define the

Bellman backup operator B which takes Û as input and returns a new utility estimate

BÛ : S → R, defined for each s ∈ S as

BÛ(s) = R(s) + γ max
a∈A(s)

∑
s′∈S

P (s′ | s, a)Û(s′).

Prove that for any two utility estimates U ′, U ′′ (i.e., two arbitrary functions from S

to R),
max
s∈S

|BU ′(s)−BU ′′(s)| ≤ γmax
s∈S

|U ′(s)− U ′′(s)|.

Hint: You might find the following inequality useful:

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)|

(2) (10 points) Let U0, U1, U2, . . . be the utility estimates under value iteration, starting

from an arbitrary U0. Using the previous part, prove that for all ϵ > 0 there exists

T ∈ N such that for all t ≥ T , maxs∈S |U(s)− Ut(s)| ≤ ϵ.

Hint: Ut+1 = BUt and U = BU . The former equality is the definition of value

iteration; the latter equality is not completely trivial but you may use it without

proof.
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2. Reinforcement Learning. (20 Points) In this problem, you will be implementing various

planning and reinforcement learning algorithms on OpenAI’s Frozen Lake Environment. You

will need the packages gym==0.21.0, IPython==7.29.0, and matplotlib==3.4.3.

In this environment, an agent controls the movement of a character in a 4x4 grid world.

Some tiles of the grid are walkable (S, for start, F , for frozen, G, for goal), and others lead

to the agent falling into the water (H, for hole). The agent is rewarded +1 for reaching the

goal state and 0 otherwise.

We will work with a few variations of the Frozen Lake environment. In the first version, the

parameter is_slippery is set to False, so every action leads to a deterministic tile. When

is_slippery is set to True, the movement direction of the agent is uncertain. In particular,

if an agent chooses to go in one direction, there is a 1/3 probability the agent goes in the

intended direction and a 1/3 probability that the agent goes in each of the directions that are

perpendicular to the intended direction. If an agent is on the edge of the map and attempts

to move off the map, it simply stays in place.

(1) (2 points) Model this problem as a Markov Decision Process (MDP), formally specify

the states (including terminal states), actions, and transition and reward functions.

(2) (5 points) Implement value iteration in pset4a.py by filling out the method value_iteration

within the class DynamicProgramming. You may find updated_action_values to be

a useful helper function when writing this.

(3) (5 points) Report the mean and variance of the rewards over 1000 episodes of the final

policy using the parameters gamma = 0.9, epsilon = 0.001. For an agent using the

policy found by value iteration, plot a histogram (include this in your PDF write-up)

of the number of steps it takes an agent to reach the goal over those 1000 episodes

using the final policy. If the agent falls into a hole in the ice and never reaches the

goal state, let that be recorded as a zero. Does this agent always reach the goal?

Why or why not? Use the map to inform your explanation.

(4) (5 points) Implement active, model free reinforcement learning in the form of Q-

learning in pset4a.py by filling out the functions choose_action and q_learning

within the class QLearning. Use α(ksa) = min(0.1, 10k−0.8
sa )1.

(5) (3 points) Plot the mean returns over 100 episodes of the Q-learning agent that

acts solely based on max-Q values after every 1000 episodes (this should be done

by using the compute_episode_rewards function). Use the parameters gamma =

1The technical conditions in order to theoretically guarantee convergence is that
∑∞

ksa=1 α(ksa) = ∞ and∑∞
ksa=1 α(ksa)

2 < ∞, and while you are welcome to change this so long as you converge to the correct value,

this rate was chosen by staff as one that seems to work well in practice for this environment.
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https://gym.openai.com/envs/FrozenLake-v0/


0.9, epsilon = 0.01. How does your Q-learning agent compare to the value-iteration

agent following the policy derived from part 3?
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3. Decision Trees. (15 points)

(1) (9 points) Consider the following dataset comprised of three binary input attributes

A, B, and C, and one binary output. Use the algorithm Learn-DT to learn a decision

tree for this data. Show the computations made to determine the attribute to split

at each node and draw the resulting decision tree.

Example Attribute A Attribute B Attribute C Output

x1 1 0 0 0

x2 1 0 1 0

x3 0 1 0 0

x4 1 1 1 1

x5 1 1 0 1

(2) (6 points) A decision graph is a generalization of a decision tree that allows nodes

(i.e., attributes used for splits) to have multiple parents, rather than just a single

parent. The resulting graph must still be acyclic. Now consider the XOR (or parity)

function of three binary input attributes, which produces the value 1 if and only if

an odd number of the three input attributes has value 1.

(a) (3 points) Draw a minimal-sized decision tree for the three-input XOR function.

(b) (3 points) Draw a minimal-sized decision graph for the three-input XOR function.
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4. Linear Classification. (20 Points)

(1) Logistic Regression. (10 points) Use the LogisticRegressionmodule of the sklearn

Python library to implement a logistic regression model on the Iris dataset. Starter

code is provided in pset4a.py. The Iris data set contains data about iris flowers.

Each data point in the data set represent a separate flower examined. The X data

describes the flower in terms of petal length and width. Our response vector y is a

boolean vector of 0s and 1s indicating the true species classifications of these flowers

into 2 distinct categories. Our goal is to build a model to classify iris flowers into

these 2 species categories based on their petal dimensions alone. Our model will be

both descriptive and predictive.

(a) (4 points) Plot this dataset with blue dots for y = 0 and orange dots for y = 1.

Then run a logistic regression using the features x1 = petal length and x2 =

petal width and plot the resulting decision boundary. Be sure to label your

plot axes, include a legend and a title. Include this plot in your PDF write-up.

Note: Use the keyword argument penalty=’none’ when instantiating from the

LogisticRegression class to avoid adding regularization.

(b) (3 points) What are the estimated logistic model coefficients and intercept?

(c) (3 points) What is the in-sample accuracy of your model at distinguishing be-

tween these 2 species? What is the baseline accuracy that you’d achieve by

simply choosing the majority class every time? Does this logistic regression

model provide a substantial improvement to that baseline?

(2) Perceptron. (10 points)

(a) (7 points) Implement the Perceptron algorithm with initial weights w⃗ = (1, 1, 0)

using the toy data set contained in the starter code of pset4a.py. Please write

down how many passes through the data it took for your algorithm to converge.

(b) (3 points) Does your algorithm converge when you add the point ((x1, x2), y) =

((2.5, 0), 1) to you dataset? Why or why not?

Note: Note, for both parts of this question regarding the perceptron algorithm,

you should imagine a situation where the algorithm goes through the data set

again and again (whereas in class we assumed only a single pass through the

data). In part B of 4.2, we are asking you to consider convergence with respect

to a finite data set by feeding it again and again into the perceptron algorithm

in subsequent passes.
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html


5. Neural Networks. (15 points)

(1) Comprehension. (5 points) Consider the following input “image”:

1 2 1

0 2 1

1 2 1

Suppose we run this input through a forward pass of a simple convolutional neural

network. The first layer is a convolution with kernel

1 -1

1 -1

with stride 1 and 0 padding of size 1 on all four sides. The second layer is an average

pooling with 2× 2 filters and stride 2. What is the output of these two layers?

(2) Programming. (10 points) In this problem, you will get practice training a neural

network model on the MNIST dataset using the TensorFlow deep learning library.

MNIST is a very famous dataset in neural networks and computer vision for demon-

strating the power of deep learning on the task of image recognition. The dataset is

composed of 10s of thousands of 28x28 hand-written digits 0 to 9 and our objective

is to build an image classifier that is able to distinguish between them with very high

accuracy. In pset4b.py, implement the train and predict methods of a object-

oriented approach to building a network. The autograder will verify that you obtain

at least 0.95 accuracy on the test dataset.
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https://en.wikipedia.org/wiki/MNIST_database
https://www.tensorflow.org/api_docs/python/tf/keras


6. Collaboration, Calibration and References (5 points).

(1) With whom did you work on this problem set? What (if any) references and/or

resources did you use beyond the course lecture slides and textbook?

(2) (5 points) Approximately how long did it take you to complete this problem set?

Please complete this brief survey worth 5 points, graded for completion.
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https://forms.gle/ZNZXCydWp4Py9Qen6

