
CS 182 FALL 2022, PROBLEM SET 1

Due: September 27, 2022 11:59pm

This problem set covers Lectures 2, 3, and 4. The topics include Uninformed Search, In-

formed Search, and Motion Planning.

1. Uninformed and Informed Search. (7 points)

(1) For each of the following, explain why it’s true or provide a counterexample.

(a) (1 point) For every state space graph there are costs on the edges such that

breadth-first search coincides with uniform-cost search.

(b) (1 point) For every state space graph and costs on the edges there is a heuristic

function such that uniform-cost search coincides with A* search.

(c) (1 point) Depth-first search always expands at least as many nodes as A* search

with an admissible heuristic.

(d) (1 point) Breadth-first search is complete even if zero step costs are allowed.

(e) (1 point) Assume that a rook can move on a chessboard any number of squares

in a straight line, vertically or horizontally, but cannot jump over other pieces.

Manhattan distance is an admissible heuristic for the problem of moving the

rook from square A to square B in the smallest number of moves.

(2) (2 points) Describe a state space in which iterative deepening search performs much

worse than depth-first search (for example, Θ(n2) vs. Θ(n)).

1

2. Gridworld. (13 points) Consider the unbounded version of the regular 2D grid. The start

state is at the origin, (0, 0), and the goal state is at (u, v). You may assume every edge is

bidirectional and has unit cost. You should provide justifications for your answers. Below is

an example image showing what this arrangement would look like if (u, v) = (8, 5). Be sure

the consider the generic coordinates (u, v) for the questions below.

(1) (1 point) What is the branching factor b in this state space? In other words, for each

state, how many neighbors does that state have?

(2) (2 points) Is h(x, y) = |x − u| + |y − v| an admissible heuristic for a state at (x, y)?

Is it a consistent heuristic?

(3) (2 points) What is the maximum number of nodes expanded by A* Graph Search

using h?1

(4) (1 point) Does h remain admissible if some links are removed?

(5) (1 point) Does h remain admissible if some links are added between nonadjacent

states?

(6) (6 points) Take h2(x, y) =
√
h(x, y) with the original search space. Is h2 admissible?

Is it consistent?

1“maximum” refers to worst-case tie-breaking, i.e. when choosing among states with the same desirability

as the goal state, assume the goal state is chosen last.

2

3. Informed Search. (20 points) Let h∗(x) denote the cost function that returns the shortest

distance between a state x and the nearest goal state t. Let h(·) be a heuristic that overesti-

mates h∗(·) by at most ϵ, meaning that for all states x, h(x) ≤ h∗(x) + ϵ. Assume that h(·)
assigns 0 to any goal state. Prove that A∗ tree search using h finds a path to the nearest

goal state t whose cost is at most ϵ more than an optimal path to the nearest goal state.

Formally, if s is the start state, t is the goal state returned by A∗ search, and g(x) denotes

the lowest cost path from s to x along the explored graph, then show that g(t) ≤ h∗(s) + ϵ.

3

Figure 1. Examples of Convex and Concave Vertices

4. Motion Planning. (20 points) Let S be a set of disjoint obstacles (simple polygons) in

the plane, and let n denote the total number of their edges. Assume that we have a point

robot moving on the plane that can touch the edges of the obstacles. (That is, we treat

the obstacles as open sets.) The robot starts at the pstart position and must get to the

pgoal position using the shortest collision-free path. In class, we proved that any shortest

path between pstart and pgoal is a polygonal path whose inner vertices are the vertices of the

obstacles. You may use this result in your answer to the following questions.

We now consider two different kinds of vertices on obstacles.

• A vertex whose internal angle formed by its two edges is less than 180◦ is called

convex.

• A vertex whose internal angle formed by its two edges is at least 180◦ is called concave.

See Fig. 1.

Prove that a shortest path from pstart to pgoal is a polygonal path where each inner vertex

(if any) corresponds to a convex vertex of some obstacle.

Hint: Think about what will happen if there is a shortest path from pstart to pgoal where

one inner vertex is a polygon’s concave vertex.

4

5. Programming. (35 points) Your friend has a hobby of collecting gnomes and giving them

mini-houses within her garden. Moreover, she has a robot that she intends to use to visit

each of the gnomes each week to present them with fresh flowers. Your friend wants you

to help her program the robot to figure out a fast route to get to every gnome residence.

The garden is a 2D rectangular grid divided into discrete squares. Each square is either

free, a vegetable (i.e. an obstacle), or a gnome residence. The route must visit every gnome

residence at least once. A goal node is any node where the robot has already visited every

residence at least once. The size of the grid will vary depending on which part you are

working on, but you are guaranteed that there are no more than 5 residences. Your task is

to tell the gnome which set of actions it should take to accomplish its goal.

As a visual reference, here is an ASCII rendition of a neighborhood map with 2 residences

(labeled R) and some walls (labeled O):

S .O.O

. .O.R

O.O.O

.R . .R

This will be represented in the code as a list of lists, with blank spaces being 0, obstacles

being -1 and residences being 1. The exact structure for the map above is

[[0 ,0 , −1 ,0 , −1] ,

[0 , 0 , −1 ,0 ,1] ,

[−1 ,0 ,−1 ,0 ,−1] ,

[0 , 1 , 0 , 0 , 1]]

The start position is given as a tuple of row-column coordinates; the start position is (0, 0)

for this grid. The cost is uniformly 1 for every attempted move. The robot can only move

in the 4 cardinal directions (up, right, down, left), and cannot move off of the grid. Trying

to move into obstacles or off the grid results in staying put.

A node should encompass the current position of the robot, as well as which residences have

been visited and which have not. Two nodes with the same position, but different visited

residences are different nodes. Note, when adding successors of a search node onto your

priority queue, make sure to add them in the following order: up, right, down, left, so that

they will be explored in that order. Tie-breaking for A∗ should be done by favoring nodes

added earlier. Tie-breaking for BFS is the same; however tie-breaking for DFS, if using a

stack, should result in adding the successors in the reverse order such that the successors
5

will be visited in the correct order.

For example inputs and outputs, see pset1_sample_test_case1.txt. The first line contains

the number of rows r and columns c. The next r lines contain the map information. The

last line contains the coordinates for the start state (r0, c0). You may also use any of the

python standard libraries as you see fit.

(1) (12 points, graded jointly with 5.2) Defining the search problem. The goal of this

part of the problem is to describe our problem as just an instance of the graph search

problem. How do we do this (i.e. what are the nodes and edges of the graph that

we can search to find a solution)? In addition to answering this in your writeup, fill

in the methods of GridworldSearchProblem, which inherits from the abstract class

SearchProblem.

(2) (4 points, graded jointly with 5.1) DFS. For the remaining parts, your implementa-

tion of the search strategies should not depend on your implementation of

GridWorldSearchProblem and should instead work only by calling the methods

of SearchProblem (i.e. treating the search problem as an abstract class). Imple-

ment depth-first search in the function depthFirstSearch(problem). Note that

you should only do cycle detection and not re-expand any nodes along a single path;

your algorithm should allow for the same node to be visited by different paths. Cycle

detection preserves the low memory requirements of DFS.

(3) (4 points) BFS. Implement breadth-first search in the breadthFirstSearch(problem)

function. Note that you should globally keep track of visited nodes and not expand

any node more than once.

(4) (6 points, graded jointly with 5.5) A*. Implement A* search in the

aStarSearch(problem, heuristic) function. The heapq module is one possible

way to implement your priority queue. Alternatively, feel free to use the data struc-

tures we have provided. The heuristic parameter should be a function that returns

a numeric value. The autograder will test your A* function with the nullHeuristic

that always returns 0. Note that this trivial heuristic is consistent. For debugging,

we recommend using the nullHeuristic since with this, the aStarSearch should do

the same thing as the breadthFirstSearch.

(5) (3 points, graded jointly with 5.4) Simple Heuristic. Now you will implement heuris-

tics, which may depend on how you implemented your states. Your simple heuristic

should return the number of residences that haven’t been visited. Implement this in

the function simpleHeuristic(state, problem). The autograder will test this by

passing your heuristic as the heuristic parameter in your A* function.
6

(6) (6 points, 5 bonus points) Custom Heuristic Challenge. The simple heuristic is quick

to compute, but not very effective in guiding A*. Try to come up with your own

heuristic that reduces the number of nodes expanded. Your heuristic should be

consistent. In your writeup, you should prove that your custom heuristic is con-

sistent. Implement this in the customHeuristic(state, problem) function. The

autograder will test this by passing your customHeuristic(state, problem) as

the heuristic parameter in your A* function. You will get full marks by expanding

fewer nodes than the simple heuristic. Moreover, we will have a competition with a

leaderboard on Gradescope to see who has the best heuristic! Concretely, students

will be ranked on the leaderboard to see who expands the least number of nodes over

our hidden test cases. We also have a column in the leaderboard for overall execu-

tion time as well. Under “leaderboard name”, feel free to either use your name or a

pseudonym. The top 5 submissions on the leaderboard according to least number of

nodes expanded will receive 5 bonus points on this problem set (as well as bragging

rights for best heuristic)!

7

6. Collaboration, Calibration and References. (5 points)

(1) With whom did you work on this problem set? What (if any) references and/or

resources did you use beyond the course lecture slides and textbook?

(2) (5 points) Approximately how long did it take you to complete this problem set?

Please complete this brief survey worth 5 points, graded for completion.

8

https://forms.gle/TbUE8je3Rb2oG4Us9

