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1 Introduction

We’re continuing along the trend of investigating different problem-solving and optimization
techniques. Although convex optimization seems more like applied math, it will be useful
for both giving context for our next lecture on integer programming and because convex
optimization techniques are used in machine learning all the time.

1.1 Optimization Problems

Casting AI problems as optimization problems has been one of the primary AI trends in
the 21st century. One motivation is because the continuous versions of some problems are,
a bit counter intuitively, easier than their respective discrete problems (see Table 1).

Discrete optimization Continuous optimization

Variable type Discrete Continuous

# solutions Finite Infinite

Complexity Exponential Polynomial

Table 1: Discrete vs Continuous Optimization Problems

Note that discrete optimization problems are NP-hard to solve, while continuous optimiza-
tion problems can be solved more easily — we’ll discuss this later into the course. Let’s
define optimization problems formally:

Definition 1 (Optimization Problem) Consider a function f . Let F ⊆ Rn be the fea-
sible set, and call x ∈ Rn be the optimization variable. In an optimization problem, we wish
to find minx f(x) such that x ∈ F . We call x∗ ∈ Rn an optimal solution if x∗ ∈ F and
f(x∗) ≤ f(x) for all x ∈ F .
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1.2 Examples of Optimization Problems

Example 1 (Least-Squares Fitting) Given (xi, yi) for i = 1, . . . ,m, find h(x) = ax+ b
that optimizes:

min
a,b

m∑
i=1

(axi + b− yi)2

where a is the slope, and b is the intercept.

Figure 1: Least-Squares Fitting

Example 2 (Weber Point) Given (xi, yi) for i = 1, . . . ,m, find the point (x∗, y∗) that
minimizes the sum of Euclidean distances:

min
x∗,y∗

m∑
i=1

√
(x∗ − xi)2 + (y∗ − yi)2

There are also many modifications we can make to this problem, including adding constraints
such as a ≤ x∗ ≤ b, c ≤ y∗ ≤ d.

2 Convex Optimization

Instead of thinking of optimization problems as discrete versus continuous, we can think of
optimization problems as convex versus non convex problems.
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Figure 2: The Optimization Universe

Let’s define what a convex optimization problem is:

Definition 2 (Convex Optimization Problem) A convex optimization problem is a
specialization of a general optimization problem minx f(x) such that x ∈ F where the target
function f : Rn → R is a convex function, and the feasible region F is a convex set.

Let’s define what convex functions and convex sets are.

2.1 Convex Sets

Definition 3 (Convex Sets) A set F ⊆ Rn is convex if for all x,y ∈ F and θ ∈ [0, 1],
θx + (1− θ)y ∈ F .

Intuitively the definition of convex sets is: for any two points in the set, if I draw the line
between the two points, every point in the line must be in the set. Now we’ll provide some
examples of convex sets:

Example 3 Prove that

F = {x ∈ Rn : ∀i = 1, . . . , n, a ≤ xi ≤ b}
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is a convex set.

Proof: Let x,y ∈ F , and θ ∈ [0, 1]. For all i = 1, . . . , n, a ≤ xi and a ≤ yi, so
θxi+(1−θ)yi ≥ θa+(1−θ)a = a. Similarly, θxi+(1−θ)yi ≤ b. Therefore, θx+(1−θ)y ∈ F .

We also see that sets defined by linear inequalities are, by a similar argument to the above,
convex sets:

Example 4 Suppose we have an m × n matrix A with entries aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Suppose we have a ~b ∈ Rm. Then the set defined by:

{(x1, . . . , xn) ∈ Rn |
n∑

j=1

aijxj ≤ bi∀1 ≤ i ≤ m}

is a convex set.

Proof: Let ~x and ~y be two arbitrary vectors that satisfy the conditions. In other words,
A~x ≤ ~b and A~y ≤ b. Then:

A(θ~x+ (1− θ)~y) = θA~x+ (1− θ)A~y

≤ θ~b+ (1− θ)~b

= ~b.

Moreover, intersection of convex sets are convex. An argument works likes this: for any
two points within the intersection of several convex sets, the line between them is (because
each of the sets is convex) also withing each of the convex sets, so the line must be in the
intersection, which proves the intersection is a convex set.

Note that it is not true that the union of convex sets is convex.

2.2 Convex Functions

Definition 4 (Convex Function) A function f : Rn → R is convex if and only if for any
x,y ∈ Rn and θ ∈ [0, 1],

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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For functions that f : R → R that are twice differentiable, this definition is equivalent to
saying that f ′′(x) ≥ 0 for all x ∈ R (this may have been the definition you have seen before
in calculus courses!)

Finally, f is concave if and only if −f is convex.

Now let’s give some examples for convex functions:

Example 5

• Exponential. f(x) = eax. We can show this is convex via the second derivative:

f ′′(x) = a2eax ≥ 0 for all x ∈ R.

• Euclidean Norm. f(x) = ||x||2 =
√∑n

i=1(xi)
2. We can show this is convex via the

definition (and via the triangle inequality):

||θx + (1− θ)y||2 ≤ ||θx||2 + ||(1− θ)y||2
= θ||x||2 + (1− θ)||y||2

We also have that weighted sums of convex functions are convex:

Example 6 Let f(x) =
∑m

i=1 aifi(x), where fi is convex and ai ≥ 0 for all i = 1, . . . ,m.
Then f is convex.

Proof:

f(θx+ (1− θ)y) =
∑
i

aifi(θx+ (1− θ)y)

≤
∑
i

ai(θfi(x) + (1− θ)fi(y))

=
∑
i

aifi(x) + (1− θ)
∑
i

aifi(y)

= θf(x) + (1− θ)f(y)
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2.3 Convex Optimization Problems

Let’s give a few examples of convex optimization problems.

Example 7 (Weber point) Recall that the Weber point problem in n dimensions finds
the value of

min
x∗

m∑
i=1

||x∗ − x(i)||2

where x∗ ∈ Rn is the optimization variable and x(1), . . . ,x(m) are the problem data. This is
a convex optimization problem because we have a convex function here (we showed norms
are convex and that sums of convex functions are convex, and the inside is a translation
which does not affect the convexity), and we are working over a convex set (the entirety of
Rn in this case).

Example 8 (Linear Programming) The linear programming problem can be formulated
as finding

min
x

cTx such that Ax = a and Bx ≤ b,

where x ∈ Rn is the optimization variable, and c ∈ Rn, A ∈ Rm×n, a ∈ Rm, B ∈ Rk×n,
b ∈ Rk are the problem data.

Verbally, we are trying to maximize a (convex) linear objective function subject to linear
constraints (which gives us a convex set).

To make this concrete, we can look at a more specific linear programming problem.

Example 9 (Max Flow) In the max flow problem, we are given a directed graph G =
(V,E), with two specific vertices, a source s, a sink t. Every edge has a capacity axy for
each (x, y) ∈ E. The flow is a function:

f : E → R+

that satisfies:

fxy ≤ axy for all (x, y) ∈ E, and
∑

(y,x)∈E

fyx =
∑

(x,x)∈E

fxx for all x ∈ V \{s, t}

The value of a flow is: ∑
(s,x)∈E

fsx
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Verbally, this is saying that for every vertex excluding s and t, the total flow coming into
the vertex should be equal to the total flow coming out of the vertex. The value of the flow
is the total flow from the source.

We can fit the max flow problem in the figure above to the format of a canonical linear
program:

max(fsu + fsv + fsw)

Along every edge, linear constraints require the flow to be ≥ 0 and ≤ the edge’s capacity.
Finally, there are three flow conservation constraints based on the graph:

fs,u = fu,v + fu,t

fs,w = fw,v + fw,t

fs,v = fu,v + fw,v = fv,t

Now let’s move on to the “optimization” part of convex optimization problems.

2.4 Optimality

Definition 5 (Global Optima) A point x ∈ Rn is globally optimal if x ∈ F and for all
y ∈ F , f(x) ≤ f(y).

Definition 6 (Local Optima) A point x ∈ Rn is locally optimal if x ∈ F and there exists
R > 0 such that for all y ∈ F with ||x− y||2 ≤ R, f(x) ≤ f(y).

The following theorem is a huge reason for why we care about convexity:

Theorem 7 For a convex optimization problem, all locally optimal points are globally op-
timal.
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In other words, if we have a function we are trying to optimize, and we are using techniques
that find us local optima, then given a convex function and having found a local optima
we can be confident that we’ve actually found a global optima and fully solved our
optimization problem!

Let’s prove the theorem:

Proof: Suppose x is locally optimal for some R but not globally optimal. Then there is
a point y such that f(y) < f(x). Define z = (1− θ)x + θy for θ = R

2||x−y||2 . We can assume

that ||x− y||2 > R, since otherwise y would already contradict x’s local optimality. Then
z is feasible, since

||x− z||2 =

∣∣∣∣∣∣∣∣ R

2||x− y||2
(x− y)

∣∣∣∣∣∣∣∣
2

=
R

2
< R.

However,

f(z) = f(θx + (1− θ)y)

≤ θf(x) + (1− θ)f(y)

< θf(x) + (1− θ)f(x)

= f(x)

Hence, x is not locally optimal, contradicting our assumption.

Why is this good for optimization? In general, we might have functions with the following
features:

In convex optimization problems, we just follow the objective functions upwards/down-
wards, and when we’ve reached a local optima we are guaranteed that it’s a global optima!

For unconstrained problems, this looks like using gradient descent, which we will talk about
briefly later when we get to machine learning. Constrained problems requires a projection
operator that, given a x, returns the “closest y ∈ F .
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