
Harvard CS 182: Artificial Intelligence September 14, 2022

Lecture 4: Motion Planning

Lecturer: Stephanie Gil Author: Max Guo

This lecture on motion planning will be divided into a more theoretical components and
more practical components. The theoretical components will cover discretizing an environ-
ment, searching for a path from start to goal states (which ties into previous lectures), and
optimality considerations. The practical components will discuss what happens in higher
dimensions and give examples of real world problems (including many video examples that
are in the lecture recordings!). As a reference, you may consider reading Chapters 5 and 6
of “Planning Algorithms” by Steven Lavalle, which is available freely online.

1 Setting up Motion Planning

We’ll start the more theoretical component of lecture by defining the problem of motion
planning.

1.1 Background

Fundamentally, motion planning asks the question of

“What series of motions will get a robot to a goal?”

We’re curious about:

• Whether or not there exists a solution to this problem.

• How we can find out if a solution exists.

• If a solution doesn’t exist, why it doesn’t exist.

More formally, we model the problem in terms of configurations, asking the question of
whether or not we can find a series of valid configurations that move the robot from source
to destination. We especially consider two criteria for validity:

1. Environment-imposed restrictions. Is the path obstacle-free?

2. Dynamic-imposed restrictions. Is the agent able to transition through these configu-
rations?

4-1



1.2 Configuration Space

The configuration space is defined by Lavalle as the set of possible transformations that
could be applied to the robot. This can be encoded in several different ways. For example:

• In a 2d world, we could use location (x, y) and orientation (θ).

• In a 3d world, we could use location (x, y, z) and orientation (in 3d space) (ρ, γ, θ).

• For a robotic arm with N degrees of freedom, this could be some other manifold of
dimension N .

To solve a motion planning problem, algorithms must conduct a search in the configuration
space. In the real world, it’s often useful to discretize continuous spaces into discrete
configurations so that the resulting search problems are more feasible.

1.3 Problem

In the motion planning problem, we’re given the following:

• A robot with configuration space C

• A set of obstacles Cobs

• An initial configuration qinit

• A goal configuration qgoal.

We wish to find a path x : [0, 1] → C such that:

• x(0) = qinit (start from the initial configuration)

• x(1) = qgoal (reach the goal configuration)

• x(s) 6= Cobs for all s ∈ [0, 1] (avoid collision with obstacles).

We can turn our motion planning problem into a search problem by defining what configu-
rations (defining the states) are achievable from other configurations (defining the actions),
and then applying our search algorithms that we’ve already learned to solve the search
problem. Similar to search problems, we care about performance guarantees, such as com-
pleteness. An algorithm is complete if it terminates in finite time and returns a solution
when one exists, and returns failure otherwise.

4-2



2 Cell Decomposition

One natural way to discretize a free space is to decompose it into cells. Letting cells be
nodes and letting adjacencies between cells be edges, we can then obtain a graph from this
representation.

Any cell decomposition must satisfy the following properties:

1. (Accessibility) Computing a path from a point to another inside the same cell must
be easy.

2. (Representation) Adjacency information for cells can be easily extracted to build a
graph (also known as the roadmap).

3. (Querying) It should be efficient to determine which cell contains any one point.

For example, a condition that would imply accessibility is that each cell is convex, which
means that any straight line segment connecting two points in the cell is fully contained in
the cell.

2.1 Vertical Cell Decomposition

Let Cobs represent the space of obstacles, and Cfree represent free space. Assume we’re in
a two dimensional environment. Given polygonal obstacles, we can draw vertical lines from
each vertex until we hit a boundary or obstacle, obtaining a cell decomposition that results
in convex cells and preserving the connectivity of Cfree. The two types of resulting cells
are known as 1-cells and 2-cells.

Figure 1: Vertical Cell Decomposition

Once we have the cell decomposition, we can choose a point in every cell and a point on
the boundary of every neighboring pair of cells as our vertices of the graph, resulting in our
roadmap.

4-3



Figure 2: Defining a roadmap from the cells

Now that we have the roadmap, we can apply our search algorithms so find a path from
some start state to some goal state.

Example 1 Consider the following graph, and try solving for a path between the two query
points q1 and qG. Use 1) DFS expanding the rightmost descendant first and 2) A∗ search
using Euclidean distance as edge cost.

DFS with the rightmost descendant expansion rule results in the path that visits all the
nodes on the right side of the right polygon. A∗ results in the following path:

Figure 3: A∗ path in example problem

4-4



2.2 Visibility Graphs

Visibility graphs define another type of discretization which results in an optimal shortest
path roadmap. To define the visibility graph, we define the vertices and edges as follows:

• Vertices: Any polygon vertex such that the interior angle in Cfree is larger than π.
These are known as reflex vertices.

• Edges:

– Any edge of an polygonal obstacle whose endpoints are reflex vertices.

– Any edge connecting two reflex vertices that isn’t blocked by obstacles (and are
thus mutually visible from each other). These are known as bitangent lines.

Figure 4: Example of Visibility Graph

Once we have this visibility graph, the resulting search problem can give us our optimal
path! The computation of the shortest-path roadmap has complexity O(n log n+m), where
n is the number of vertices in Cobs and m is the total number of edges in the roadmap. The
derivation of this is in Lavelle.

Note. Something important to note is that the optimal path problem may not be solvable
(i.e. there may not exist an optimal path) if Cfree is not closed, so we can consider the
closure of Cfree, denoted cl(Cfree), to ensure our problem has a defined solution. This
means that our agent is allowed to travel on the edge of the obstacles.

We now prove the following lemma which illustrates (without going into all the details)
optimality of searching along the visibility graph:

Lemma 1 Consider a set S of disjoint polygonal obstacles, and start and goal positions q1
and qG, respectively. Any shortest path between q1 and qG is a polygonal path where the
inner vertices are vertices of S.

4-5



Proof: Suppose this is not the case, and that the shortest path goes through a point
p in Cfree. If it is not polygonal, we obtain the situation in the left image of the below
figure, where we can draw a ball of radius ε > 0 around p such that it is fully contained in
Cfree. By joining the points where the path intersects the ball, we obtain a shorter path.
Similarly, if we have a vertex located in Cfree, we can apply the same argument, as shown
in the right image, to obtain a shorter path.

Now the last case is when the vertex p of our path lies in the interior of the edge of an
obstacle in Cobs (i.e. the path does not follow the entirety of the obstacle’s edge). Suppose
for contradiction that a shortest path contains such a vertex. Then there exists a ball of
radius ε centered on the vertex such that at least one of the points of intersection between
the path and the circle is not on the boundary of the obstacle. Connecting these points
(dashed line below) results in a shorter path that does not intersect the obstacle.

Figure 5: Last case: vertex lies in interior of edge.

This shows that all inner vertices must be vertices of S. (Check your understanding here.
Why does the argument in the last case not hold when p lies on the vertex of a polygon?)

Now, it turns out that we cannot scale this method effectively to three dimensions or higher!
Visibility graphs only have optimality in two dimensions. In higher dimensions, optimal
paths might go through edges as opposed to just vertices, and the problem is NP-hard.

4-6



3 Sampling Methods

Now we turn to a different method of motion planning. The key idea behind sampling
methods is to sample the configuration space and then connect samples with trajectors
to infer the connectivity of the free space. This general approach has been used in au-
tonomous vehicles, service robots, robot manipulators (e.g. robotic arms), and other cool
applications. We will discuss Probabilistic RoadMap (PRM) and Rapidly-exploring Ran-
dom Trees (RRT), which are two widely used variants of the sampling approach. With
these algorithms, we also care about the best sampling approach and the optimality and
completeness guarantees of the algorithms. These algorithms, unlike before, can be applied
to higher dimensions.

3.1 Probabilistic RoadMap (PRM)

The PRM algorithm is as follows:

1. Sample N points uniformly at random from C

2. Connect each pair with a straight trajectory

3. Delete all vertices and edges that lie in the obstacle set Cobs.

4. Return the remaining roadmap G = (V,E).

This method is not complete, but it is probabilistically complete. In other words, the prob-
ability of returning a solution approaches 1 as the number of samples increases. However,
the performance can be environment-dependent. For example, consider how the following
space with many large obstacles might require many samples to find a valid path.

Figure 6: Potentially difficult space for PRM

4-7



However, if we don’t have a good sampling method, we may not have a good bias of our
samples towards the goal, resulting in a very long time before reaching the goal.

3.2 Rapidly-Exploring Random Trees (RRT)

With RRT, we randomly sample vertices and grow a “random tree” in the free space.
In addition, you can bias the search if you have additional information. This algorithm
is probabilistically complete, but it is not optimal. This motivated the development of a
variant, RRT*, which selects the best parent node at each step that minimizes cost from the
root, and then re-wires the tree to keep track of lower cost paths. This allows for optimal
paths and “smoother” graphs than vanilla RRT.

4-8


