
Harvard CS 182: Artificial Intelligence October 12, 2022

Lecture 11: Stackelberg Security Games

Lecturer: Ariel Procaccia Author: Lauren Cooke

1 Introduction

We can apply game theory to all sorts of real-world problems as we attempt to write
algorithms to solve them. In this case, we apply the Stackelberg game structure to problems
where attackers want to attack a target, and decide upon a strategy given observations of
how defenders protect their targets. Our goal is to then devise an optimal strategy for
defending our targets from attackers who can observe the defense strategy. We call this
particular application of game theory a Stackelberg Security Game.

2 Stackelberg Games

A Stackelberg game is a game between two players, a leader and a follower, that occurs
sequentially. The leader will go first and commit to a strategy, while the follower observes
the leader’s committed strategy before choosing a strategy to commit to.

Example 1 Consider the game grid in Table 1 where the row player can choose to play
the top or bottom row, and the column player can choose to play the left or right column.
The first value of the ordered pair represents the outcome for the row player and the second
value of the ordered pair represents the outcome for the column player:

(1, 1) (3, 0)

(0, 0) (2, 1)

Table 1: Example Game

Figure 1: Stackelberg extensive form

In the scenario where both players are trying to play optimally for themselves, our row player
will always choose the top row. Knowing that the row player will be optimal and choose the
top row, our column player will choose the best outcome for himself out of the two choices
in the top row, meaning that this game will be locked at (1, 1) as a Nash Equilibrium.

What’s unique about a Stackelberg game is that the leader is not locked into a an individually
dominant strategy. All that a Stackelberg game will guarantee is that the follower will
choose a best response strategy to the strategy that the leader is using. Say that
our row player is the leader. In this example, the leader can commit to playing the bottom
row, forcing our follower to choose the right column for an optimal outcome. This ability
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to commit allowed our leader to achieve a better outcome at (2,1). The leader announcing
their strategy commitment before the follower chooses a strategy creates an extensive form
game (Figure 2). Note that the follower will only be able to observe the strategy of
the leader, meaning that should the leader choose a mixed strategy where they choose each
row with a certain probability, the follower won’t know for certain which row that the leader
has chosen.

Using a mixed strategy where the leader commits to each row with an equal probability of 0.5,
we can calculate our leader’s expected utility. Given that we break ties in favor of the leader
and our follower has an equal probability of reaching their maximum utility from choosing
either column, our follower will commit to the right column. Given this commitment, we
can find the total expected utility for the leader by summing up our utility options multiplied
by the probability that each option occurs:

(.5)(3) + (.5)(2) = 1.5 + 1 = 2.5

3 Computing Stackelberg Equilibrium

3.1 Definitions
Let the leader of our stackelberg game play with a mixed strategy called x1. We can define
the set of best response strategies that the follower can use as B2(x1).

B2(x1) = argmaxS2∈Su2(x1, s2)

Where s2 represents the selected follower strategy, S represents the set of strategies, S2

represents the set of pure strategies that player 2 can play, and u2(x1, s2) represents the
utility for the follower given that the leader uses strategy x1 and the follower uses the
strategy s2. In other words, the set of best response strategies given the leader’s input
strategy will be the set of pure strategies that player 2 can play that maximize the utility
for the follower. It is important to note that the best response strategy is always a
pure strategy.

In a strong Stackelberg equilibrium, the leader plays a mixed strategy to maximize
their utility given that the follower will choose the best response strategy. Formally:

argmaxx1∈∆(S)maxs2∈B2(x1)u1(x1, s2)

Where ∆(S) is the set of mixed strategies and u1(x1, s2) represents the utility for the leader
given that the leader uses strategy x1 and the follower uses the best response strategy s2.
Note that given this definition, the follower is assumed to choose the best response strategy
that is best for the leader.

3.2 Computation
In two-player normal form games, we can compute a Strong Stackelberg Equilibrium in
polynomial time using a linear program:
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max
∑
s1∈S

x(s1)u1(s1, s
∗
2)

s.t ∀s2 ∈ S,
∑
s1∈S

x(s1)u2(s1, s
∗
2) ≥

∑
s1∈S

x(s1)u2(s1, s2)∑
s1∈S

x(s1) = 1

In other words, we are trying to maximize the expected utility for the leader given that the
leader plays some mixed strategy x(s1) that represents the probability that each possible
pure leader strategy s1 ∈ S is played with and our follower chooses a best response strategy
s∗2. Note that our variables are the x(s1)s, meaning that our goal is to find the probability
assignment for the mixed strategy for the leader that will maximize the leader’s expected
utility. We want to solve this linear program for every possible follower strategy s2 ∈ S, so
that we can choose the leader strategy that gives us the highest utility among these different
follower options. We maximize our leader utility subject to the following constraints:

Our first constraint ensures that the selected follower strategy is optimal given the leader
strategy because for all follower strategies s2 ∈ S, we enforce that the expected utility for
the follower when playing strategy s∗2,

∑
s1∈S x(s1)u2(s1, s

∗
2), is greater than or equal to the

expected utility for the follower when using any other strategy s2.

Our second constraint ensures that our mixed strategy is valid, meaning that the sum of
all probabilities that each leader strategy is played as defined in x(s1) is 1.

4 Security Games

4.1 Model
In a security game, there are a set of targets T = {1, . . . , n}, a set of m security resources
that we will call Ω, and a set of schedules Σ ⊆ 2T , or subsets of targets. We are also given
A(ω), or the set of schedules that ω can be assigned to for every resource ω ∈ Ω. Here,
in assigning a resource to a schedule, defense protects every target in that schedule. Note
that given how resources are allocated to schedule, we get a set of coverage probabilities
for all targets that we can call c = (c1, . . . , cn). Given this setup, the attacker then gets to
chose one target to attack.

Per target t ∈ T , we have four measurable values of utility:

1. u+
d (t) the defender’s utility if defense protects the target t and t is attacked

2. u−d (t) the defender’s utility if defense does not protect the target t and t is attacked

3. u+
a (t) the attacker’s utility if defense protects the target t and t is attacked

4. u−a (t) the attacker’s utility if defense does not protect the target t and t is attacked

Intuitively, we know that u+
d (t) ≥ u−d (t) and that u+

a (t) ≤ u−a (t) because an attack will have
a greater impact if there is no defense.
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With these terms, we can then define the expected utility to the defender ud(t, c) and the
expected utility to the attacker ua(t, c) if target t is attacked under coverage probability
setup c:

ud(t, c) = (ct)(u
+
d (t)) + (1− ct)(u

−
d (t))

ua(t, c) = (ct)(u
+
a (t)) + (1− ct)(u

−
a (t))

Example 2 Consider the following Stackelberg Security Game:

Figure 2: schedules

Attacker Attacker Defender Defender

Target Covered Uncovered Covered Uncovered

1 0 4 0 −2

2 0 3 0 −1

3 0 2 0 −5

Table 2: Example Stackelberg Security Game

In this case, we can calculate the utility for the defender for the target that is attacked.
First, we find the probability of assigning a single resource to target 1:

To do this, we want to find the probability of assigning this resource to each target by
ensuring that the utility of the attacker will be equal for each target that they could choose.
Note that in this particular case, the attacker will never choose to attack target 3, as it is
covered with the same probability as target 2 given the schedules and has a strictly lower
utility than target 3. Therefore, we only need to ensure that the utility for the attacker when
they attack target 1 is equal to the utility for the attacker when they attack target 2. We
use this setup to solve for P(d1):

ua(1, c1) = ua(2, c2)

P(d1)(u+
a (1)) + P(d2)(u−a (1)) + P(d3)(ua(1)−) = P(d1)(ua(2)−) + P(d2)(ua(2)+) + P(d3)(ua(2)−)

P(d1)(0) + P(d2)(4) + (0)(4) = P(d1)(3) + P(d2)(0) + (0)(3)

P(d2)(4) = P(d1)(3)

We also know that the probabilities of each outcome must sum to 1 to complete the definition
of a mixed strategy, giving us this system of equations:

P(d2)(4) = P(d1)(3)

P(d1) + P(d2) = 1

P(d1) =
4

7

P(d2) =
3

7

So, c1 = 1 − c2 = 4
7 and c2 = 3

7 . Now, we can calculate the utility for the defender given
that the attacker chooses either target 1 or target 2 to attack, and define the utility of the
defender to be the greater of the two payoffs given that ties are broken in the leader’s favor:
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ud(t, c) = (ct)(u
+
d (t)) + (1− ct)(u

−
d (t))

ud(1, c) = (c1)(u+
d (1)) + (1− c1)(u−d (1))

=

(
4

7

)
(0) +

(
3

7

)
(−2)

= −6

7
ud(2, c) = (c2)(u+

d (2)) + (1− c2)(u−d (1))

=

(
3

7

)
(0) +

(
4

7

)
(−1)

= −4

7

So, −4
7 > −6

7 , and therefore the defender’s utility will be −4
7 .
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