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Question 1: Linear and Integer Programming

1. [10 pts] Consider an integer program P with binary variables in {0, 1}, and let P ′ be
its LP relaxation, which is identical except that the variables are constrained to be in
[0, 1] instead of {0, 1}. Assuming P is a maximization problem, what is the relation
between the optimal solutions of P and P ′? Explain your answer.

1. Let opt(·) denote the optimal solution value of a problem. We have that opt(P ′) ≥
opt(P) because any solution to the integer program P is a feasible solution to P ′, so
the optimal solution in P ′ can only be at least as good.

2. [15 pts] The set cover problem is defined as follows. There is a set U = 1, . . . , n of
n elements, a set F = {F1, . . . , Fm} of subsets of U (i.e., Fi ⊆ U for all i = 1, . . . ,m),
and an integer k. The goal is to choose k subsets from the collection F whose union
is as large as possible. In other words, the goal is to choose S ⊆ {1, . . . ,m} such that
|S| = k to maximize |

⋃
j∈S Fj|.

Formulate the set cover problem as an integer program.

Hint: Use binary variables x1, . . . , xn such that xi = 1 if and only if element i is
covered, and binary variables y1, . . . , ym such that yj = 1 if and only if subset Fj is
included in the solution S. The main challenge is to write a linear constraint that
allows xi to be 1 if and only if i is covered using the appropriate yj variables.

2. Define the variables as in the hint. Furthermore, define binary constants zij, 1 ≤ i ≤ n,
1 ≤ j ≤ m, such that zij = 1 if and only if Fj contains element i. We have the following
constraints:

• xi ∈ {0, 1}, ∀1 ≤ i ≤ n.

• yi ∈ {0, 1}, ∀1 ≤ j ≤ m.

• xi ≤
∑m

j=1 zijyj, ∀1 ≤ i ≤ n.

•
∑m

j=1 yj = k.

and our objective is:

• max
∑n

i=1 xi

The third and fourth constraint ensures that xi = 1 if and only if at least one of the yj’s
corresponding to an Fj that contains element i is included in the solution.
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Question 2: Game Theory and Convex Optimization

1. [10 pts] Define (using mathematical notation) the following terms: convex function,
convex set, and convex optimization problem.

1. A convex function f is any function f : X → R such that ∀θ ∈ [0, 1], ∀x, y ∈ X, we
have f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

A set C is convex if and only if ∀x, y ∈ C, ∀θ ∈ [0, 1], θx+ (1− θ)y ∈ C.

A convex optimization problem is the minimization of a convex function on a domain
that is a convex set.
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2. [15 pts] Consider a 2-player game in normal form, and denote the strategy set of each
player by S. Let B1(x2) denote the set of (possibly mixed) best response strategies of
player 1 to the (possibly mixed) strategy x2 of player 2. For convenience, let us fix
some mixed strategy x⋆

2 for player 2, and denote α = u1(x1, x
⋆
2) for all x1 ∈ B1(x

⋆
2),

that is, α is the maximum utility player 1 can achieve against x⋆
2.

Show that x1 ∈ B1(x
⋆
2) if and only if every pure strategy s ∈ S in the support of x1

(i.e., every pure strategy s such that x1(s) > 0) is itself in B1(x
⋆
2) (i.e., u1(s, x

⋆
2) = α).

Note: Do not forget to show both directions.

2. ( =⇒ ) Suppose that x1 ∈ B1(x
⋆
2). Suppose for contradiction that ∃s⋆ ∈ S, but

s⋆ /∈ B1(x
⋆
2). Let t

⋆ ∈ B1(x
⋆
2) be a pure strategy. Then we have:

u1(x1, x
⋆
2) = α

=
∑
s∈S

x1(s)u1(s, x
⋆
2)

< x1(s
⋆)u1(t

⋆, x⋆
2) +

∑
s∈S,s̸=s⋆

x1(s)u1(s, x
⋆
2)

so it is strictly better for x1 to increase its probability of playing t⋆ by x1(s
⋆) while

decreasing the probability of playing s⋆ by x1(s
⋆), thus contradicting that x1 ∈ B1(x

⋆
2).

( ⇐= ) If every pure strategy s ∈ S in the support of x1 is in B1(x
⋆
2), then u1(s, x

⋆
2) = α

for all s ∈ S, so u1(x1, x
⋆
2) =

∑
s∈S x1(s)u1(s, x

⋆
2) = α, so x1 ∈ B1(x

⋆
2).
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3. [BONUS 5 pts] Assuming that part 2 has been established, show that it follows that
the set B1(x

⋆
2) is convex.

Note: Each x1 in this set is a vector of probabilities for pure strategies s ∈ S.

Hint: The length of the proof should be 2-4 lines.

3. Suppose that ℓ1, ℓ2 ∈ B1(x
⋆
2) (possibly mixed strategies). Then for all θ ∈ [0, 1], we have

θℓ1 + (1− θ)ℓ2 = (θℓ1(s1) + (1− θ)ℓ2(s1), . . . , θℓ1(sn) + (1− θ)ℓ2(sn)), which is also a valid
vector of probabilities because

n∑
i=1

θℓ1(si) + (1− θ)ℓ2(si) = 1.

Moreover, because both ℓ1 and ℓ2 are supported by pure strategies in B1(x
⋆
2), we must have

that this strategy is in B1(x
⋆
2) by the previous problem.
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Question 3: Informed Search

1. [10 pts] Define (using mathematical notation) the following terms: admissible heuris-
tic, consistent heuristic.

1. An admissible heuristic h satisfies h(x) ≤ h∗(x) for all states x, where h∗ is the
optimal distance to the goal.

A consistent heuristic h satisfies h(x) ≤ c(x, y) + h(y) for all states x, y where c(x, y)
is the cost of the optimal (cheapest) path from state x to y.
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2. [15 pts] Recall that in an 8-puzzle the goal state is:

1 2 3
4 5 6
7 8

Consider the following (weird) heuristic h. On the following specific state s⋆, h(s⋆) is
the sum of Manhattan distances between the tiles and their positions in the goal state,
i.e., h(s⋆) = 13:

8 2 4
3 1 5
7 6

On every other state s, h(s) is equal to the number of misplaced tiles.

Answer the following two questions:

(a) Is h admissible?

(b) Is h consistent?

If your answer is “yes,” provide a proof (it can be very short), and if it is “no,” provide
an explicit counterexample.

2.

(a) h is admissible. For all s ̸= s⋆, we have h(s) ≤ h∗(s) because each swap moves a
tile closer to the goal state by at most 1.

(b) h is not consistent. Consider moving from s⋆ to the state s where we swap the
blank tile and the tile with the 6. The resulting state has h(s) = 6 (6 misplaced
tiles), while h(s⋆) = 13, so h(s⋆) > c(s⋆, s) + h(s), which violates consistency.
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Question 4: Constraint Satisfaction Problems

1. [10 pts] Describe in words what forward checking does.

1. Forward checking is a way of using inference within searching to eliminate obvious
violations and find feasible solutions in constraint satisfaction problems. In particular,
we can enforce arc consistency.

2. [15 points] We say that a binary CSP (which has only binary constraints) with vari-
ables X1, . . . , Xn is k-consistent if and only if for every subset of k variables X1, . . . , Xk,
any legal assignment for X1, . . . , Xk−1 can be extended to a legal assignment for
X1, . . . , Xk. More formally, for every assignment for X1, . . . , Xk−1 that satisfies the
binary constraints on these variables, there exists a value in Dk that satisfies all the
binary constraints of the form (Xj, Xk) for j ∈ [k − 1]. (Note that arc-consistency is
equivalent to 2-consistency.) A binary CSP is strongly k-consistent if and only if it is
k′-consistent for all k′ ≤ k.

Suppose that a given binary CSP with n variables is strongly n-consistent, and suppose
that this CSP is solved using “vanilla” backtracking search (without any heuristics like
forward checking). Give an upper bound on the number of times the search would
have to backtrack, i.e., the number of times it would have to undo an assignment to a
variable. Explain your answer.

Note: Assume that backtracking search only assigns a value to a variable when it is
consistent with the existing partial assignment.

Hint: The length of the solution should be 2-3 lines.

2. The search would never have to backtrack, that is, the upper bound is 0. This
is because for any partial assignment to the variables, a valid value can always be
assigned to the next variable.
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