

Fall 2022 | Lecture 8
Integer Programming
Ariel Procaccia | Harvard University

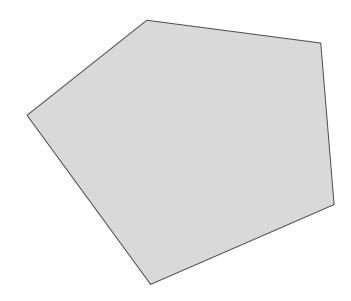
INTEGER PROGRAMMING

- An integer programming (IP) problem:
 - $a_{ij} \in \mathbb{R} \text{ for } i \in [k] = \{1, ..., k\}, j \in [\ell]$
 - $b_i \in \mathbb{R} \text{ for } i \in [k]$
 - ∘ Variables x_j for $j \in [\ell]$
- The (feasibility) problem is:

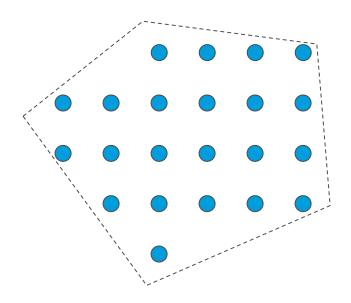
find
$$x_1 \dots, x_\ell$$

s.t. $\forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i$
 $\forall j \in [\ell], x_j \in \mathbb{Z}$

IP IS NOT CONVEX



Linear programming $\mathcal{F} = \left\{ \boldsymbol{x} \in \mathbb{R}^{\ell} : A\boldsymbol{x} \leq \boldsymbol{b} \right\}$ $A \in \mathbb{R}^{k \times \ell}, \boldsymbol{b} \in \mathbb{R}^{k}$



Integer programming
$$\mathcal{F} = \left\{ \boldsymbol{x} \in \mathbb{Z}^{\ell} : A\boldsymbol{x} \leq \boldsymbol{b} \right\}$$

$$A \in \mathbb{R}^{k \times \ell}, \boldsymbol{b} \in \mathbb{R}^{k}$$

EXAMPLE: SUDOKU

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

EXAMPLE: SUDOKU

- For each $i, j, k \in [9]$, binary variable x_k^{ij} s.t. $x_k^{ij} = 1$ iff we put k in entry (i, j)
- For $t = 1, ..., 27, S_t$ is a row, column, or 3×3 square

```
find x_1^{11}, ..., x_9^{99}

s.t. \forall t \in [27], \forall k \in [9], \sum_{(i,j) \in S_t} x_k^{ij} = 1

\forall i, j \in [9], \sum_{k \in [9]} x_k^{ij} = 1

\forall i, j, k \in [9], x_k^{ij} \in \{0,1\}
```

EXAMPLE: FAIR DIVISION

- Players $N = \{1, ..., n\}$ and items $M = \{1, ..., m\}$
- Player i has value v_{ij} for item j
- Partition items to bundles $A_1, ..., A_n$
- $A_1, ..., A_n$ is envy free iff $\forall i, i', \sum_{j \in A_i} v_{ij} \ge \sum_{j \in A_{i'}} v_{ij}$

EXAMPLE: FAIR DIVISION

- Variables: $x_{ij} \in \{0,1\}, x_{ij} = 1 \text{ iff } j \in A_i$
- ENVY-FREE as an IP:

```
find x_{11}, \dots, x_{nm}

s.t. \forall i \in N, \forall i' \in N, \sum_{j \in M} v_{ij} x_{ij} \geq \sum_{j \in M} v_{ij} x_{i'j}

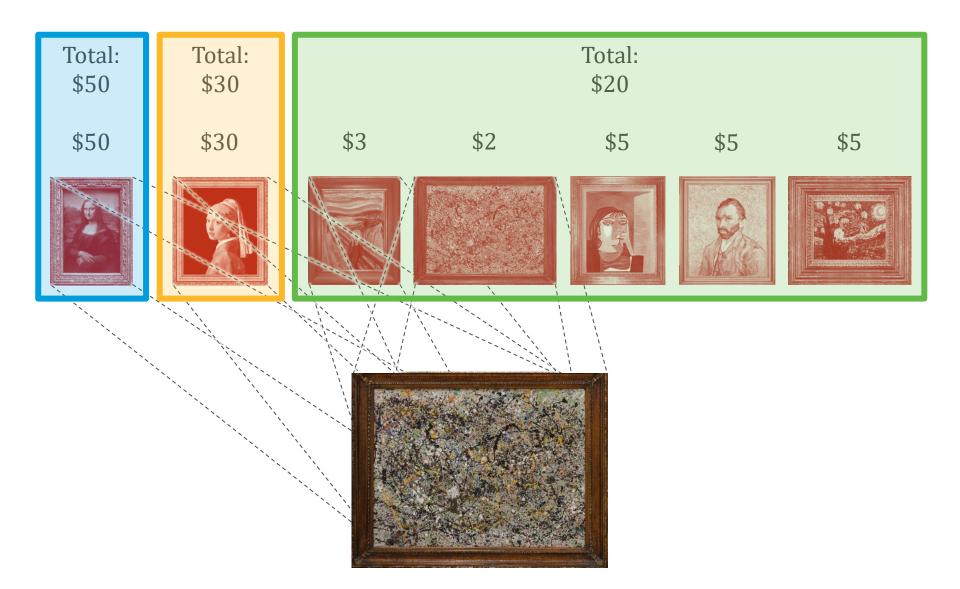
\forall j \in M, \sum_{i \in N} x_{ij} = 1

\forall i \in N, j \in M, x_{ij} \in \{0,1\}
```

IP OPTIMIZATION

- The standard formulation optimizes a linear objective function $\boldsymbol{c}^T\boldsymbol{x}$
- The problem is:

$$\max \sum_{j=1}^{\ell} c_j x_j$$
s.t. $\forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i$
 $\forall j \in [\ell], x_j \in \mathbb{Z}$



• Maximin share (MMS) guarantee of player $i: \max_{X_1,...,X_n} \min_{k} \sum_{j \in X_k} v_{ij}$

• MMS guarantee of player *i* as IP:

```
\max D
s.t. \forall k \in N, \sum_{j \in M} v_{ij} y_{jk} \ge D
\forall j \in M, \sum_{k=1}^{n} y_{jk} = 1
\forall j \in M, k \in N, y_{jk} \in \{0,1\}
```

- Suppose we computed MMS(i) for each i
- Now finding an MMS allocation, where $v_i(A_i) \ge MMS(i)$ for all $i \in N$, is just another IP:

```
find x_{11}, \dots, x_{nm}

s.t. \forall i \in N, \ \sum_{j \in M} v_{ij} x_{ij} \ge MMS(i)

\forall j \in M, \ \sum_{i \in N} x_{ij} = 1

\forall i \in N, j \in M, x_{ij} \in \{0,1\}
```

APPLICATION: SPLIDDIT

/IDE: RENT FARE CREDIT GOODS TASKS ABOUT FEEDBACK

PROVABLY FAIR SOLUTIONS.

Spliddit offers quick, free solutions to everyday fair division problems, using methods that provide indisputable fairness guarantees and build on decades o research in economics, mathematics, and computer science.

Share Rent

Split Fare

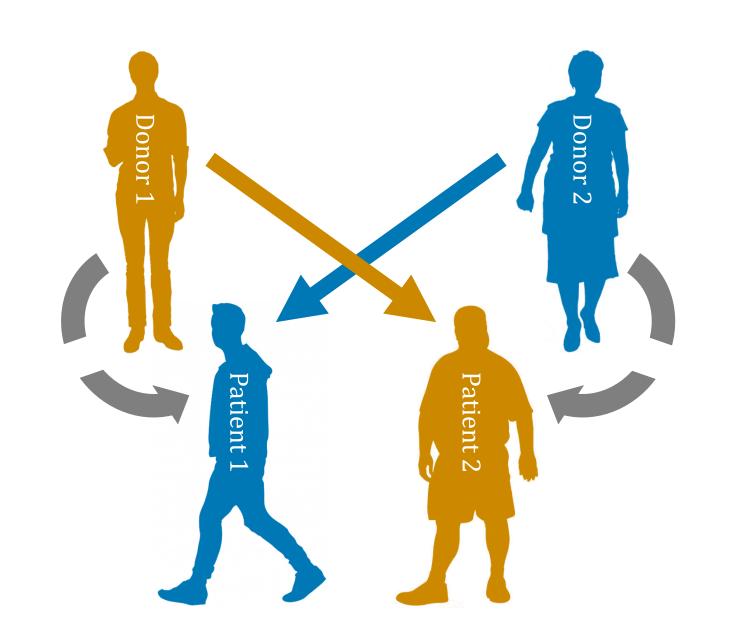
Assign Credit

Divide Goods

Distribute Tasks

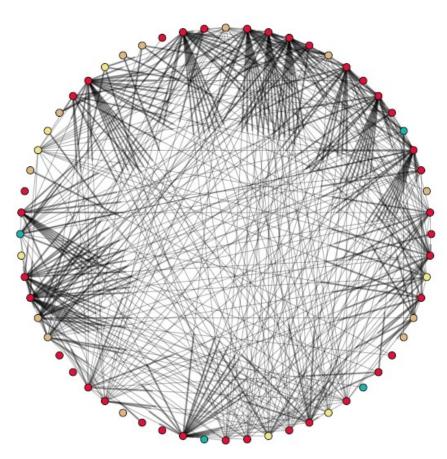
Suggest an App

EXAMPLE: KIDNEY EXCHANGE



EXAMPLE: KIDNEY EXCHANGE

- CYCLE-COVER: Given a directed graph G and $L \in \mathbb{N}$, find a collection of disjoint cycles of length $\leq L$ in G that maximizes the number of covered vertices
- The problem is:
 - Easy for L = 2 (why?)
 - NP-hard for a constant $L \ge 3$ (in practice L = 3)



UNOS pool, Dec 2010 [Courtesy John Dickerson]

EXAMPLE: KIDNEY EXCHANGE

- Variables: For each cycle c of length $\ell_c \le L$, variable $x_c \in \{0,1\}$, $x_c = 1$ iff cycle c is included in the cover
- CYCLE-COVER as an IP:

$$\max \sum_{c} x_{c} \ell_{c}$$
s.t. $\forall v \in V, \sum_{c:v \in c} x_{c} \leq 1$
 $\forall c, x_{c} \in \{0,1\}$

APPLICATION: UNOS AND HIAS

IP VS. LP, REVISITED

- Denote the optimal solutions of the two programs by OPT_{IP} and OPT_{IP}
- Poll: Which statement is true?
 - 1. $OPT_{IP} \leq OPT_{LP}$
 - 2. $OPT_{IP} \ge OPT_{LP}$
 - 3. $OPT_{IP} = OPT_{LP}$
 - 4. $OPT_{IP} || OPT_{LP}$

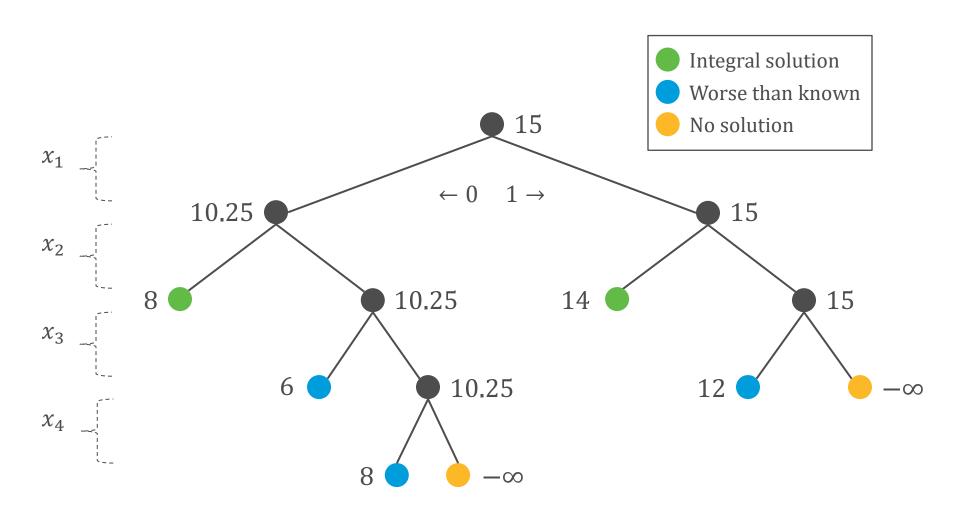
```
\max \sum_{j=1}^{\ell} c_j x_j IP s.t. \forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \le b_i \forall j \in [\ell], x_j \in \{0,1\}
```

```
\max \sum_{j=1}^{\ell} c_j x_j s.t. \forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i \forall j \in [\ell], x_j \in [0,1]
```

BRANCH AND BOUND

- The linear program (LP) relaxation gives an "admissible" heuristic!
- LPs can be solved in polynomial time!
- Branch and bound:
 - Use a search tree to assign the variables one by one
 - At each node, solve the LP relaxation
 - Backtrack if there is no solution, or if the solution is worse than the best known, or if the solution is integral

BRANCH AND BOUND



COMMERCIAL IP SOLVERS

