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OPTIMIZATION PROBLEMS

* Casting Al problems as optimization
problems has been one of the primary Al
trends in the 215 century

* A seemingly remarkable fact:

Discrete Continuous
optimization optimization

Variable type Discrete Continuous

# solutions Finite Infinite

Complexity Exponential Polynomial



FORMAL DEFINITION

* Interested in problems of the form
min f (x)
such thatx € F
where:
o x € R" is the optimization variable
o F € R™is the feasible set

 x* € R"is an optimal solution if x* € F and
f(x") < f(x)forallx € F



EXAMPLE: LEAST-SQUARES FITTING

* Given (x;, y;) for
i =1,..,m, find
h(x) = ax + b that
optlmlzes

mlnz(axl + b —y;)?

(ais slope b is
intercept)

Vi




EXAMPLE: WEBER POINT

» Given (x;,y;) fori =1, ...,m, find
the point (x*, y*) that minimizes ()
the sum of Euclidean distances:

mln z \/(x —x)*+ (y* — yi)? O CB)

« We mlght impose constraints, e.g., °
require that
a<x*"<bc<y"<d



THE OPTIMIZATION UNIVERSE

Convex Nonconvex
problems problems

Semidefinite
programming

Integer
programming

Quadratic
programming

Linear
programming



CONVEX OPTIMIZATION

A convex optimization problem is a
specialization of a general optimization
problem

min f(x)
X
such thatx € F
where the target function f: R™ - Ris a

convex function, and the feasible region F is a
convex set



CONVEX SETS

A set F € R"is convex if for all x,y € F and
0 el0l1],6x+(1—-60)yeF

Convex set Nonconvex set



EXAMPLES OF CONVEX SETS

+ F={x€eR™Vi=1,..,n a<x <bh)
 Proof:
o Letx,y € F,and 0 € [0,1]

o Foralli =1,..,n,a < x; and
a<vy;,solx;+(1—0)y; =

a+(1—-0)a=a

o Similarly, x; + (1 —0)y; < b
o Thereforex+ (1—0)yEF =



EXAMPLES OF CONVEX SETS

Linear inequalities Intersection of convex sets
F = {x € R™: Ax < b} F=NZ.G
A ER™N" peR™ Cy, ..., C,, are convex



EXAMPLES OF CONVEX SETS

* Poll 1: Which of the following sets are
convex?

1. F=U™.C: whereC,, ..., C,, are convex
1=1%“1 1 m

2. F ={x € R": Ax = b} where 4 € R™*",
beR™

3. Both
4. Neither



CONVEX FUNCTIONS

* A function f: R" = R is convex if and only if for any
x,y € R"and 8 € [0,1],

fOx+(1-0)y) <0f(x)+ (1 -6)f(y)

* For functions f: R — R that are twice differentiable,
equivalentto f""(x) > Oforallx e R

* fis concave if and only if —f is convex



EXAMPLES OF CONVEX FUNCTIONS

* Exponential: f(x) = e®*
o f""(x) = a’e** >0forallx € R

* Euclidean norm: f(x) = ||x||, = \/Z’{‘:l(xi)z

o [|6x + (1 =0)yll; < lloxll; + 1I(1 = O)yll,
= 0llxllz + (1 = 6)llyll2



EXAMPLES OF CONVEX FUNCTIONS

* Poll 2: Which functions are convex?
1. f(x) =%, a;fi(x) where f; is convex and
a; =0fori=1,..,m
2. g(x) =Xt x;forx =0
3. Both
4. Neither




EXAMPLES OF CONVEX PROBLEMS

 Weber pointinn di%ensions:

Y
X
i=1
where x* € R" is the optimization variable and
x .., x(™ are the problem data
* Linear programming:
min ¢’ x
X
s.t.Ax = a

Bx<b
where x € R" is the optimization variable, and ¢ €
R™ A € R™", a € R™, B € R¥*" b € R¥ are the
problem data

x—xW|



LINEAR PROGRAMMING: EXAMPLE

In the max flow problem, we are given a directed graph
G = (V,E) with a source s and a sink t, and a capacity ay,,

for each (x,y) € E

A flow is a function f: E —» R™ that satisfies f,,, < a,,, for
all (x,y) € E,andforallx € V' \ {s,t},

Z()’,X)EE fyx = Z(x,z)EE fxz
The value of a flow is X5 ek fox

Poll 3: What is the max flow in the above example?



LINEAR PROGRAMMING: EXAMPLE

min ¢’ x How does the canonical LP
x n n
st Ax = a form fit with the max flow

Bx < b example?

max fo, + foo + fow

st. fsu<2 fsu20 fou=fuwt fue
fs,v <1 fs,v =0 fs,v + fuv + fwv — fvt
f:s*,w <4 f:s*,w =20 fow = fwv T fwt
fur =1 fur 2 0 o
fwv <2 fwv =0 ,,/'/
fut =1 fur=0 ‘9
fv,t <7 fv,t =0 e
fw,t <1 fw,t =0




GLOBAL AND LOCAL OPTIMALITY

* Apointx € R" is globally optimal if x € F
and forally € F, f(x) < f(y)

* Apointx € R"islocally optimal if x € F
and there exists R > 0 such that for all

y € Fwith|[x —yll; <R, f(x) < f(¥)
* Theorem: For a convex optimization

problem, all locally optimal points are
globally optimal



PROOF OF THEOREM

* Suppose x is locally
optimal for some R, but
not globally optimal

* Thereisy € F such that

fy) <fx)
 Define
z=(1-60)x+ 0y

R
for 8 =
2|[x=yll-




PROOF OF THEOREM

e Then:

o z is feasible (can assume ||[x — y||, > R)

o f(2) = f((1 — 0)x + Oy)
<(1-0)f(x)+06f(y)
<(1-0)f(x)+6f(x)
= f(x)

o lx =zl = || 7=

(x — ym =—<R

* Therefore, x is not locally optlmal
contradicting our assumption m

2[lx=yll2



SOLVING CONVEX PROBLEMS

* Convex optimization problems
are computationally “easy” to
solve

* The gradient descent algorithm
follows the objective function
downwards until it reaches a
global minimum

* [t cannot get stuck at a local
minimum due to the theorem
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