

Fall 2022 | Lecture 7 Convex Optimization Ariel Procaccia | Harvard University

OPTIMIZATION PROBLEMS

- Casting AI problems as optimization problems has been one of the primary AI trends in the 21st century
- A seemingly remarkable fact:

	Discrete optimization	Continuous optimization
Variable type	Discrete	Continuous
# solutions	Finite	Infinite
Complexity	Exponential	Polynomial

FORMAL DEFINITION

Interested in problems of the form

$$\min_{\mathbf{x}} f(\mathbf{x})$$

such that $\mathbf{x} \in \mathcal{F}$

where:

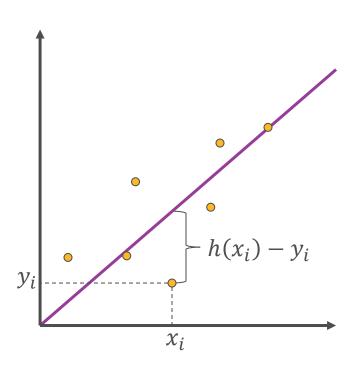
- $x \in \mathbb{R}^n$ is the optimization variable
- $\circ \mathcal{F} \subseteq \mathbb{R}^n$ is the feasible set
- $x^* \in \mathbb{R}^n$ is an optimal solution if $x^* \in \mathcal{F}$ and $f(x^*) \le f(x)$ for all $x \in \mathcal{F}$

EXAMPLE: LEAST-SQUARES FITTING

• Given (x_i, y_i) for i = 1, ..., m, find h(x) = ax + b that optimizes

$$\min_{a,b} \sum_{i=1}^{m} (ax_i + b - y_i)^2$$

(a is slope, b is intercept)



EXAMPLE: WEBER POINT

 (x_i, y_i)

 (x^*, y^*)

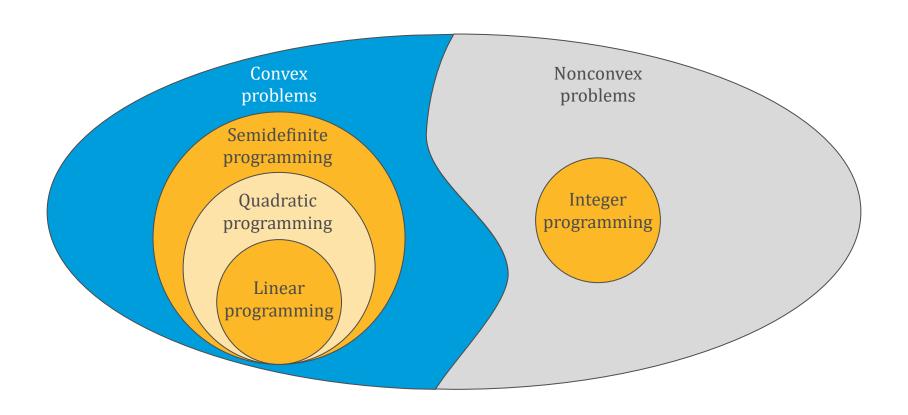
• Given (x_i, y_i) for i = 1, ..., m, find the point (x^*, y^*) that minimizes the sum of Euclidean distances:

$$\min_{x^*,y^*} \sum_{i=1}^m \sqrt{(x^* - x_i)^2 + (y^* - y_i)^2}$$

 We might impose constraints, e.g., require that

$$a \le x^* \le b, c \le y^* \le d$$

THE OPTIMIZATION UNIVERSE



CONVEX OPTIMIZATION

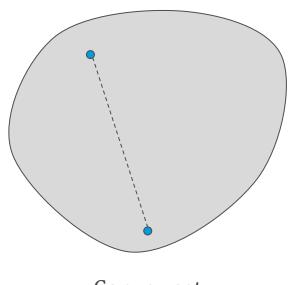
A convex optimization problem is a specialization of a general optimization problem

 $\min_{\mathbf{x}} f(\mathbf{x})$
such that $\mathbf{x} \in \mathcal{F}$

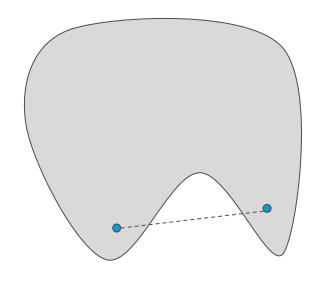
where the target function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function, and the feasible region \mathcal{F} is a convex set

CONVEX SETS

A set $\mathcal{F} \subseteq \mathbb{R}^n$ is convex if for all $x, y \in \mathcal{F}$ and $\theta \in [0,1]$, $\theta x + (1-\theta)y \in \mathcal{F}$



Convex set



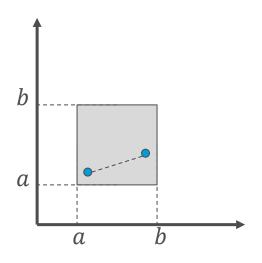
Nonconvex set

EXAMPLES OF CONVEX SETS

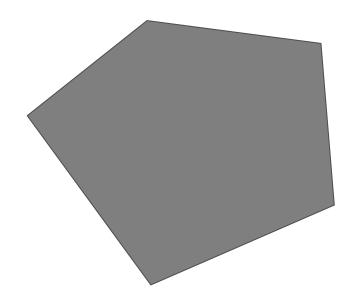
• $\mathcal{F} = \{ x \in \mathbb{R}^n : \forall i = 1, ..., n, \ a \le x_i \le b \}$

Proof:

- \circ Let $x, y \in \mathcal{F}$, and $\theta \in [0,1]$
- For all $i = 1, ..., n, a \le x_i$ and $a \le y_i$, so $\theta x_i + (1 \theta)y_i \ge \theta a + (1 \theta)a = a$
- Similarly, $\theta x_i + (1 \theta)y_i \le b$
- ∘ Therefore $\theta x + (1 \theta)y \in \mathcal{F}$ ■

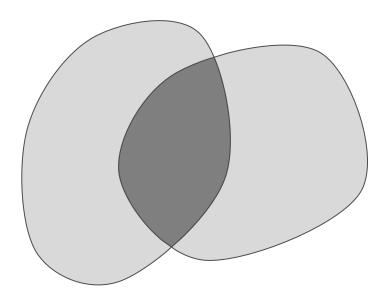


EXAMPLES OF CONVEX SETS



Linear inequalities

$$\mathcal{F} = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} \leq \boldsymbol{b} \}$$
$$A \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^m$$



Intersection of convex sets

$$\mathcal{F} = \bigcap_{i=1}^m C_i$$

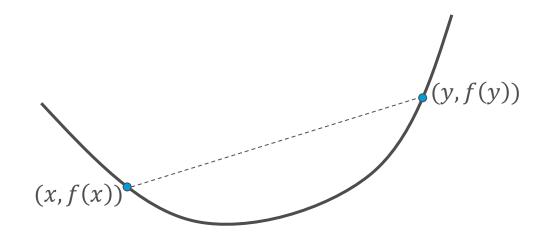
 C_1, \dots, C_m are convex

EXAMPLES OF CONVEX SETS

- Poll 1: Which of the following sets are convex?
 - 1. $\mathcal{F} = \bigcup_{i=1}^m C_i$ where C_1, \dots, C_m are convex
 - 2. $\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b} \}$ where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$
 - 3. Both
 - 4. Neither

CONVEX FUNCTIONS

• A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for any $x, y \in \mathbb{R}^n$ and $\theta \in [0,1]$, $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$



- For functions $f: \mathbb{R} \to \mathbb{R}$ that are twice differentiable, equivalent to $f''(x) \ge 0$ for all $x \in \mathbb{R}$
- f is concave if and only if -f is convex

EXAMPLES OF CONVEX FUNCTIONS

- Exponential: $f(x) = e^{ax}$
 - $f''(x) = a^2 e^{ax} \ge 0 \text{ for all } x \in \mathbb{R}$
- Euclidean norm: $f(x) = ||x||_2 = \sqrt{\sum_{i=1}^{n} (x_i)^2}$
 - $\|\theta \mathbf{x} + (1 \theta)\mathbf{y}\|_{2} \le \|\theta \mathbf{x}\|_{2} + \|(1 \theta)\mathbf{y}\|_{2}$ $= \theta \|\mathbf{x}\|_{2} + (1 \theta)\|\mathbf{y}\|_{2}$

EXAMPLES OF CONVEX FUNCTIONS

- Poll 2: Which functions are convex?
 - 1. $f(\mathbf{x}) = \sum_{i=1}^{m} a_i f_i(\mathbf{x})$ where f_i is convex and $a_i \ge 0$ for i = 1, ..., m
 - 2. $g(\mathbf{x}) = \sqrt{\sum_{i=1}^{n} x_i}$ for $\mathbf{x} \ge 0$
 - 3. Both
 - 4. Neither

EXAMPLES OF CONVEX PROBLEMS

• Weber point in *n* dimensions:

$$\min_{x^*} \sum_{i=1}^{\infty} ||x^* - x^{(i)}||_2$$

where $\mathbf{x}^* \in \mathbb{R}^n$ is the optimization variable and $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$ are the problem data

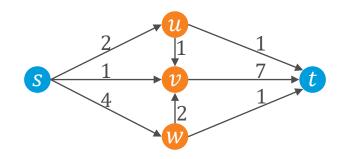
• Linear programming:

$$\min_{x} c^{T} x$$
s.t. $Ax = a$

$$Bx \leq b$$

where $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable, and $\mathbf{c} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $\mathbf{a} \in \mathbb{R}^m$, $B \in \mathbb{R}^{k \times n}$, $\mathbf{b} \in \mathbb{R}^k$ are the problem data

LINEAR PROGRAMMING: EXAMPLE



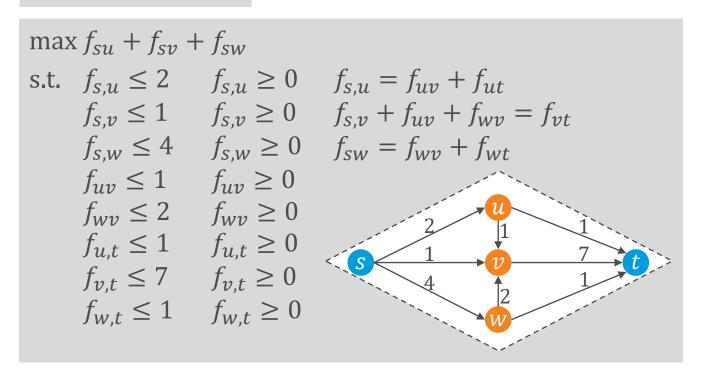
- In the max flow problem, we are given a directed graph G = (V, E) with a source s and a sink t, and a capacity α_{xy} for each $(x, y) \in E$
- A flow is a function $f: E \to \mathbb{R}^+$ that satisfies $f_{xy} \le \alpha_{xy}$ for all $(x, y) \in E$, and for all $x \in V \setminus \{s, t\}$, $\sum_{(y, x) \in E} f_{yx} = \sum_{(x, z) \in E} f_{xz}$
- The value of a flow is $\sum_{(s,x)\in E} f_{sx}$
- Poll 3: What is the max flow in the above example?

LINEAR PROGRAMMING: EXAMPLE

$$\min_{x} c^{T} x$$
s.t. $Ax = a$

$$Bx \leq b$$

How does the canonical LP form fit with the max flow example?



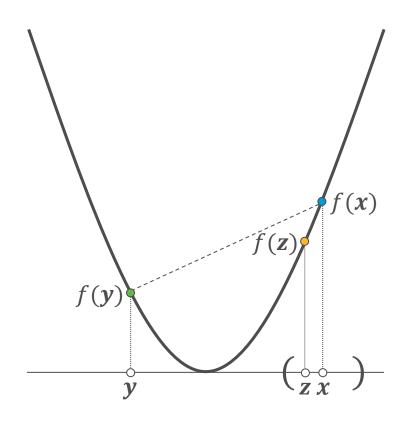
GLOBAL AND LOCAL OPTIMALITY

- A point $x \in \mathbb{R}^n$ is globally optimal if $x \in \mathcal{F}$ and for all $y \in \mathcal{F}$, $f(x) \leq f(y)$
- A point $x \in \mathbb{R}^n$ is locally optimal if $x \in \mathcal{F}$ and there exists R > 0 such that for all $y \in \mathcal{F}$ with $||x y||_2 \le R$, $f(x) \le f(y)$
- Theorem: For a convex optimization problem, all locally optimal points are globally optimal

PROOF OF THEOREM

- Suppose x is locally optimal for some R, but not globally optimal
- There is $y \in \mathcal{F}$ such that f(y) < f(x)
- Define

$$z = (1 - \theta)x + \theta y$$
for $\theta = \frac{R}{2\|x - y\|_2}$



PROOF OF THEOREM

• Then:

• **z** is feasible (can assume $||x - y||_2 > R$)

$$f(\mathbf{z}) = f((1 - \theta)\mathbf{x} + \theta\mathbf{y})$$

$$\leq (1 - \theta)f(\mathbf{x}) + \theta f(\mathbf{y})$$

$$< (1 - \theta)f(\mathbf{x}) + \theta f(\mathbf{x})$$

$$= f(\mathbf{x})$$

$$\| \boldsymbol{x} - \boldsymbol{z} \|_{2} = \left\| \frac{R}{2 \|\boldsymbol{x} - \boldsymbol{y}\|_{2}} (\boldsymbol{x} - \boldsymbol{y}) \right\|_{2} = \frac{R}{2} < R$$

• Therefore, x is not locally optimal, contradicting our assumption

SOLVING CONVEX PROBLEMS

- Convex optimization problems are computationally "easy" to solve
- The gradient descent algorithm follows the objective function downwards until it reaches a global minimum
- It cannot get stuck at a local minimum due to the theorem

