

# Fall 2022 | Lecture 7 Convex Optimization Ariel Procaccia | Harvard University

#### OPTIMIZATION PROBLEMS

- Casting AI problems as optimization problems has been one of the primary AI trends in the 21<sup>st</sup> century
- A seemingly remarkable fact:

|               | Discrete<br>optimization | Continuous<br>optimization |
|---------------|--------------------------|----------------------------|
| Variable type | Discrete                 | Continuous                 |
| # solutions   | Finite                   | Infinite                   |
| Complexity    | Exponential              | Polynomial                 |

#### FORMAL DEFINITION

Interested in problems of the form

$$\min_{\mathbf{x}} f(\mathbf{x})$$
  
such that  $\mathbf{x} \in \mathcal{F}$ 

#### where:

- $x \in \mathbb{R}^n$  is the optimization variable
- $\circ \mathcal{F} \subseteq \mathbb{R}^n$  is the feasible set
- $x^* \in \mathbb{R}^n$  is an optimal solution if  $x^* \in \mathcal{F}$  and  $f(x^*) \le f(x)$  for all  $x \in \mathcal{F}$

## **EXAMPLE: LEAST-SQUARES FITTING**

• Given  $(x_i, y_i)$  for i = 1, ..., m, find h(x) = ax + b that optimizes

$$\min_{a,b} \sum_{i=1}^{m} (ax_i + b - y_i)^2$$

(a is slope, b is intercept)



#### **EXAMPLE: WEBER POINT**

 $(x_i, y_i)$ 

 $(x^*, y^*)$ 

• Given  $(x_i, y_i)$  for i = 1, ..., m, find the point  $(x^*, y^*)$  that minimizes the sum of Euclidean distances:

$$\min_{x^*,y^*} \sum_{i=1}^m \sqrt{(x^* - x_i)^2 + (y^* - y_i)^2}$$

 We might impose constraints, e.g., require that

$$a \le x^* \le b, c \le y^* \le d$$

## THE OPTIMIZATION UNIVERSE



#### **CONVEX OPTIMIZATION**

A convex optimization problem is a specialization of a general optimization problem

 $\min_{\mathbf{x}} f(\mathbf{x})$ <br/>such that  $\mathbf{x} \in \mathcal{F}$ 

where the target function  $f: \mathbb{R}^n \to \mathbb{R}$  is a convex function, and the feasible region  $\mathcal{F}$  is a convex set

#### **CONVEX SETS**

A set  $\mathcal{F} \subseteq \mathbb{R}^n$  is convex if for all  $x, y \in \mathcal{F}$  and  $\theta \in [0,1]$ ,  $\theta x + (1-\theta)y \in \mathcal{F}$ 



Convex set



Nonconvex set

### **EXAMPLES OF CONVEX SETS**

•  $\mathcal{F} = \{ x \in \mathbb{R}^n : \forall i = 1, ..., n, \ a \le x_i \le b \}$ 

#### Proof:

- $\circ$  Let  $x, y \in \mathcal{F}$ , and  $\theta \in [0,1]$
- For all  $i = 1, ..., n, a \le x_i$  and  $a \le y_i$ , so  $\theta x_i + (1 \theta)y_i \ge \theta a + (1 \theta)a = a$
- Similarly,  $\theta x_i + (1 \theta)y_i \le b$
- ∘ Therefore  $\theta x + (1 \theta)y \in \mathcal{F}$  ■



### **EXAMPLES OF CONVEX SETS**



Linear inequalities

$$\mathcal{F} = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} \leq \boldsymbol{b} \}$$
$$A \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^m$$



Intersection of convex sets

$$\mathcal{F} = \bigcap_{i=1}^m C_i$$
  
  $C_1, \dots, C_m$  are convex

#### **EXAMPLES OF CONVEX SETS**

- Poll 1: Which of the following sets are convex?
  - 1.  $\mathcal{F} = \bigcup_{i=1}^m C_i$  where  $C_1, \dots, C_m$  are convex
  - 2.  $\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b} \}$  where  $A \in \mathbb{R}^{m \times n}$ ,  $\mathbf{b} \in \mathbb{R}^m$
  - 3. Both
  - 4. Neither

#### **CONVEX FUNCTIONS**

• A function  $f: \mathbb{R}^n \to \mathbb{R}$  is convex if and only if for any  $x, y \in \mathbb{R}^n$  and  $\theta \in [0,1]$ ,  $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$ 



- For functions  $f: \mathbb{R} \to \mathbb{R}$  that are twice differentiable, equivalent to  $f''(x) \ge 0$  for all  $x \in \mathbb{R}$
- f is concave if and only if -f is convex

#### EXAMPLES OF CONVEX FUNCTIONS

- Exponential:  $f(x) = e^{ax}$ 
  - $f''(x) = a^2 e^{ax} \ge 0 \text{ for all } x \in \mathbb{R}$
- Euclidean norm:  $f(x) = ||x||_2 = \sqrt{\sum_{i=1}^{n} (x_i)^2}$ 
  - $\|\theta \mathbf{x} + (1 \theta)\mathbf{y}\|_{2} \le \|\theta \mathbf{x}\|_{2} + \|(1 \theta)\mathbf{y}\|_{2}$   $= \theta \|\mathbf{x}\|_{2} + (1 \theta)\|\mathbf{y}\|_{2}$

#### EXAMPLES OF CONVEX FUNCTIONS

- Poll 2: Which functions are convex?
  - 1.  $f(\mathbf{x}) = \sum_{i=1}^{m} a_i f_i(\mathbf{x})$  where  $f_i$  is convex and  $a_i \ge 0$  for i = 1, ..., m
  - 2.  $g(\mathbf{x}) = \sqrt{\sum_{i=1}^{n} x_i}$  for  $\mathbf{x} \ge 0$
  - 3. Both
  - 4. Neither

#### EXAMPLES OF CONVEX PROBLEMS

• Weber point in *n* dimensions:

$$\min_{x^*} \sum_{i=1}^{\infty} ||x^* - x^{(i)}||_2$$

where  $\mathbf{x}^* \in \mathbb{R}^n$  is the optimization variable and  $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$  are the problem data

• Linear programming:

$$\min_{x} c^{T} x$$
s.t.  $Ax = a$ 

$$Bx \leq b$$

where  $\mathbf{x} \in \mathbb{R}^n$  is the optimization variable, and  $\mathbf{c} \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{m \times n}$ ,  $\mathbf{a} \in \mathbb{R}^m$ ,  $B \in \mathbb{R}^{k \times n}$ ,  $\mathbf{b} \in \mathbb{R}^k$  are the problem data

#### LINEAR PROGRAMMING: EXAMPLE



- In the max flow problem, we are given a directed graph G = (V, E) with a source s and a sink t, and a capacity  $\alpha_{xy}$  for each  $(x, y) \in E$
- A flow is a function  $f: E \to \mathbb{R}^+$  that satisfies  $f_{xy} \le \alpha_{xy}$  for all  $(x, y) \in E$ , and for all  $x \in V \setminus \{s, t\}$ ,  $\sum_{(y, x) \in E} f_{yx} = \sum_{(x, z) \in E} f_{xz}$
- The value of a flow is  $\sum_{(s,x)\in E} f_{sx}$
- Poll 3: What is the max flow in the above example?

#### LINEAR PROGRAMMING: EXAMPLE

$$\min_{x} c^{T} x$$
s.t.  $Ax = a$ 

$$Bx \leq b$$

How does the canonical LP form fit with the max flow example?



#### GLOBAL AND LOCAL OPTIMALITY

- A point  $x \in \mathbb{R}^n$  is globally optimal if  $x \in \mathcal{F}$  and for all  $y \in \mathcal{F}$ ,  $f(x) \leq f(y)$
- A point  $x \in \mathbb{R}^n$  is locally optimal if  $x \in \mathcal{F}$  and there exists R > 0 such that for all  $y \in \mathcal{F}$  with  $||x y||_2 \le R$ ,  $f(x) \le f(y)$
- Theorem: For a convex optimization problem, all locally optimal points are globally optimal

#### PROOF OF THEOREM

- Suppose x is locally optimal for some R, but not globally optimal
- There is  $y \in \mathcal{F}$  such that f(y) < f(x)
- Define

$$z = (1 - \theta)x + \theta y$$
for  $\theta = \frac{R}{2\|x - y\|_2}$ 



#### PROOF OF THEOREM

#### • Then:

• **z** is feasible (can assume  $||x - y||_2 > R$ )

$$f(\mathbf{z}) = f((1 - \theta)\mathbf{x} + \theta\mathbf{y})$$

$$\leq (1 - \theta)f(\mathbf{x}) + \theta f(\mathbf{y})$$

$$< (1 - \theta)f(\mathbf{x}) + \theta f(\mathbf{x})$$

$$= f(\mathbf{x})$$

$$\| \boldsymbol{x} - \boldsymbol{z} \|_{2} = \left\| \frac{R}{2 \|\boldsymbol{x} - \boldsymbol{y}\|_{2}} (\boldsymbol{x} - \boldsymbol{y}) \right\|_{2} = \frac{R}{2} < R$$

• Therefore, x is not locally optimal, contradicting our assumption

## SOLVING CONVEX PROBLEMS

- Convex optimization problems are computationally "easy" to solve
- The gradient descent algorithm follows the objective function downwards until it reaches a global minimum
- It cannot get stuck at a local minimum due to the theorem

