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OPTIMIZATION PROBLEMS

• Casting AI problems as optimization 
problems has been one of the primary AI 
trends in the 21st century

• A seemingly remarkable fact:

Discrete
optimization

Continuous
optimization

Variable type Discrete Continuous
# solutions Finite Infinite
Complexity Exponential Polynomial



FORMAL DEFINITION

• Interested in problems of the form
min
𝒙𝒙
𝑓𝑓 𝒙𝒙

such that 𝒙𝒙 ∈ ℱ
where:
◦ 𝒙𝒙 ∈ ℝ𝑛𝑛 is the optimization variable
◦ ℱ ⊆ ℝ𝑛𝑛 is the feasible set

• 𝒙𝒙∗ ∈ ℝ𝑛𝑛 is an optimal solution if 𝒙𝒙∗ ∈ ℱ and 
𝑓𝑓 𝒙𝒙∗ ≤ 𝑓𝑓(𝒙𝒙) for all 𝒙𝒙 ∈ ℱ



EXAMPLE: LEAST-SQUARES FITTING

• Given 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 for 
𝑖𝑖 = 1, … ,𝑚𝑚, find 
ℎ 𝑥𝑥 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 that 
optimizes

min
𝑎𝑎,𝑏𝑏

�
𝑖𝑖=1

𝑚𝑚

𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 2

(𝑎𝑎 is slope, 𝑏𝑏 is 
intercept)

𝑥𝑥𝑖𝑖

𝑦𝑦𝑖𝑖
ℎ 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖



EXAMPLE: WEBER POINT

• Given 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑚𝑚, find 
the point (𝑥𝑥∗,𝑦𝑦∗) that minimizes 
the sum of Euclidean distances:

min
𝑥𝑥∗,𝑦𝑦∗

�
𝑖𝑖=1

𝑚𝑚

𝑥𝑥∗ − 𝑥𝑥𝑖𝑖 2 + 𝑦𝑦∗ − 𝑦𝑦𝑖𝑖 2

• We might impose constraints, e.g., 
require that 

𝑎𝑎 ≤ 𝑥𝑥∗ ≤ 𝑏𝑏, 𝑐𝑐 ≤ 𝑦𝑦∗ ≤ 𝑑𝑑

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

(𝑥𝑥∗,𝑦𝑦∗)



THE OPTIMIZATION UNIVERSE

Linear
programming

Quadratic 
programming

Semidefinite 
programming

Convex
problems

Nonconvex
problems

Integer
programming



CONVEX OPTIMIZATION

A convex optimization problem is a 
specialization of a general optimization 
problem

min
𝒙𝒙
𝑓𝑓 𝒙𝒙

such that 𝒙𝒙 ∈ ℱ
where the target function 𝑓𝑓:ℝ𝑛𝑛 → ℝ is a 
convex function, and the feasible region ℱ is a 
convex set



CONVEX SETS

A set ℱ ⊆ ℝ𝑛𝑛 is convex if for all 𝒙𝒙,𝒚𝒚 ∈ ℱ and 
𝜃𝜃 ∈ 0,1 , 𝜃𝜃𝒙𝒙 + 1 − 𝜃𝜃 𝒚𝒚 ∈ ℱ

Convex set Nonconvex set



EXAMPLES OF CONVEX SETS

• ℱ = {𝒙𝒙 ∈ ℝ𝑛𝑛:∀𝑖𝑖 = 1, … ,𝑛𝑛, 𝑎𝑎 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏}
• Proof:

◦ Let 𝒙𝒙,𝒚𝒚 ∈ ℱ, and 𝜃𝜃 ∈ [0,1]
◦ For all 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑎𝑎 ≤ 𝑥𝑥𝑖𝑖 and
𝑎𝑎 ≤ 𝑦𝑦𝑖𝑖 , so 𝜃𝜃𝑥𝑥𝑖𝑖 + 1 − 𝜃𝜃 𝑦𝑦𝑖𝑖 ≥

𝜃𝜃𝜃𝜃 + 1 − 𝜃𝜃 𝑎𝑎 = 𝑎𝑎
◦ Similarly, 𝜃𝜃𝑥𝑥𝑖𝑖 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖 ≤ 𝑏𝑏
◦ Therefore 𝜃𝜃𝒙𝒙 + 1 − 𝜃𝜃 𝒚𝒚 ∈ ℱ ∎

𝑎𝑎

𝑏𝑏

𝑎𝑎 𝑏𝑏



EXAMPLES OF CONVEX SETS

Linear inequalities
ℱ = 𝒙𝒙 ∈ ℝ𝑛𝑛:𝐴𝐴𝒙𝒙 ≤ 𝒃𝒃
𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛,𝒃𝒃 ∈ ℝ𝑚𝑚

Intersection of convex sets
ℱ = ⋂𝑖𝑖=1

𝑚𝑚 𝐶𝐶𝑖𝑖
𝐶𝐶1, … ,𝐶𝐶𝑚𝑚 are convex



EXAMPLES OF CONVEX SETS

• Poll 1: Which of the following sets are 
convex?
1. ℱ = ⋃𝑖𝑖=1

𝑚𝑚 𝐶𝐶𝑖𝑖 where 𝐶𝐶1, … ,𝐶𝐶𝑚𝑚 are convex
2. ℱ = 𝒙𝒙 ∈ ℝ𝑛𝑛:𝐴𝐴𝒙𝒙 = 𝒃𝒃 where 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛, 

𝒃𝒃 ∈ ℝ𝑚𝑚

3. Both
4. Neither



CONVEX FUNCTIONS

• A function 𝑓𝑓:ℝ𝑛𝑛 → ℝ is convex if and only if for any 
𝒙𝒙,𝒚𝒚 ∈ ℝ𝑛𝑛 and 𝜃𝜃 ∈ [0,1], 

𝑓𝑓 𝜃𝜃𝒙𝒙 + 1 − 𝜃𝜃 𝒚𝒚 ≤ 𝜃𝜃𝜃𝜃 𝒙𝒙 + 1 − 𝜃𝜃 𝑓𝑓(𝒚𝒚)

• For functions 𝑓𝑓:ℝ → ℝ that are twice differentiable, 
equivalent to 𝑓𝑓′′ 𝑥𝑥 ≥ 0 for all 𝑥𝑥 ∈ ℝ

• 𝑓𝑓 is concave if and only if −𝑓𝑓 is convex

(𝑥𝑥, 𝑓𝑓 𝑥𝑥 )

(𝑦𝑦, 𝑓𝑓 𝑦𝑦 )



• Exponential: 𝑓𝑓 𝑥𝑥 = 𝑒𝑒𝑎𝑎𝑎𝑎
◦ 𝑓𝑓′′ 𝑥𝑥 = 𝑎𝑎2𝑒𝑒𝑎𝑎𝑎𝑎 ≥ 0 for all 𝑥𝑥 ∈ ℝ

• Euclidean norm: 𝑓𝑓 𝒙𝒙 = 𝒙𝒙 2 = ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 2

◦ 𝜃𝜃𝒙𝒙 + 1 − 𝜃𝜃 𝒚𝒚 2 ≤ 𝜃𝜃𝒙𝒙 2 + 1 − 𝜃𝜃 𝒚𝒚 2
= 𝜃𝜃 𝒙𝒙 2 + (1 − 𝜃𝜃) 𝒚𝒚 2

EXAMPLES OF CONVEX FUNCTIONS



• Poll 2: Which functions are convex?
1. 𝑓𝑓 𝒙𝒙 = ∑𝑖𝑖=1𝑚𝑚 𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖 𝒙𝒙 where 𝑓𝑓𝑖𝑖 is convex and 

𝑎𝑎𝑖𝑖 ≥ 0 for 𝑖𝑖 = 1, … ,𝑚𝑚
2. 𝑔𝑔 𝒙𝒙 = ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 for 𝒙𝒙 ≥ 0
3. Both
4. Neither

EXAMPLES OF CONVEX FUNCTIONS



• Weber point in 𝑛𝑛 dimensions:

min
𝒙𝒙∗

�
𝑖𝑖=1

𝑚𝑚

𝒙𝒙∗ − 𝒙𝒙(𝑖𝑖)
2

where 𝒙𝒙∗ ∈ ℝ𝑛𝑛 is the optimization variable and 
𝒙𝒙(1), … ,𝒙𝒙(𝑚𝑚) are the problem data

• Linear programming:
min
𝒙𝒙

𝒄𝒄𝑇𝑇𝒙𝒙
s.t. 𝐴𝐴𝒙𝒙 = 𝒂𝒂

𝐵𝐵𝒙𝒙 ≤ 𝒃𝒃
where 𝒙𝒙 ∈ ℝ𝑛𝑛 is the optimization variable, and 𝒄𝒄 ∈
ℝ𝑛𝑛,𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛,𝒂𝒂 ∈ ℝ𝑚𝑚,𝐵𝐵 ∈ ℝ𝑘𝑘×𝑛𝑛,𝒃𝒃 ∈ ℝ𝑘𝑘 are the 
problem data

EXAMPLES OF CONVEX PROBLEMS



LINEAR PROGRAMMING: EXAMPLE

• In the max flow problem, we are given a directed graph 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸) with a source 𝑠𝑠 and a sink 𝑡𝑡, and a capacity 𝛼𝛼𝑥𝑥𝑥𝑥
for each 𝑥𝑥,𝑦𝑦 ∈ 𝐸𝐸

• A flow is a function 𝑓𝑓:𝐸𝐸 → ℝ+ that satisfies 𝑓𝑓𝑥𝑥𝑥𝑥 ≤ 𝛼𝛼𝑥𝑥𝑥𝑥 for 
all 𝑥𝑥,𝑦𝑦 ∈ 𝐸𝐸, and for all 𝑥𝑥 ∈ 𝑉𝑉 ∖ 𝑠𝑠, 𝑡𝑡 ,
∑ 𝑦𝑦,𝑥𝑥 ∈𝐸𝐸 𝑓𝑓𝑦𝑦𝑦𝑦 = ∑ 𝑥𝑥,𝑧𝑧 ∈𝐸𝐸 𝑓𝑓𝑥𝑥𝑥𝑥

• The value of a flow is ∑ 𝑠𝑠,𝑥𝑥 ∈𝐸𝐸 𝑓𝑓𝑠𝑠𝑠𝑠
• Poll 3: What is the max flow in the above example?

𝑠𝑠 𝑡𝑡𝑣𝑣

𝑢𝑢

𝑤𝑤

2 11
1 7

24 1



max 𝑓𝑓𝑠𝑠𝑠𝑠 + 𝑓𝑓𝑠𝑠𝑠𝑠 + 𝑓𝑓𝑠𝑠𝑠𝑠
s.t.

LINEAR PROGRAMMING: EXAMPLE

𝑠𝑠 𝑡𝑡𝑣𝑣

𝑢𝑢

𝑤𝑤

2 11
1 7

24 1

𝑓𝑓𝑠𝑠,𝑢𝑢 ≤ 2
𝑓𝑓𝑠𝑠,𝑣𝑣 ≤ 1
𝑓𝑓𝑠𝑠,𝑤𝑤 ≤ 4
𝑓𝑓𝑢𝑢𝑢𝑢 ≤ 1
𝑓𝑓𝑤𝑤𝑤𝑤 ≤ 2
𝑓𝑓𝑢𝑢,𝑡𝑡 ≤ 1
𝑓𝑓𝑣𝑣,𝑡𝑡 ≤ 7
𝑓𝑓𝑤𝑤,𝑡𝑡 ≤ 1

𝑓𝑓𝑠𝑠,𝑢𝑢 ≥ 0
𝑓𝑓𝑠𝑠,𝑣𝑣 ≥ 0
𝑓𝑓𝑠𝑠,𝑤𝑤 ≥ 0
𝑓𝑓𝑢𝑢𝑢𝑢 ≥ 0
𝑓𝑓𝑤𝑤𝑤𝑤 ≥ 0
𝑓𝑓𝑢𝑢,𝑡𝑡 ≥ 0
𝑓𝑓𝑣𝑣,𝑡𝑡 ≥ 0
𝑓𝑓𝑤𝑤,𝑡𝑡 ≥ 0

𝑓𝑓𝑠𝑠,𝑢𝑢 = 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑓𝑓𝑢𝑢𝑢𝑢
𝑓𝑓𝑠𝑠,𝑣𝑣 + 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑓𝑓𝑤𝑤𝑤𝑤 = 𝑓𝑓𝑣𝑣𝑣𝑣
𝑓𝑓𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑤𝑤𝑤𝑤 + 𝑓𝑓𝑤𝑤𝑤𝑤

min
𝒙𝒙

𝒄𝒄𝑇𝑇𝒙𝒙
s.t. 𝐴𝐴𝒙𝒙 = 𝒂𝒂

𝐵𝐵𝒙𝒙 ≤ 𝒃𝒃

How does the canonical LP 
form fit with the max flow 
example?



GLOBAL AND LOCAL OPTIMALITY

• A point 𝒙𝒙 ∈ ℝ𝑛𝑛 is globally optimal if 𝒙𝒙 ∈ ℱ
and for all 𝒚𝒚 ∈ ℱ, 𝑓𝑓 𝒙𝒙 ≤ 𝑓𝑓(𝒚𝒚)

• A point 𝒙𝒙 ∈ ℝ𝑛𝑛 is locally optimal if 𝒙𝒙 ∈ ℱ
and there exists 𝑅𝑅 > 0 such that for all 
𝒚𝒚 ∈ ℱ with 𝒙𝒙 − 𝒚𝒚 2 ≤ 𝑅𝑅, 𝑓𝑓 𝒙𝒙 ≤ 𝑓𝑓(𝒚𝒚)

• Theorem: For a convex optimization 
problem, all locally optimal points are 
globally optimal



)(

PROOF OF THEOREM

• Suppose 𝒙𝒙 is locally 
optimal for some 𝑅𝑅, but 
not globally optimal

• There is 𝒚𝒚 ∈ ℱ such that 
𝑓𝑓 𝒚𝒚 < 𝑓𝑓(𝒙𝒙)

• Define
𝒛𝒛 = 1 − 𝜃𝜃 𝒙𝒙 + 𝜃𝜃𝒚𝒚

for 𝜃𝜃 = 𝑅𝑅
2 𝒙𝒙−𝒚𝒚 2

𝑓𝑓(𝒚𝒚)

𝑓𝑓(𝒙𝒙)

𝒙𝒙𝒚𝒚 𝒛𝒛

𝑓𝑓(𝒛𝒛)



PROOF OF THEOREM

• Then:
◦ 𝒛𝒛 is feasible (can assume 𝑥𝑥 − 𝑦𝑦 2 > 𝑅𝑅)
◦ 𝑓𝑓 𝒛𝒛 = 𝑓𝑓 1 − 𝜃𝜃 𝒙𝒙 + 𝜃𝜃𝒚𝒚

≤ 1 − 𝜃𝜃 𝑓𝑓 𝒙𝒙 + 𝜃𝜃𝜃𝜃 𝒚𝒚
< 1 − 𝜃𝜃 𝑓𝑓 𝒙𝒙 + 𝜃𝜃𝑓𝑓 𝒙𝒙
= 𝑓𝑓(𝒙𝒙)

◦ 𝒙𝒙 − 𝒛𝒛 2 = 𝑅𝑅
2 𝑥𝑥−𝑦𝑦 2

𝒙𝒙 − 𝒚𝒚
2

= 𝑅𝑅
2

< 𝑅𝑅

• Therefore, 𝒙𝒙 is not locally optimal, 
contradicting our assumption ∎



SOLVING CONVEX PROBLEMS

• Convex optimization problems 
are computationally “easy” to 
solve

• The gradient descent algorithm 
follows the objective function 
downwards until it reaches a 
global minimum 

• It cannot get stuck at a local 
minimum due to the theorem
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