CS 182 Lecture 6: Multi-Robot Systems!

Professors: Ariel Procaccia and Stephanie Gil

Email: sgil@seas.harvard.edu

Prof. Gil Office hours: Wednesdays 2:30-3:30p

Last Time

- Constraint Satisfaction Problems
 - Search to solve identification (or assignment) problems
 - Different types of CSPs
 - Unary constraints
 - Binary constraints (graph coloring)
 - Global constraints (Cryptarithmetic problems)
 - How to make search over CSPs easier?
 - Fail fast!
 - Arc consistency
 - Variable ordering
 - Minimum values remaining
 - Local search
 - Structure (tree CSP solver)

This Time

- A new topic!
 - Start our foray into optimization
 - This will be more of a "fun" lecture more focused on an overview of multi-robot systems and practical aspects of the problem
- My last lecture before maternity leave
 - My office hours will continue through the end of this month (i.e. I will still have OH next week)
- Prof. Procaccia will continue on the topic of optimization
 - And all of its beautiful theory

Course Topics (Full list on course website)

Uninformed search	
Informed search	C 1 D1
Motion planning	Search and Planning
Constraint satisfaction problems	Lecturer: Gil
• Multi-robot systems	
Intro to optimization	
Game theory	Ontimization and Cames
Al game playing	Optimization and Games
Stackelberg security games	Lecturer: Proccacia
Bayesian networks	
Markov Decision Processes	
Reinforcement learning	T
Decision trees	Learning and Uncertainty
Linear classification	Lecturer: Proccacia
Neural networks	
• Ethics	

Robots Today

A robot is a **machine** that can carry out **actions** in the physical world using computer **algorithms**. It often uses sensors to sense the world and **base its actions on sensory input**.

Manufacturing Robots

Robots in Space

Disaster Relief Robots

World Trade Center Crisis 2001

Fukushima Nuclear Disaster 2011

Explosive Ordinance Disposal

On-Demand Communication

MIT Lincoln Labs Perdix Swarm

Delivery Robots

Autonomous Vehicles

Medical Robots

Ingestible origami robot

Robot unfolds from ingestible capsule, removes button battery stuck to wall of simulated stomach.

So how does it work?

 How can we make these robots do what we want them to do?

 Formulate as an optimization problem that we can encode!

Theory of Multi-Robot Systems

- A mathematical review (see optional reading "Distributed Control of Robotic Networks" by Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo, Sections 1.1-1.4, available for free online)
- The evolution of a multi-robot system described as a mathematical function

$$f: X \times U \to X$$
 A mapping, describes the state evolution

$$x(l+1) = f(x(l), u(l))$$
 State dynamics (discrete)

$$\dot{x}(t) = f(t, x(t), u(t))$$
 State dynamics (continuous)

Theory of Multi-Robot Systems

• We are interested in how the state x evolves over *time* according to f(x)

- Equilibrium point $f(x^*) = x^*$
- Conditions under which x* exists?
- Conditions under which x* can be characterized and/or controlled
- These are called **Performance Guarantees**

Theory of Multi-Robot Systems

- Performance guarantees depend on many things:
 - the function f

connectivity (how agent i's update affects agent j's update)

Fig 1.13 "Distributed Control of Robotic Networks"

and other factors that we will discuss...

How to Encode Robot State?

$$f: X \times U \rightarrow X$$
 is the evolution map

 \uparrow

State space Input space

• Discrete, no time dependence

$$x(l+1) = f(x(l), u(l)), l = \{1, 2, ...\}$$

• Discrete, time dependent

$$x(l+1) = f(l,x(l),u(l)), l = \{1,2,...\}$$

Continuous, time dependent

$$\dot{x}(t) = f(t, x(t), u(t)), \qquad t \in R_{>0}$$

Types of Systems

Collective Swarm

- Act independently
- Minimal need for knowledge about other members of the system

Intentionally Cooperative

 Have knowledge of the presence of other robots in the environment

 Act together based on the state, actions or capabilities of their teammates in order to accomplish the same goal

How to Encode Relationships?

A graph!

$$G = (V, E), \qquad E \subseteq V \times V$$

V(G) – vertices of G

E(G) – edges of G

(u, v)- $u, v \in V$ is the edge from u to v

Different Control Architectures

Centralized

Hierarchical

Decentralized
 (examples of directed/undirected?)

Hybrid

Different Communication Architectures

Stigmergy

• Q1: Stigmergy (as a graph?)

Stigmergy

• Passive (as a graph?)

Stigmergy

Passive

• Explicit (can we make the previous graph "explicit" communication?)

Stigmergy

Passive

Explicit

Architecture to Application

What control/comms architecture is needed in order to achieve different applications?

- 1) Foraging/coverage
- 2) Flocking/formations
- 3) Box pushing and cooperative manipulation
- 4) Traffic control and multi-robot path planning

Classes of Networked Robots

Teleoperated

Video credit: MIT DRC Atlas Robot

When is this good vs bad?

Autonomous

Video credit: JPL/NASA Curiosity Mission

Main Research Challenges

The broad challenge of *Autonomous Networked Robots* is to develop a science base that couples **communication**, **perception**, and **control** to enable new capabilities

Networking
Communication
Control
Perception
Decision Making
Adaptation
What is the difference here?
How do these two relate?
How does perception influence adaptation? State equations?

- Networking
- Communication
- Control
- Perception
- Decision Making
- Adaptation

- Networking
- Communication
- Control
- Perception
- Decision Making
- Adaptation

- Networking
- Communication
- Control
- Perception
- Decision Making
- Adaptation

Q2 (polls everywhere): So what is the difference between robot networks and sensor or computer networks?

Dynamics + Graph

Dynamics allows us to describe individual behavior

 Graphs allow us to go from individual motion/behavior to group behavior.

Controllable Group Behavior

We need:

Individual controls to achieve a specified aggregate motion and shape of the group

Graph Theory

- The adjacency matrix captures the influence of agents' states on one another
 - Draw the adjacency matrix of the visibility graph example

Connectivity in Multi-Robot Systems

• Q3: Why do we care?

Graph Theory

- The adjacency matrix captures the influence of agents' states on one another
 - Draw the adjacency matrix of the visibility graph example

- The adjacency matrix tells us a lot about the underlying graph structure and topology
 - The (i,j)th entry of A^k equals the number of directed paths of length k from node i to node j [see Section 1.3.5 of "Distributed Control of Robotics Networks"]

Adjacency Matrix and Connectivity (cont.)

$$A^{k+1} = AA^{k}$$

$$(A^{k+1})_{ij} = \sum_{l=1}^{n} A_{il} (A^{k})_{lj}$$

$$A^{2}_{dir} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A^{3}_{dir} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Show that the entry $(A^k)_{ij}$ equals the # of directed paths from i to j of length k?

Notions of Connectivity

 Globally reachable – A vertex of a directed graph is globally reachable if it can be reached from any other vertex by traversing a directed path

- Strongly connected A directed graph is strongly connected if every vertex is globally reachable
 - What is the difference with an undirected graph here?

Graph Laplacian

•
$$L(G) = D_{out}(G) - A(G)$$

•
$$L(G)\mathbf{1}_n = \mathbf{0}_n$$

• If G is strongly connected, then rank(L(G)) = n - 1, that is, 0 is a simple eigenvalue of L(G)

• G is undirected iff L(G) is symmetric

Group Behavior from Individual Controllers

Controlling a Large Group of Robot Agents

Motivation

Source: "Rescue Robotics: An Introduction," iRevolutions https://irevolutions.org/2015/08/10/rescue-robotics-introduction/

Image credit: https://www.behance.net/gallery/54081423/Wearable-Human-Swarm-Interaction-Technology

Controlling a Large Group of Robot Agents

 Q4: How might we do this? What are some inherent challenges here?

- Asymmetric Broadcast Control (ABC)
 - State space as Cartesian product

How to Encode Robot State?

 $f: X \times U \to X$ is the evolution map

State space Input space

$$x_1 \in X$$

$$x_3 \in X$$

Controlling a Large Group of Robot Agents

- Asymmetric Broadcast Control (ABC)
 - State space as Cartesian product
 - Mapping: abstraction from high-dimensional to lowdimensional space

Mappings

- Example: an average
 - What if I want to control the position of a group?
 - Use the centroid

Mappings (cont.)

- Example: a shape
 - What if I want to control the position and shape of a group?
 - Use an ellipsoid

Gradient Based Control

 Now that we know how to represent a state of the robot (or an aggregate state of the team), how do we control it?

• *f* : some function we wish to minimize

One idea: gradient-based control

$$x(t+1) = x(t) + \alpha u(t)$$

$$u(t) = -\frac{\partial f(x(t))}{\partial x(t)}$$

Potential Fields

What about a potential function?

For n agents in d dimensional space?

Potential Fields for Higher Dimensions

What about a potential function?

Potential Function for Navigation

Obstacles and environmental boundaries are assigned high potential

Example: Motion Planning & Collision Avoidance

Next Time...

Convex optimization