CS 182 Lecture 6:
Multi-Robot Systems!

Professors: Ariel Procaccia and Stephanie Gil

Email: sgil@seas.harvard.edu
Prof. Gil Office hours: Wednesdays 2:30-3:30p
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Last Time

* Constraint Satisfaction Problems
* Search to solve identification (or assignment) problems
 Different types of CSPs

* Unary constraints
e Binary constraints (graph coloring)
* Global constraints (Cryptarithmetic problems)

* How to make search over CSPs easier?

* Fail fast!

* Arc consistency

* Variable ordering

* Minimum values remaining
* Local search

e Structure (tree CSP solver)



This Time

* A new topic!
 Start our foray into optimization

* This will be more of a “fun” lecture — more focused on an
overview of multi-robot systems and practical aspects of the
problem

* My last lecture before maternity leave

* My office hours will continue through the end of this month
(i.e. I will still have OH next week)

* Prof. Procaccia will continue on the topic of
optimization
* And all of its beautiful theory



Course Topics (Full list on course website)

Uninformed search

Informed search

Motion planning SeaI'Ch aIld Planning
Constraint satisfaction problems Lecturer: Gll

e Multi-robot systems

Intro to optimization

Game theory

. | Optimization and Games
game playing .
Stackelberg security games Lecturer: Proccacia

Bayesian networks

Markov Decision Processes
Reinforcement learning

Decision trees Learning and Uncertainty
Linear classification Lecturer: Proccacia

Neural networks

Ethics




Robots Today

A robot is a machine that can carry out actions in the
physical world using computer algorithms. It often

uses sensors to sense the world and base its actions
on sensory input.



Manufacturing Robots
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Robots in Space

Image credit: JPL NASA Terrestrial Planet Finder mission (TPF)



Disaster Relief Robots




On-Demand Communication

Connectivity Lab

Connectivity Lab
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MIT Lincoln Labs Perdix Swarm




Delivery Robots

Image credit: DHL delivery services
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Autonomous Vehicles

12



Medical Robots

MIT News o

“It's really exciting to see our small
origami robots doing something with
potential important applications to
healthcare,” Daniela Rus says. Pictured,
an example of a capsule and the
unfolded origami device.

Photo: Melanie Gonick/MIT

Ingestible origami robot

Robot unfolds from ingestible capsule, removes button battery stuck to wall of
simulated stomach.
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So how does it work?

e How can we make these robots do what we want
them to do?

* Formulate as an optimization problem that we can
encode!



Theory of Multi-Robot Systems

A mathematical review (see optional reading
“Distributed Control of Robotic Networks” by Jorge
Cortes, Sonia Martinez, Timur Karatas, and Francesco
Bullo, Sections 1.1-1.4, available for free online)

* The evolution of a multi-robot system described as a
mathematical function

f: XXU-X A mapping, describes the state evolution

x(L+ 1) = f(x(l),u(l)) statedynamics (discrete)

x(t) = f(t, X(t), u(t)) State dynamics (continuous)



Theory of Multi-Robot Systems

e We are interested in how the state x evolves over time
according to f(x)
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Consenus (rendezvous) Collision avoidance

* Equilibrium point f(x*) = x*
e Conditions under which x* exists?

* Conditions under which x* can be characterized and/or
controlled

* These are called Performance Guarantees



Theory of Multi-Robot Systems

* Performance guarantees depend on many things:

* the function f
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Convex f?
Nonconvex f ?

e connectivity (how agent i’s update affects agent j’s update)
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Fig 1.13 “Distributed Control of Robotic Networks”
* and other factors that we will discuss...



How to Encode Robot State?

f:X XU — X is the evolution map

t A

State space Input space

* Discrete, no time dependence

x(L+1) = f(x(D, uD)),

* Discrete, time dependent

x(L+1) = f(Lx@),ud)),

e Continuous, time dependent

x() = f(t,x(0),u®)),

[=1{12,..)
[=1{12,..)
t € Rog



Types of Systems

Collective Swarm Intentionally Cooperative

e Act independently * Have knowledge of the
presence of other robots

o in the environment
* Minimal need for

knowledge about other

members of the system * Act together based on
the state, actions or
capabilities of their
teammates in order to
accomplish the same goal



How to Encode Relationships?

* A graph!
G =(V,E), EcCVxV

V(G) — vertices of G
E(G) —edges of G
(u,v)-u,v € Visthe edge fromutov
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Different Control Architectures

e Centralized
* Hierarchical

e Decentralized
(examples of directed/undirected?)

* Hybrid



Different Communication Architectures

e Stigmergy

Communication * Passive

* Explicit



Communication Architectures

* Stigmergy
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Communication Architectures

* Q1: Stigmergy (as a graph?)



Communication Architectures

* Stigmergy

 Passive (as a graph?)



Communication Architectures

* Stigmergy

e Passive

 Explicit (can we make the previous graph “explicit”
communication?)



Communication Architectures

* Stigmergy

e Passive

* Explicit



Architecture to Application

What control/comms architecture is needed in order to
achieve different applications?

1) Foraging/coverage
2) Flocking/formations
3) Box pushing and cooperative manipulation

4) Traffic control and multi-robot path planning



Classes of Networked Robots

Autonomous

Teleoperated

- ) 001/629

Video credit: MIT DRC Atlas Robot

* When is this good vs bad?
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Main Research Challenges

The broad challenge of Autonomous Networked Robots
is to develop a science base that couples

communication, perception, and control to enable
new capabilities



Main Research Challenges:
Networked Robots

° Networking > What is the difference here?
e Communication
 Control

. ?
° Perceptlon How do these two relate?

* Decision Making

How does perception influence

e Adaptation
P / adaptation? State equations?
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Main Research Challenges:
Networked Robots

* Networking
* Communication
e Control _ ,
. Robotics community
* Perception
* Decision Making

* Adaptation
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Main Research Challenges:
Networked Robots

* Networking
e Communication

e Control ]
Sensor networking

* Perception community

* Decision Making
* Adaptation
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Main Research Challenges:
Networked Robots

* Networking
* Communication
e Control ,
. Al community
* Perception
* Decision Making

* Adaptation
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Q2 (polls everywhere): So what is the difference
between robot networks and sensor or computer
networks?



Dynamics + Graph
* Dynamics allows us to describe individual behavior

* Graphs allow us to go from individual
motion/behavior to group behavior.

o ¢

\ ‘ &x(t) _ (t x(t) u(t))
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Controllable Group Behavior

We need:

Individual controls to achieve a specified aggregate
motion and shape of the group
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Starlings Murmuration. Video credit: UZoo



Graph Theory

* The adjacency matrix captures the influence of
agents’ states on one another

* Draw the adjacency matrix of the visibility graph
example



Connectivity in Multi-Robot
Systems

* Q3: Why do we care?



Graph Theory

* The adjacency matrix captures the influence of
agents’ states on one another

* Draw the adjacency matrix of the visibility graph
example

* The adjacency matrix tells us a lot about the
underlying graph structure and topology

* The (i,j)*" entry of Ak equals the number of directed
paths of length k from node i to node j [see Section 1.3.5
of “Distributed Control of Robotics Networks”]



Adjacency Matrix and Connectivity (cont.)

o Ak+1 =AAk
o k+1 _— \n _ k 2
(A )l] - Zl:].All(A )l] .
0 0 1 /
A% =11 0 0 1 @
0 1 O
1 0 O
Azr =10 1 0 Q.
0 0 1

* Show that the entry (Ak)ij equals the # of directed paths
fromitoj of length k?
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Notions of Connectivity

* Globally reachable — A vertex of a directed graph is
globally reachable if it can be reached from any other
vertex by traversing a directed path

 Strongly connected — A directed graph is strongly
connected if every vertex is globally reachable

 What is the difference with an undirected graph here?




Graph Laplacian
* L(G) = Doyt (G) — A(G)
- L(6)1, = 0,

* If G is strongly connected, then rank(L(G)) = n —
1, that is, O is a simple eigenvalue of L(G)

e G is undirected iff L(G) is symmetric



Group Behavior from Individual
Controllers
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Starlings Murmuration. Video credit: UZoo
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Controlling a Large Group of
Robot Agents

 Motivation

Image credit: https://www.behance.net/gallery/54081423/Wearable-
Human-Swarm-Interaction-Technology

Source: “Rescue Robotics: An Introduction,” iRevolutions
https://irevolutions.org/2015/08/10/rescue-robotics-introduction/

45



Controlling a Large Group of
Robot Agents

* Q4: How might we do this? What are some
inherent challenges here?

* Asymmetric Broadcast Control (ABC)
* State space as Cartesian product



How to Encode Robot State?

f:X XU — Xis the evolution map

t N

State space Input space

x;1 €EX X, EX

x3 €X
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Controlling a Large Group of
Robot Agents

* Asymmetric Broadcast Control (ABC)

 State space as Cartesian product

* Mapping: abstraction from high-dimensional to low-
dimensional space



Mappings

* Example: an average
 What if | want to control the position of a group?
* Use the centroid

Distributed Multi-Robot Formation Control among Obstacles:
A Geometric and Optimization Approach with Consensus

Javier Alonso-Mora*, Eduardo Montijanot, Mac Schwagert and Daniela Rus*
IEEE Int. Conf. Robotics and Automation 2016
* CSAIL, MIT, USA

1 Centro Universitario de la Defensa Zaragoza, Spain

1 Stanford University, USA

I\tlv o) 000/1:18
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Mappings (cont.)

* Example: a shape

 What if | want to control the position and shape of a
group?
* Use an ellipsoid
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Gradient Based Control

* Now that we know how to represent a state of the robot
(or an aggregate state of the team), how do we control it?

* f:some function we wish to minimize

* One idea: gradient-based control
step size

x(t+1) =x(t) + ciu(t)




Potential Fields

* What about a potential function?

f(x)

* For n agents in d dimensional space?
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Potential Fields for Higher
Dimensions

* What about a potential function?

53



Potential Function for Navigation

* Obstacles and environmental boundaries are
assigned high potential

Image credit: Nathan Michael et.al.
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Example: Motion Planning &
Collision Avoidance

oo bots

® persondality
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Next Time...

* Convex optimization



