
CS 182 Lecture 5:
Constraint Satisfaction

Problems
Professors: Ariel Procaccia and Stephanie Gil
Email: sgil@seas.harvard.edu
Prof. Gil Office hours: Wednesdays 2:30-3:30p

mailto:sgil@seas.harvard.edu

Last Time

• Motion planning problems
• Search and their relation to motion planning
• Problems of discretization of free space
• Questions of optimality

This Time

• Constraint Satisfaction Problems
• Search comes up again!
• What are CSPs useful for?
• How to define search for this class of problems?

Planning and Identification

Planning: A sequence of actions
• The path to the goal is important
• Paths have various costs and depths
• Heuristics give problem-specific guidance

Identification: Assignments to variables
• The goal itself is important, not the path
• CSPs are specialized for identification problems
• This is still a search problem

Constraint Satisfaction Problems (CSP)

Defined by a set of
• Variables X1,X2,…,Xn
• Constraints C1, C2,…,Cm
• Assignment {Xi=vi, Xj=vj,…}

• State – defined by variables Xi with values from a
domain D

• Goal test – Set of constraints specifying allowable
combinations of values for subsets of variables

A Solution to a CSP is a complete assignment that
satisfies all constraints

Representation of a CSP

• Before we saw how representation of a problem as a graph
helped us to formulate search over routes
• Now we will use graphs to help us formulate constraints

• Pairwise constraints between variables are denoted as an
edge

CSP: Comparison to What We’ve Seen

• Initial state: the empty assignment { }, in which all
variables are unassigned

• Successor function: a value can be assigned to any
unassigned variable, provided that it does not
conflict with previously assigned variables

• Goal test: the current assignment is complete

• Path cost: a constant cost (e.g. 1) for every step

Example: Graph Coloring

Ways to describe constraints:
• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: D={red, green, blue}
• Constraints: Adjacent regions must have different colors
• Implicit: WA ≠ NT
• Explicit: (WA, NT) ∈ {(red, green), (red, blue),…}

Types of Constraints
• Continuous domain – Examples: scheduling of

experiments on the Hubble Space Telescope
• Linear programming
• Quadratic programming…

• Unary constraint – Restricts the value of a single
variable. Example: < 𝑆𝐴 , 𝑆𝐴 ≠ 𝑔𝑟𝑒𝑒𝑛 >

• Binary constraint – Relates two variables. Example:
𝑆𝐴 ≠ 𝑁𝑆𝑊

• Global constraint – A constraint involving all the
variables in a problem. Example: Alldiff which says that
all of the variables involved in the constraint must have
different values

Example: Cryptarithmetic Problems

• Idea: assign every letter a unique digit. The result
should satisfy the predefined arithmetic rules

Ø This does not capture the whole solution however,
because all constraints should be satisfied…

SEND
+ MORE

MONEY

Variables
needing
assignment

Arithmetic
constraint

𝑆 → 9
𝑀 → 1

S
+ M

MO

Produces a new
assignment O=0 also

51

T W O

F O U R

T W O

F T U W R O

C3 C2 C1

Figure 6.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is
to find a substitution of digits for letters such that the resulting sum is arithmetically correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmetic problem, showing the Alldiff constraint (square box at the top) as
well as the column addition constraints (four square boxes in the middle). The variables C1,
C2, and C3 represent the carry digits for the three columns from right to left.

function AC-3(csp) returns false if an inconsistency is found and true otherwise
queue← a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)← POP(queue)
if REVISE(csp, Xi, Xj) then

if size of Di = 0 then return false
for each Xk in Xi.NEIGHBORS - {Xj} do

add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, Xj) returns true iff we revise the domain of Xi

revised← false
for each x in Di do

if no value y in Dj allows (x ,y) to satisfy the constraint between Xi and Xj then
delete x from Di

revised← true
return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is
arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
solved. The name “AC-3” was used by the algorithm’s inventor (?) because it was the third
version developed in the paper.

Example with Explicit Constraints

• Variables: F,T,U,W,R,O,C1,C2,C3

• Domain: {0,1,2,3,4,5,6,7,8,9}
• Constraints: Alldiff (F,T,U,W,R, O,C1,C2,C3)

𝑂 + 𝑂 = 𝑅 + 10𝐶!"
𝐶!" +𝑊 +𝑊 = 𝑈 + 10𝐶!""
𝐶!"" + 𝑇 + 𝑇 = 𝑂 + 10𝐶!"""
𝐶!""" = 𝐹

Try:
R=2
O=6
C3=1

[Figure 6.2 in R&N]

Types of Constraints
• Continuous domain – Examples: scheduling of experiments

on the Hubble Space Telescope

• Unary constraint – Restricts the value of a single variable.
Example: < 𝑆𝐴 , 𝑆𝐴 ≠ 𝑔𝑟𝑒𝑒𝑛 >

• Binary constraint – Relates two variables. Example: 𝑆𝐴 ≠
𝑁𝑆𝑊

• Global constraint – A constraint involving all the variables in
a problem. Example: Alldiff

Ø Every finite-domain constraint can be reduced to a set of
binary constraints if enough auxiliary variables are
introduced – so we could transform any CSP into one with
only binary constraints! This makes the algorithms simpler

Example: Graph Coloring

Ways to describe constraints:
• Constraint (English description): Adjacent regions must

have different colors
• Implicit constraints: WA ≠NT
• Explicit constraints: (WA,NT) ∈{ (red,green),(red,blue),…}

Example: Graph Coloring

Solution: Assignments satisfying all constraints {WA= red,
NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Example of an invalid solution?
{WA= red, NT=red, Q=red, NSW=green, V=red, SA=blue,
T=green}

What about
{WA= red, NT=green, Q=red, NSW=green, V=red, SA=blue,
T=blue}?

Another Example: N Queens

• Variables: Xij

• Domains: {0,1}

• Constraints:
• Explicit:

∀𝑖, 𝑗, 𝑘 𝑋!" , 𝑋!# ∈ 0,0 , 0,1 , 1,0
∀𝑖, 𝑗, 𝑘 𝑋!" , 𝑋#" ∈ 0,0 , 0,1 , 1,0
∀𝑖, 𝑗, 𝑘 𝑋!" , 𝑋!$#,"$# ∈ 0,0 , 0,1 , 1,0
∀𝑖, 𝑗, 𝑘 𝑋!" , 𝑋!$#,"&# ∈ { 0,0 , 0,1 , 1,0 }

• Implicit constraint:
,
!"

𝑋!" = 𝑁

The state of each square

What is happening on the
square? Queen or no queen?

How to encode that queens cannot
be on the same row or diagonal?

Constraints
on queen
placement

There must be N queens on the board!

Ø This constraint prevents the trivial
solution of no queens on the board

Is this a valid solution?

No two queens in same row

No two queens in same col

No two queens in same diag

N Queens: Different Formulation

• Variables: Qk

• Domains: {1,2,3,…,N}

• Constraints
• Explicit: (𝑄&,𝑄() ∈ 1,3 , 1,4 , …

• Draw a constraint graph for N queens

Q1

Q2

Q3

Q4

1 2 3 4

Types of CSPs and Solution Time

• Finite domains (the examples we’ve seen so far)
• Size d means O(dn) complete assignments

• Infinite domains (integers, strings, etc)
• Job scheduling where the variables are start/end times

for each job
• Linear constraints are solvable

• Continuous variables
• Start/end times for Hubble telescope operations
• Linear constraints are solvable in polynomial time (the

subject of linear programming LP)

Some Real World CSPs

• Assignment problems: e.g. who teaches class
• Timetable problems: e.g. which class is offered

when and where?
• Transportation scheduling
• Factory scheduling
• Fault diagnosis…

Standard Search Formulation

A standard template. Compare to what we’ve seen so far…

• States – defined by the values assigned so far

• Initial state – the empty assignment, { }

• Successor function – assign a value to an unassigned value

• Goal test – the current assignment is complete and satisfies
all constraints

Example: Graph Coloring

Q1: What would a BFS assignment of variables to values
look like for this problem?

{ }

Thinking About Search

• Q2 (polls everywhere): Would DFS do better?
• Yes
• No

Solving CSPs: What Affects Efficiency?

1) Which variable is assigned next and in what
order?

2) What are the implications of the current variable
assignments on other unassigned variables

3) When a path fails, can search avoid repeating this
failure in subsequent paths?

Solving CSPs: Backtracking

Variables:
WA, NT, Q, NSW, V, SA, T

Domain: {red, green, blue}

• Try BFS on the map
coloring problem

• What about DFS?
• Backtracking search is the

basic uninformed algorithm
for solving CSPs

{ }

WA=red WA=green WA=blue

WA=red
NT=green

WA=red
NT=blue

WA=red
NT=blue
Q=red

Revisit Ideas for Efficiency

Keys for speeding up the search:
• Ordering: which variable should be assigned next?

• In what order should its values be tried?

• Filtering: can we detect inevitable failure early?

• Structure: can we exploit problem structure?

Algorithms for solving CSPs that we will see next build
upon these ideas for speeding up solution finding!

Forward Checking
• A type of filtering

• Idea: keep track of domains for unassigned variables and cross off bad options
• Cross off values that violate a constraint when added to the existing assignment

Step 1: Assign the first variable. Remove conflicting values from other variable
domains using the constraint graph

Step 2: Continue to the next variable. Again, remove conflicting values from
remaining domains

Step 3: Assign next variable. If a domain is left empty, backtrack. (Don’t wait to get
to the illegal assignment)

{WA=red}

{WA=red, Q=green}

{WA=red, Q=green, V=blue}

Forward Checking (cont.)

• What this looks like for our Australia example

FORWARD CHECKING

• The function INFERENCE gives us an
opportunity to interleave inference and
search

• The simplest inference is forward checking,
which enforces arc consistency for each
variable that’s assigned a value

ܣܹ ܰܶ ܳ ܹܰܵ ܸ ܣܵ ܶ
Initial domains

After ܹܣ = ݁ݑ݈ܾ

After ܳ = ݓ݋݈݈݁ݕ

After ܸ = ݊݁݁ݎ݃

red

Name of the Game: Fail Fast

Borrowing some startup philosophy:
“Fail fast is a philosophy that values extensive testing and
incremental development to determine whether an idea
has value. An important goal of the philosophy is to cut
losses when testing reveals something isn’t working and
quickly try something else”

Arc Consistency

• Extend forward checking concept:
• Follow constraints all the way through the constraint

graph

Limitations of Arc Consistency

• Arc consistency does not detect all failures

Red

Green,
Blue

Green,
Blue

Red,
Blue

Red,
Blue

Red,
Blue

Is this arc consistent?

Are there solutions remaining?

Is this arc consistent?

Are there solutions remaining?

Minimum Remaining Values (MRV)

• How else can we “fail fast”?
• Variable ordering

• Minimum Remaining Values (MRV)
• Choose the next variable for assignment as the one with

the fewest number of legal values left in its domain

Local Search

• Idea: start with an assignment

• Successor function picks one queen and considers moving it
elsewhere in its column
• Heuristic for choosing a new value for the variable is to

select the value that results in the minimum # of conflicts
with other variables
• This is the Minimum Conflicts heuristic

When to Choose Local Search?

• This is not the “fail fast method” anymore…
• When is it good to use local search?
• Like most local search problems, it is best when we start

with a good solution
• Example 1: Online re-planning
• Example 2: Airline schedules changing due to weather

and fixing the schedule with a minimum # of changes
• Example 3: This has been used to schedule observations

for the Hubble telescope, reducing the time taken to
schedule a week of observations from 3 weeks to 10
minutes

Why not use a
“fail fast”
approach here?

The Role of Structure
• Idea: decompose the problem into many

sub-problems

• Example: Tasmania as an independent
sub-problem

• Another example: CSP problems are
connected by a single path (or the
constraint graph forms a tree)
• Any tree structured CSP can be solved in

time linear in the # of variables [see Russell
and Norvig text]

ØWe will see the concept of decomposition
into sub-problems again with Dynamic
Programming
• Indeed a very common approach is to take

advantage of structure in the problem

The Structure of Problems (cont.)

• Solving a CSP whose constraint graph is structured
as a tree is easy!
• Directionally arc-consistent – A particular ordering

where variables X1,…,Xn satisfy Xi is arc-consistent
with Xj for every i<j

THE STRUCTURE OF PROBLEMS

• Solving a CSP whose constraint graph is structured as a
tree is very easy

• We say that the CSP is directionally arc-consistent under an
ordering of the variables ଵܺ, … ,ܺ௡ if and only if for every
݅ < ݆, ௜ܺ is arc-consistent with ௝ܺ

• The idea is to topologically sort the tree and make the it
directionally arc-consistent with respect to the ݊ െ 1 edges

• Then we go down the list of variables and choose any
remaining value

ܣ ܤ ܥ ܦ ܧ ܨ

ܣ

ܥ

ܤ ܦ

ܧ

ܨ

TREE CSP SOLVER
function TREE-CSP-SOLVER(ܿ݌ݏ)

݊ ՚ number of variables in ܺ
݊݃݅ݏݏܽ ՚ ׎
ݐ݋݋ݎ ՚ any variable in ܺ
ܺ ՚ TOPOLOGICAL-SORT(ܺ, (ݐ݋݋ݎ
for ݆ = ݊ down to 2 do

MAKE-ARC-CONSISTENT(PARENT(௝ܺ), ௝ܺ)
if consistency fails then return failure

for ݅ = 1 to ݊ do
if ௜ܦ has no consistent values then return failure
݊݃݅ݏݏܽ ௜ܺ ՚ any consistent value from ܦ௜

return ݊݃݅ݏݏܽ

Running time ܱ(݊݀ଶ) for ܦ௜ ൑ ݀

Next Time…

• Multi-robot systems!

