CS 182 Lecture 4: Motion Planning

Professors: Ariel Procaccia and Stephanie Gil

Email: sgil@seas.harvard.edu

Prof. Gil Office hours: Wednesdays 2:30-3:30p

Last Time:

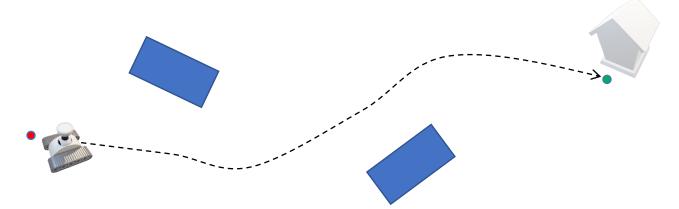
- Informed search
 - Greedy best-first search
 - A*
 - Optimality of A*

This Time:

- Motion planning
 - Discretizing an environment
 - Searching for a path from start state to goal state (tie to previous lecture)
 - Questions of optimality
- Practical motion planning
 - Higher dimensions
 - Some real-world problems and examples
- Reference reading: "Planning Algorithms" by Steven LaValle Ch. 5&6 (available online)

The Motion Planning Problem

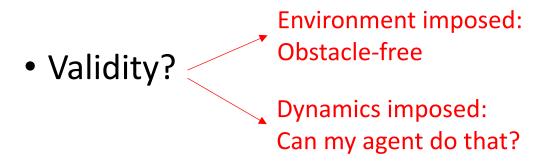
What series of motions will get the robot to the goal?



- Are there cases where there is no solution to this problem?
 - Why would this happen?
 - Is there a way to know this is the case?

Practicalities: Modeling the Problem

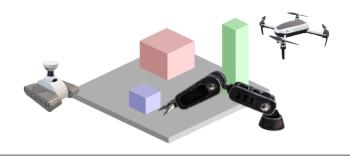
 Problem: find a series of valid configurations that move the object from source to destination



Planning Space

Configuration Space

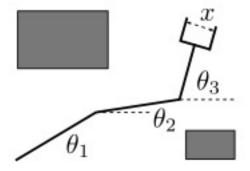
 Idea: focus on point robots – a point represents a state (i.e. pose, manipulator position)



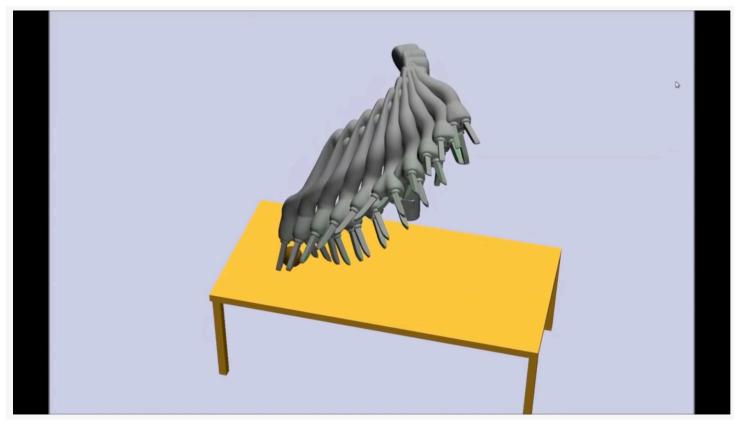
Location (x,y) Orientation (θ)

Location (x,y,z) Orientation (ρ, γ, θ)

N-revolute joints

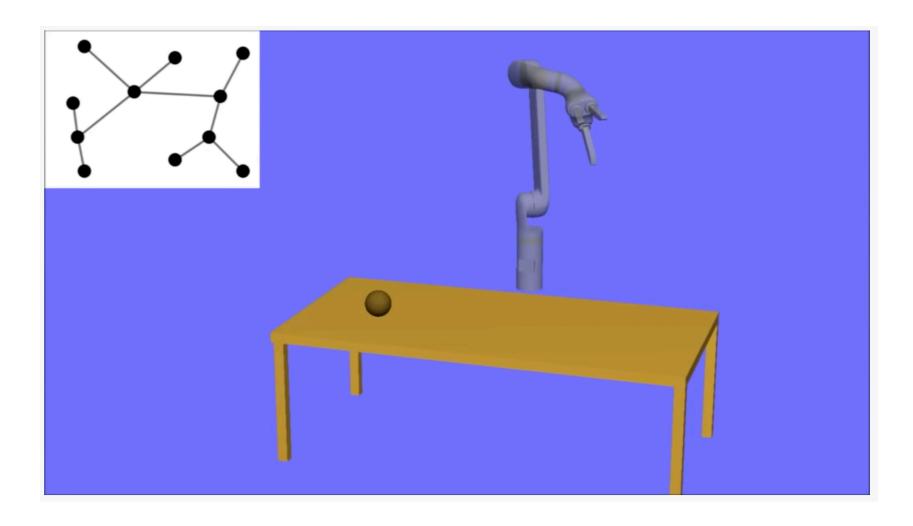


Example: Configuration Space



[Video: Duke robotics]

Example: Manipulator Arm



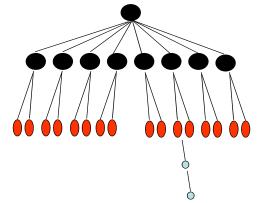
Modeling the Problem (cont.)

- Given:
 - A robot with configuration space C
 - The set of obstacles: C_{obs}
 - An initial configuration: q_{init}
 - A goal configuration q_{goal}
- Problem: Find a path x:[0,1]--> C (a continuous function) such that the path follows the requirements of
 - Starts from the initial configuration $x(0)=q_{init}$
 - Reaches the goal configuration x(1)=q_{goal}
 - Avoids collision with obstacles $x(s) \notin C_{obs}$ for all $s \in [0,1]$

Overview: State-space Search Methods

• Similar to the search problems that you are already familiar with!

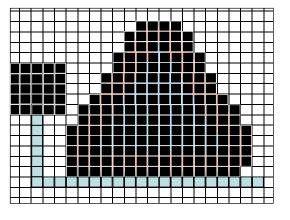
Depth-first search



• Breadth-first search

A* search

• Performance guarantees?



These approaches rely on an assumption, what is it?

Common Performance Guarantee

Performance guarantee of interest:

- An algorithm is *complete* if
 - 1) it terminates in finite time and
 - 2) it returns a solution when one exists or it returns failure otherwise

Discretizing the Space

Cell decomposition \rightarrow going from free space to graph search

- Must satisfy the following properties:
- 1. Accessibility Computing a path from one point to another *inside a cell* must be trivially easy
 - For example, if every cell is convex then any pair of points in a cell can be connected by a line segment
- 2. Representation Adjacency information for the cells can be easily extracted to build the roadmap
- **3.** Querying For any two points q_1 and q_G it should be efficient to determine which cells contain them

Vertical Cell Decomposition



From Cells to a Graph

- Choose any vertex inside of a cell and connect adjacent cells in a way that accessibility is preserved
- This is called a "roadmap" in motion planning

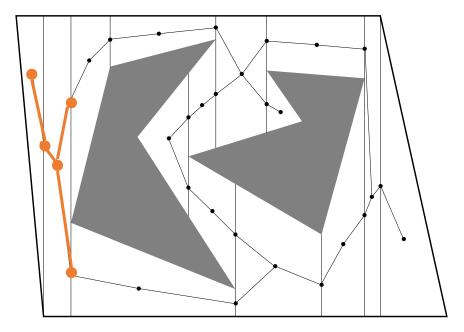


Fig. 6.4 from LaValle text

Solving for a Path from a Query

• Solving for a path between two query points (q_1, q_G) :

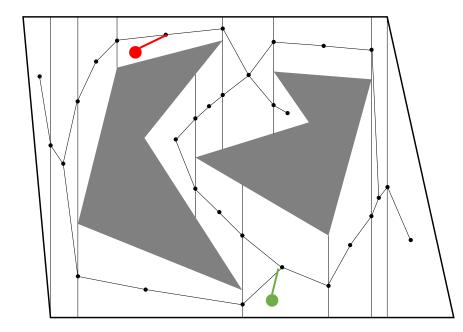


Fig. 6.4 from LaValle text

• Q1: Use 1) DFS expanding rightmost descendant first and 2) A* search using distance as edge cost to find a path from q_1 to q_G

Solving for a Path from a Query

• Solving for a path between two query points (q_1, q_G) :

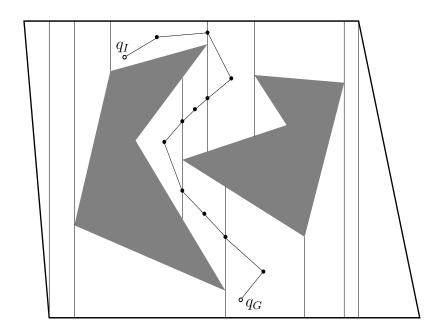


Fig. 6.5 from LaValle text

Visibility Graph – Another Type of Discretization

- A visibility graph results in the optimal shortest path roadmap
- Two edge types:
 - Reflex vertex A polygonal vertex for which the interior angle (in C_{free}) is greater than π
 - Vertices of a convex polygon are reflex vertices draw an edge between these
 - <u>Bitangent edges</u> Mutually visible vertices are connected

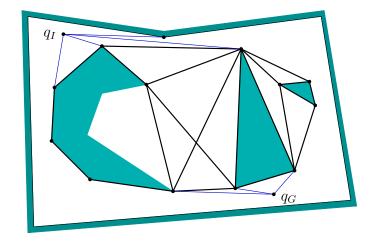


Fig. 6.12 from LaValle text

Shortest-Path Roadmap

 This idea of the shortest-path roadmap may be the first example of a motion planning algorithm!

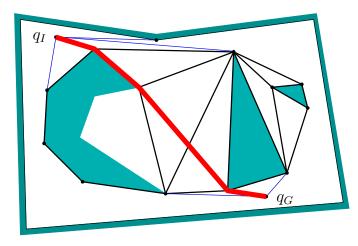


Fig. 6.13 from LaValle text

of edges in the roadmap

- Construction complexity (bitangent tests) is O(nlgn+m)
 - This can be faster for certain types of environments

Question of Optimality?

• For any path x:[0,1]--> C_{free} , it is always possible to find a shorter path \rightarrow therefore the shortest path problem in C_{free} is ill-poised!

- Consider the problem of determining the shortest path in cl(C_{free})
 - i.e. the agent is allowed to touch or graze obstacles

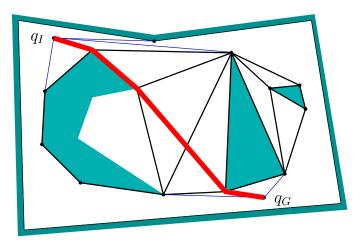
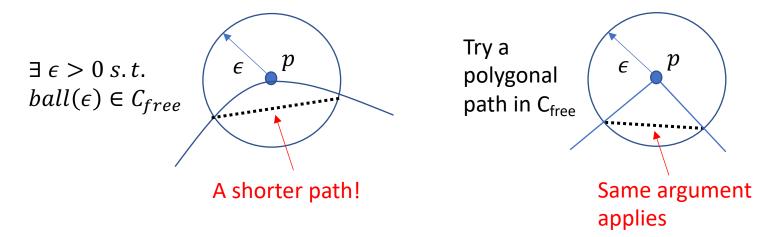


Fig. 6.13 from LaValle text

Optimality Proof

<u>Lemma</u> - Consider a set S of disjoint polygonal obstacles, and start and goal positions q_1 and q_G respectively. Any shortest path between q_1 and q_G is a polygonal path where the inner vertices are vertices of S

<u>Proof by contradiction</u> – Assume that this is not the case and that the shortest path goes through a point p in (the interior) C_{free}

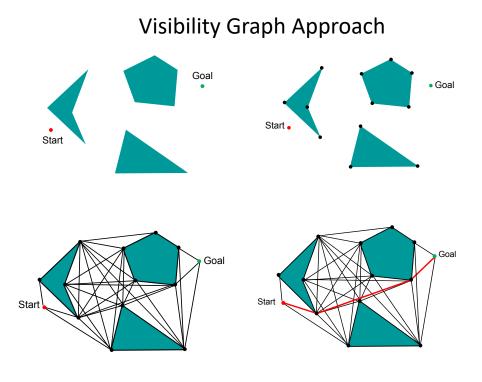


Visibility Graph-based Path Finding

Recap

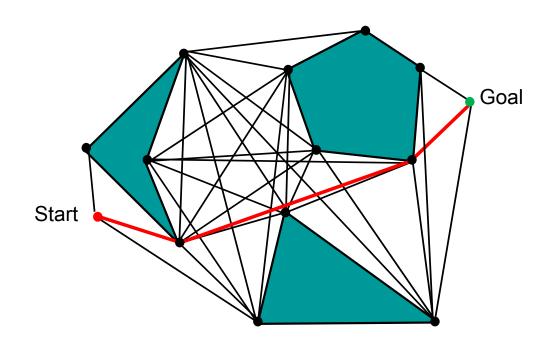
Algorithm:

- Create a graph:
- ➤ <u>Vertex set:</u> all vertices on polygonal obstacles
- ➤ Edge set: all vertex pairs that can be connected by a straight collision free path
- Return the shortest path on this graph.



Practicality of using Visibility Graphs?

• Q2 (polls everywhere): Can we scale-up to 3D?



Navigation in 3D is NP-hard

- Visibility graph only applies to 2D Euclidean spaces
 - Intuition: in 3D, the optimal path does not have to go through vertices, and might go through edges instead...



- Optimal path planning in 3D is NP-hard
- Extensive computational issues (# obstacles, dimension of the workspace, dynamics, etc.)

Recap on State-space Search Methods

Rely on discretization of the configuration space

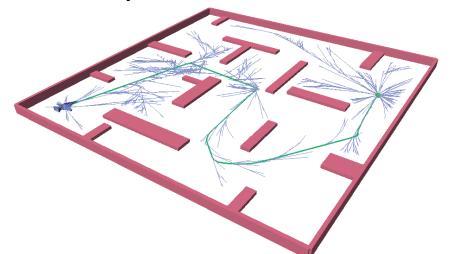
 Guarantees resolution completeness: the algorithm returns a solution when one exists, if the resolution parameter is fine enough

Exponential running time with increasing degrees of freedom

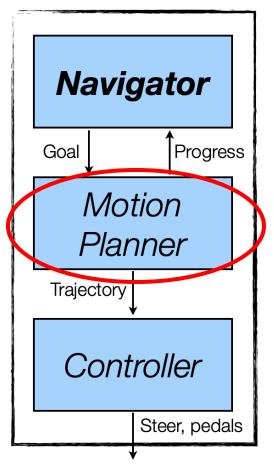
Sampling-based Methods

Key idea:

- Sample the configuration space
- Connect samples with trajectories to infer the connectivity of the free space
- Probabilistic RoadMap (PRM) and Rapidly-exploring Random Trees (RRT) are two widely used variants of this method

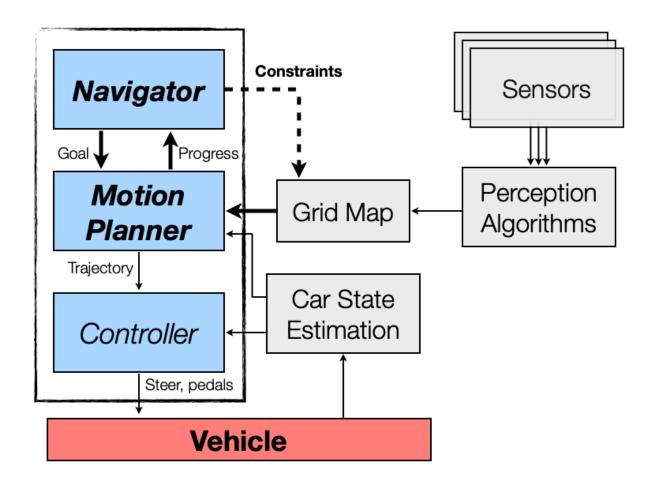


Autonomous vehicles

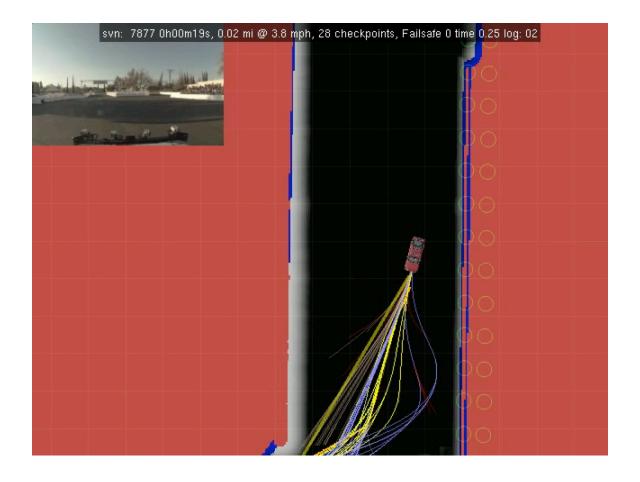


A* Algorithm for Navigating through the Road Network

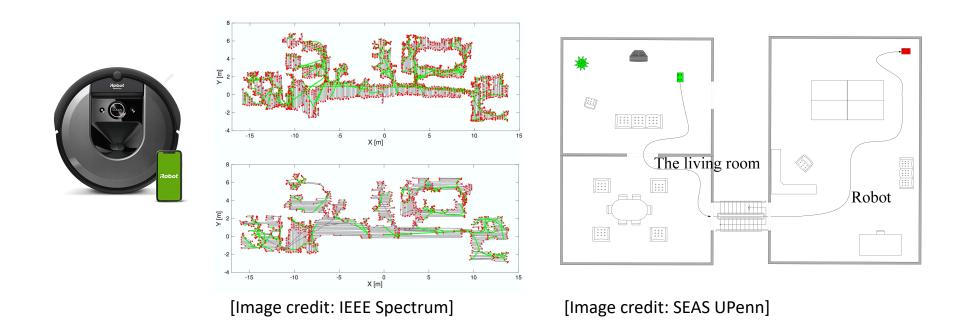
Autonomous vehicles



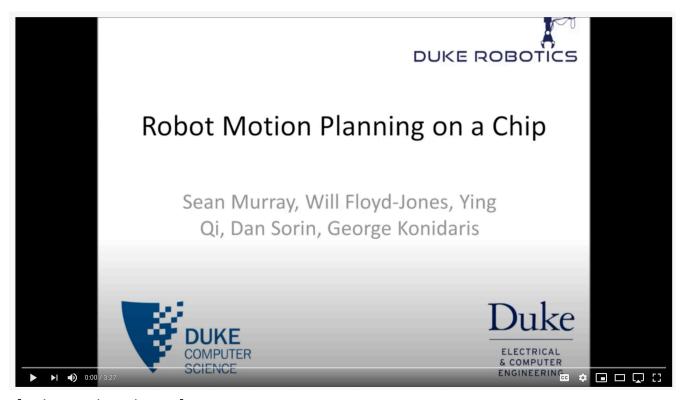
Autonomous vehicles



Service robots



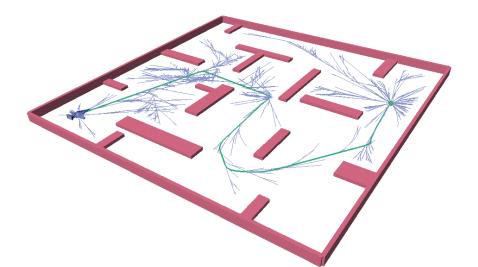
Robot manipulators



[Video: Duke robotics]

Sampling-based Methods

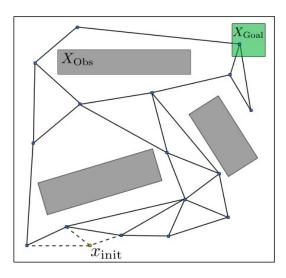
- Key challenges:
 - How to best sample the configuration space?
 - Optimality? Completeness?



Probabilistic RoadMap (PRM Algorithm)

- 1. Sample N points uniformly at random from C
- 2. Connect each pair with a straight trajectory
- 3. Delete all vertices and edges that lie in the obstacle set C_{obs}
- 4. Return the remaining roadmap G=(V,E)

Probabilistically complete!



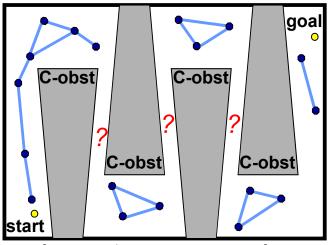
[Image credit: Sertac Karaman RSS]

Dynamic environments?

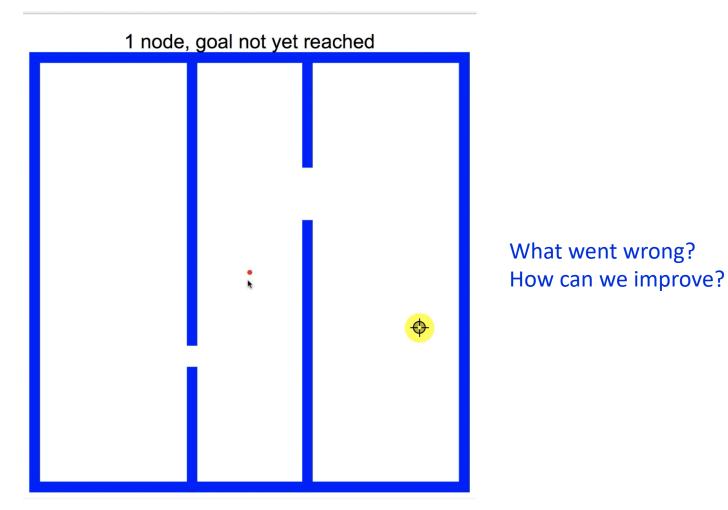
Narrow passages?

PRM: Pros vs. Cons

- Probabilistically complete
 - Probability of returning a solution approaches 1 as the number of samples increases
- But... performance (# samples needed) can be environmentdependent

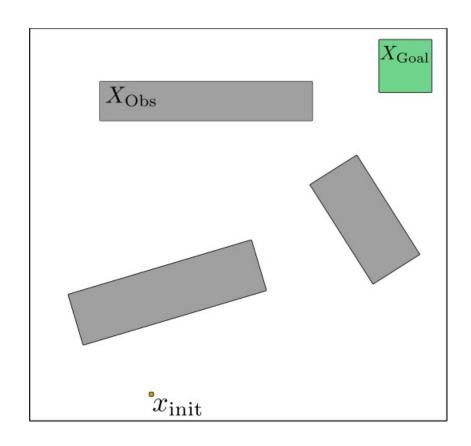


Incremental Sampling: Random Trees

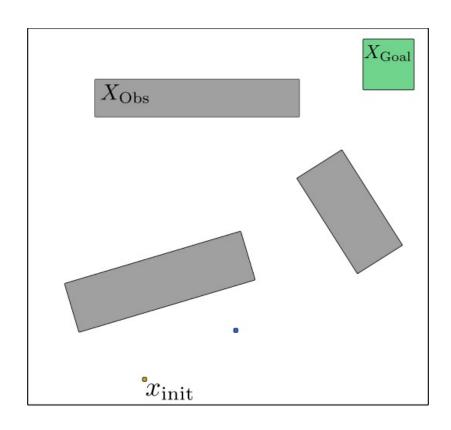


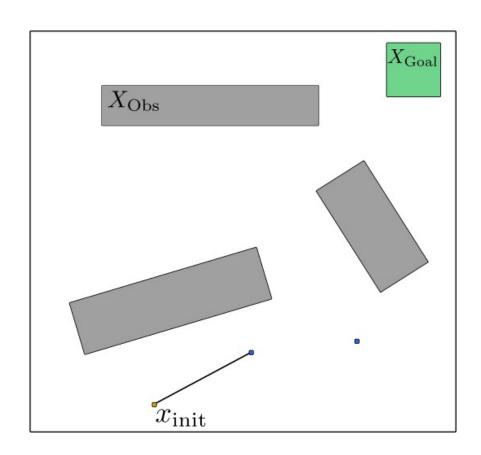
[Video source: Aaron Becker University of Houston]

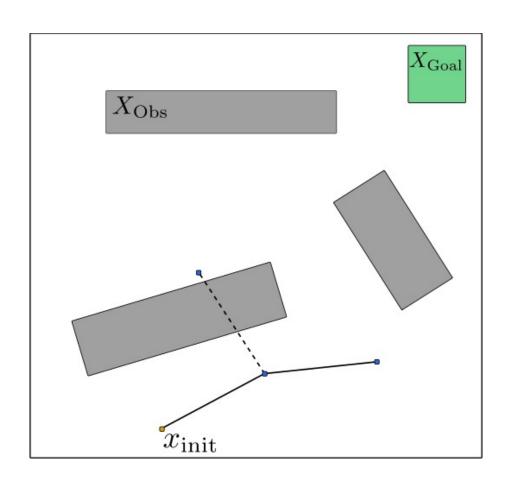
Rapidly-exploring Random Tree (RRT) Algorithm

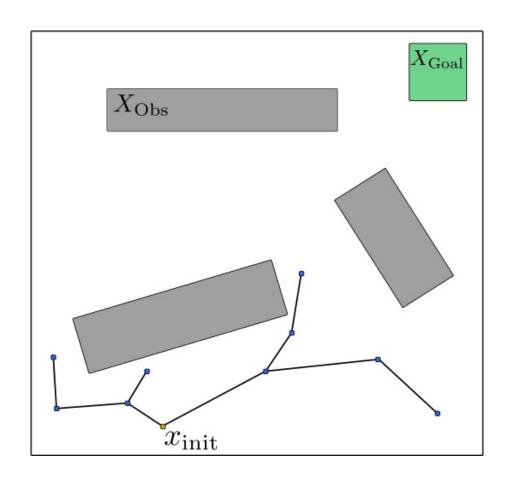


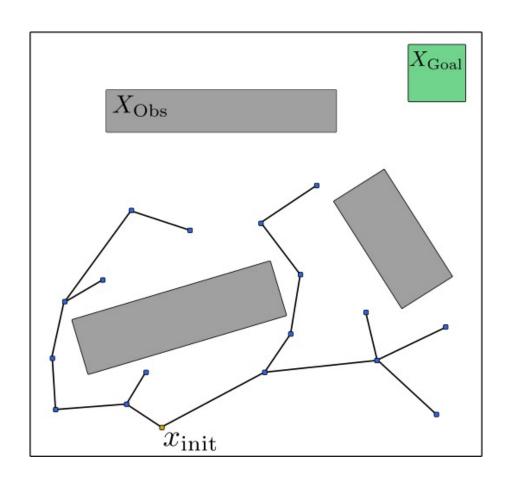
Rapidly-exploring Random Tree (RRT) Algorithm



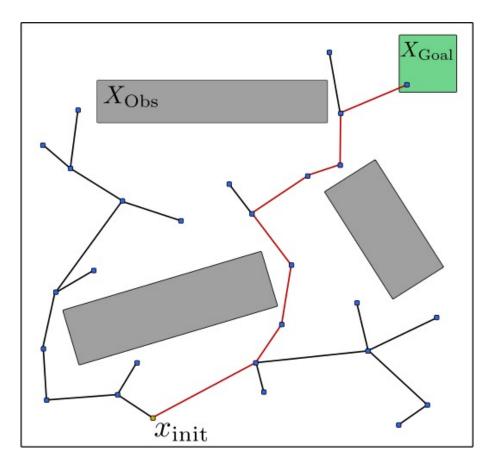




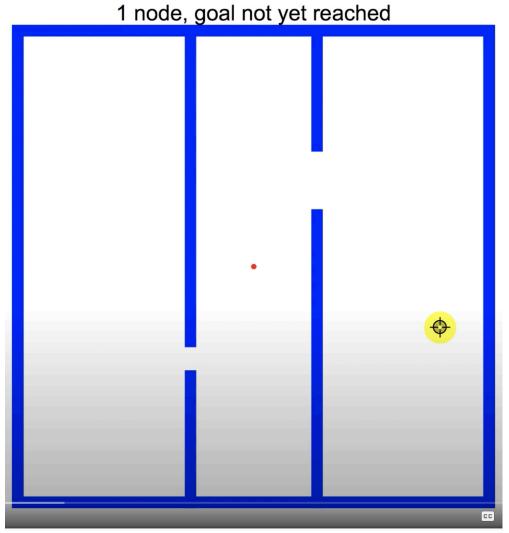








RRT Example



Variants?

- Dynamically feasible paths
- Biasing the search

How might we improve?

[Video source: Aaron Becker University of Houston]

Probabilistic Completeness vs. Optimality

• Q3: Is RRT optimal (i.e. does it produce the shortest path)?

CS 286 44

Probabilistic Completeness vs. Optimality

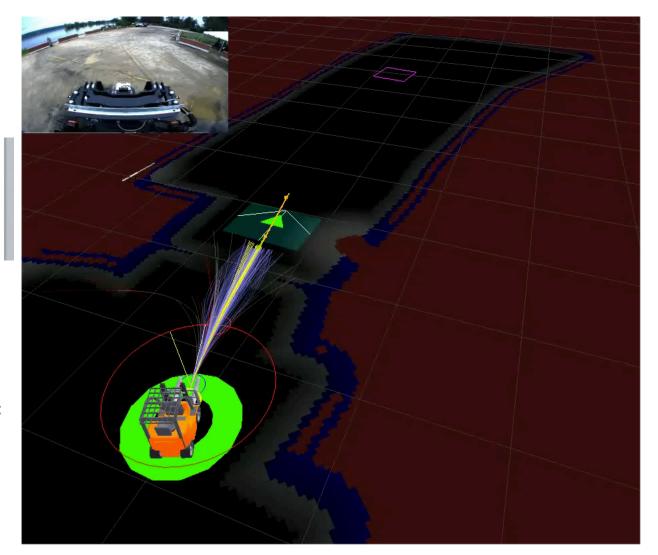
Re: new video

Looks great!

At around 6:03 the bot drives forward and right for an unknown reason -- any idea why?

[Image credit: Sertac Karaman]

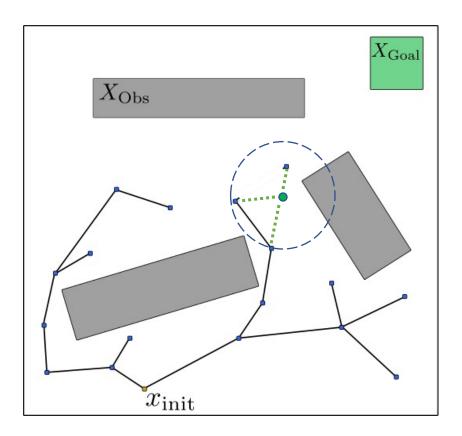
- [Sertac Karaman, PhD'12. Thesis Title: Sampling-based Algorithms for Optimal Path Planning Problems. (Advisor: Emilio Frazzoli)]
- [Brandon Luders, PhD'14. Thesis Title: Robust Samplingbased Motion Planning for Autonomous Vehicles in Uncertain Environments (Advisor: Jonathan How)]



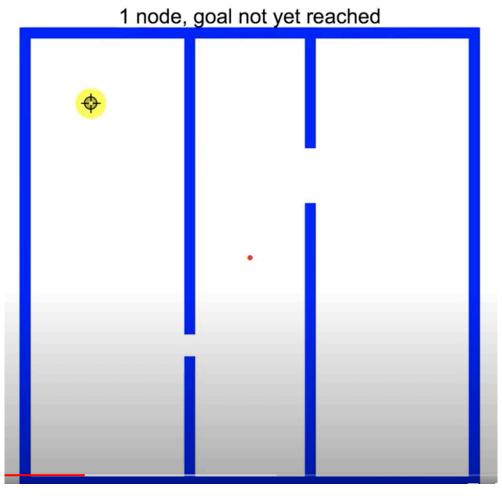
RRT* Algorithm: Intuitive Explanation

- 1. Sample
- 2. Select best parent node

 Minimize cost from the root
- 3. Find new lower cost paths
- 4. Rewire the tree

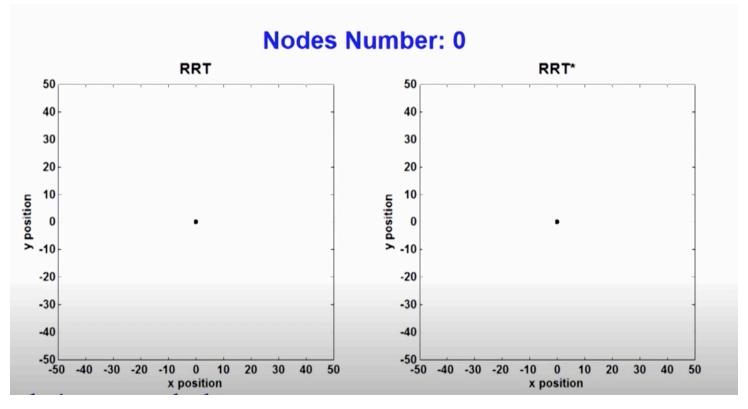


RRT* Example



[Video source: Aaron Becker University of Houston]

Iterations of RRT vs RRT*

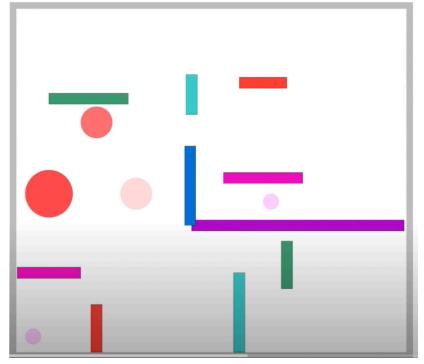


[Simulation by Yiqun Dong]

Variants

• Vehicle dynamics?

• Changing environments?



[Video credit: RRT* FND Advanced Robotics and Mechatronics Systems Laboratory (ARMS)]

Variants

• High DOF?

[Video credit: IROS '11 Perez, Karaman, Shkolnik, Frazzoi, Teller, and Walter]

Next Time...

- Constraint Satisfaction Problems
 - Reference readings R&N Ch. 6 (Sec 6.1-6.3)