
CS 182 Lecture 4: 
Motion Planning
Professors: Ariel Procaccia and Stephanie Gil
Email: sgil@seas.harvard.edu
Prof. Gil Office hours: Wednesdays 2:30-3:30p
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Last Time:

• Informed search
• Greedy best-first search
• A*
• Optimality of A*
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This Time:

• Motion planning
• Discretizing an environment
• Searching for a path from start state to goal state (tie to previous lecture)
• Questions of optimality

• Practical motion planning
• Higher dimensions
• Some real-world problems and examples

• Reference reading: “Planning Algorithms” by Steven LaValle Ch. 5&6 
(available online)
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The Motion Planning Problem

• What series of motions will get the robot to the goal?

• Are there cases where there is no solution to this problem?
• Why would this happen?
• Is there a way to know this is the case?
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Practicalities: Modeling the Problem

• Problem: find a series of valid configurations that move the object 
from source to destination

• Validity?
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Environment imposed: 
Obstacle-free

Dynamics imposed: 
Can my agent do that?



Configuration Space
• Idea: focus on point robots – a point represents a 

state (i.e. pose, manipulator position)
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Example: Configuration Space
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[Video: Duke robotics]



Example: Manipulator Arm
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Modeling the Problem (cont.)
• Given:
• A robot with configuration space C
• The set of obstacles: Cobs

• An initial configuration: qinit

• A goal configuration qgoal

• Problem: Find a path x:[0,1]--> C (a continuous function) such 
that the path follows the requirements of
• Starts from the initial configuration x(0)=qinit

• Reaches the goal configuration x(1)=qgoal

• Avoids collision with obstacles 𝑥 𝑠 ∉ 𝐶'() for all 𝑠 ∈ [0,1]
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Overview: State-space Search Methods
• Similar to the search problems 

that you are already familiar 
with!

• Depth-first search

• Breadth-first search

• A* search

• Performance guarantees?
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Planning in Discrete State Space 
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search 10

Planning in Discrete State Space 
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search
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Planning as Tree Search

Planning as Tree Search

“Candidate states” are 
those that are reachable 
through available actions
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Planning as Tree Search

Planning as Tree Search
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....

Planning as Tree Search

… How can such searching be made effective and efficient?

Move Generation
• Which state-action pair to consider next?
• Shallowest next

– Aka: Breadth-first search
– Guarantees shortest path
– But: storage-intensive

• Deepest next
– Aka: Depth-first search
– Can use minimal storage
– But: no optimality guarantee

These approaches rely on an 
assumption, what is it?



Common Performance Guarantee

• Performance guarantee of interest: 

• An algorithm is complete if 
1) it terminates in finite time and 
2) it returns a solution when one exists or it returns failure otherwise
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Discretizing the Space

Cell decomposition à going from free space to graph search
• Must satisfy the following properties:
1. Accessibility - Computing a path from one point to another inside a cell

must be trivially easy
• For example, if every cell is convex then any pair of points in a cell can be connected 

by a line segment

2. Representation – Adjacency information for the cells can be easily 
extracted to build the roadmap

3. Querying – For any two points 𝑞! and 𝑞" it should be efficient to 
determine which cells contain them
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Vertical Cell Decomposition
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6.2. POLYGONAL OBSTACLE REGIONS 255

(a) (b)

Figure 6.3: The vertical cell decomposition method uses the cells to construct a
roadmap, which is searched to yield a solution to a query.

General position issues What if two points along Cobs lie on a vertical line
that slices through Cfree? What happens when one of the edges of Cobs is vertical?
These are special cases that have been ignored so far. Throughout much of com-
binatorial motion planning it is common to ignore such special cases and assume
Cobs is in general position. This usually means that if all of the data points are
perturbed by a small amount in some random direction, the probability that the
special case remains is zero. Since a vertical edge is no longer vertical after being
slightly perturbed, it is not in general position. The general position assumption is
usually made because it greatly simplifies the presentation of an algorithm (and, in
some cases, its asymptotic running time is even lower). In practice, however, this
assumption can be very frustrating. Most of the implementation time is often de-
voted to correctly handling such special cases. Performing random perturbations
may avoid this problem, but it tends to unnecessarily complicate the solutions. For
the vertical decomposition, the problems are not too difficult to handle without
resorting to perturbations; however, in general, it is important to be aware of this
difficulty, which is not as easy to fix in most other settings.

Defining the roadmap To handle motion planning queries, a roadmap is con-
structed from the vertical cell decomposition. For each cell Ci, let qi denote a
designated sample point such that qi ∈ Ci. The sample points can be selected as
the cell centroids, but the particular choice is not too important. Let G(V,E) be
a topological graph defined as follows. For every cell, Ci, define a vertex qi ∈ V .
There is a vertex for every 1-cell and every 2-cell. For each 2-cell, define an edge
from its sample point to the sample point of every 1-cell that lies along its bound-
ary. Each edge is a line-segment path between the sample points of the cells. The
resulting graph is a roadmap, as depicted in Figure 6.4. The accessibility condi-
tion is satisfied because every sample point can be reached by a straight-line path
thanks to the convexity of every cell. The connectivity condition is also satisfied

Fig. 6.3 from LaValle text
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From Cells to a Graph

• Choose any vertex inside of a cell and connect adjacent cells in a way 
that accessibility is preserved
• This is called a “roadmap” in motion planning
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256 S. M. LaValle: Planning Algorithms

Figure 6.4: The roadmap derived from the vertical cell decomposition.

qI

qG

Figure 6.5: An example solution path.

Fig. 6.4 from LaValle text



Solving for a Path from a Query

• Solving for a path between two query points (𝑞!, 𝑞"):

• Q1: Use 1) DFS expanding rightmost descendant first and 2) A* search 
using distance as edge cost to find a path from 𝑞! 𝑡𝑜 𝑞"
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Solving for a Path from a Query

• Solving for a path between two query points (𝑞!, 𝑞"):

16

Fig. 6.5 from LaValle text

256 S. M. LaValle: Planning Algorithms

Figure 6.4: The roadmap derived from the vertical cell decomposition.
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Figure 6.5: An example solution path.
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Figure 6.10: A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the line must extend outward past each of them
without poking into Cobs.

Figure 6.11: The shortest-path roadmap includes edges between consecutive reflex
vertices on Cobs and also bitangent edges.

Bitangent edges: If a bitangent line can be drawn through a pair of reflex
vertices, then a corresponding edge is made in G. A bitangent line, depicted
in Figure 6.10, is a line that is incident to two reflex vertices and does not
poke into the interior of Cobs at any of these vertices. Furthermore, these
vertices must be mutually visible from each other.

An example of the resulting roadmap is shown in Figure 6.11. Note that the
roadmap may have isolated vertices, such as the one at the top of the figure. To
solve a query, qI and qG are connected to all roadmap vertices that are visible;
this is shown in Figure 6.12. This makes an extended roadmap that is searched
for a solution. If Dijkstra’s algorithm is used, and if each edge is given a cost that
corresponds to its path length, then the resulting solution path is the shortest path
between qI and qG. The shortest path for the example in Figure 6.12 is shown in
Figure 6.13.

If the bitangent tests are performed naively, then the resulting algorithm re-
quires O(n3) time, in which n is the number of vertices of Cobs. There are O(n2)
pairs of reflex vertices that need to be checked, and each check requires O(n) time
to make certain that no other edges prevent their mutual visibility. The plane-
sweep principle from Section 6.2.2 can be adapted to obtain a better algorithm,

Fig. 6.11 from LaValle text

Visibility Graph – Another Type of Discretization

• A visibility graph results in the optimal 
shortest path roadmap
• Two edge types:
• Reflex vertex - A polygonal vertex for which the 

interior angle (in Cfree) is greater than 𝜋
• Vertices of a convex polygon are reflex vertices –

draw an edge between these
• Bitangent edges – Mutually visible vertices are 

connected
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qG

qI

Figure 6.12: To solve a query, qI and qG are connected to all visible roadmap
vertices, and graph search is performed.

qG

qI

Figure 6.13: The shortest path in the extended roadmap is the shortest path
between qI and qG.

which takes only O(n2 lg n) time. The idea is to perform a radial sweep from each
reflex vertex, v. A ray is started at θ = 0, and events occur when the ray touches
vertices. A set of bitangents through v can be computed in this way in O(n lg n)
time. Since there are O(n) reflex vertices, the total running time is O(n2 lg n). See
Chapter 15 of [264] for more details. There exists an algorithm that can compute
the shortest-path roadmap in time O(n lg n+m), in which m is the total number
of edges in the roadmap [384]. If the obstacle region is described by a simple poly-
gon, the time complexity can be reduced to O(n); see [709] for many shortest-path
variations and references.

To improve numerical robustness, the shortest-path roadmap can be imple-
mented without the use of trigonometric functions. For a sequence of three points,
p1, p2, p3, define the left-turn predicate, fl : R2 × R2 × R2 → {true, false}, as

Fig. 6.12 from LaValle text



Shortest-Path Roadmap

• This idea of the shortest-path roadmap may be the first example of a 
motion planning algorithm!

• Construction complexity (bitangent tests) is O(nlgn+m)
• This can be faster for certain types of environments
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# of edges in 
the roadmap
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Question of Optimality?

• For any path x:[0,1]--> Cfree, it is always possible to find a shorter path 
à therefore the shortest path problem in Cfree is ill-poised!

• Consider the problem of determining the shortest path in cl(Cfree) 
• i.e. the agent is allowed to touch or graze obstacles
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Optimality Proof
Lemma - Consider a set 𝑆 of disjoint polygonal obstacles, and start and 
goal positions 𝑞! and 𝑞" respectively. Any shortest path between 𝑞! and 
𝑞" is a polygonal path where the inner vertices are vertices of 𝑆

Proof by contradiction – Assume that this is not the case and that the 
shortest path goes through a point p in (the interior) Cfree
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𝜖∃ 𝜖 > 0 𝑠. 𝑡.
𝑏𝑎𝑙𝑙 𝜖 ∈ 𝐶!"##

𝑝

A shorter path! Same argument 
applies

𝜖 𝑝Try a 
polygonal 
path in Cfree



Visibility Graph-based Path Finding

• Recap
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Algorithm:
ØCreate a graph:
ØVertex set: all vertices on polygonal 

obstacles
ØEdge set: all vertex pairs that can 

be connected by a straight collision 
free path

ØReturn the shortest path on this 
graph.

5

Off-Line Motion Planning

Start

Goal

• Today, we’ll make some strong assumptions:

– Robot has perfect map of start, obstacles, goal 

– Robot can localize itself globally with no error

Observation

Start

Goal

• Suppose all obstacles are polygons.

• If there exists a collision-free path from start to

goal, then there exists a piecewise-linear path 

involving only start, goal and obstacle vertices
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Visibility Graph Algorithm

Start

Goal

• Construct graph G = (V, E)
– V = {obstacle vertices} ȣ {Start, Goal} 

Visibility Graph Algorithm

Start

Goal

• Construct graph G = (V, E)
– V = {obstacle vertices} ȣ {Start, Goal}
– E = edges (vi, vj) disjoint from obstacle interiors
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Visibility Graph Algorithm

Start

Goal

• Construct graph G = (V, E)
– V = {obstacle vertices} ȣ {Start, Goal} 

Visibility Graph Algorithm

Start

Goal

• Construct graph G = (V, E)
– V = {obstacle vertices} ȣ {Start, Goal}
– E = edges (vi, vj) disjoint from obstacle interiors
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Find Shortest Path in Graph G
• Use Dijkstra’s algorithm rooted at start vertex

Start

Goal

Dijkstra’s Algorithm

1  function Dijkstra (G, w, s) // Graph G, weights w, source s
2     for each vertex v in V[G]            // Initialize d[ ], previous, S, and Q
3        d[v] := �                              // Vertex v is not yet reached
4        previous[v] := undefined //   … so there’s no path to it yet
5     d[s] := 0 // Source reachable with zero cost
6     S := empty set // Set of vertices reached so far
7     Q := set of all vertices // Set of candidate vertices
8     while Q is not an empty set              // While unreached vertices
9        u := vtx v in Q with minimum d[v] // O(n) search or Fibonacci heap
10       S := S union {u}                             // Vertex u reached
11       for each edge (u, v) // For each neighbor v of u
12          if d[u] + w(u,v) < d[v]         // If lower-cost path to v exists via u
13             d[v] := d[u] + w(u,v) //   … update cost to v
14             previous[v] := u                      //   … and update path record

Single-source Shortest Path

Visibility Graph Approach

This algorithm returns the shortest 
path (in 2D)!



Practicality of using Visibility Graphs?

• Q2 (polls everywhere): Can we scale-up to 3D?
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Find Shortest Path in Graph G
• Use Dijkstra’s algorithm rooted at start vertex

Start

Goal
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1  function Dijkstra (G, w, s) // Graph G, weights w, source s
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9        u := vtx v in Q with minimum d[v] // O(n) search or Fibonacci heap
10       S := S union {u}                             // Vertex u reached
11       for each edge (u, v) // For each neighbor v of u
12          if d[u] + w(u,v) < d[v]         // If lower-cost path to v exists via u
13             d[v] := d[u] + w(u,v) //   … update cost to v
14             previous[v] := u                      //   … and update path record

Single-source Shortest Path



Navigation in 3D is NP-hard
•Visibility graph only applies to 2D Euclidean spaces
• Intuition: in 3D, the optimal path does not have to go 

through vertices, and might go through edges instead…

• Optimal path planning in 3D is NP-hard
• Extensive computational issues (# obstacles, dimension of 

the workspace, dynamics, etc.)
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Recap on State-space Search Methods

• Rely on discretization of the configuration space

• Guarantees resolution completeness: the algorithm returns a solution 
when one exists, if the resolution parameter is fine enough

• Exponential running time with increasing degrees of freedom
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Sampling-based Methods
• Key idea: 
• Sample the configuration space  
• Connect samples with trajectories to infer the connectivity of the 

free space

• Probabilistic RoadMap (PRM) and Rapidly-exploring Random 
Trees (RRT) are two widely used variants of this method

25
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Fig. 9. Rapidly exploring random trees of 13,600 nodes and solution trajectory for the planar body with unilateral thrusters
that allow it to rotate freely but translate only in the forward direction.

RRTs generated during the planning process, and Figure 11
shows one candidate solution found after a total of 16,300
nodes were explored. The average total computation time for
this case was approximately 1 minute. The tolerances used
for state connection were (εp = 0.1, εv = 0.1).

4. Three-Dimensional Body with Rotation (dim X = 12).
Finally, we show two results for underactuated rigid bodies
in a 3-dimensional world. These examples lead to a 12-
dimensional state space.

The first result is a fully orientable satellite model with
limited translation. The satellite is assumed to have momen-
tum wheels that enable it to orient itself along any axis and a
single pair of opposing thruster controls that allow it to trans-
late along the primary axis of the cylinder. This model has a
12-dimensional state space:
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The task of the satellite, modeled as a rigid cylindrical object
of radius 0.2 m and height 0.6 m, is to perform a collision-
free docking maneuver into the cargo bay of the space shut-
tle model amid a cloud of obstacles. Figure 12 shows
the trajectories explored during the planning process, and
Figure 13 shows a candidate solution found after 23,800 states



Some Practical Examples…
• Autonomous vehicles 
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[Slide credit: Sertac Karaman, MIT DARPA Urban Challenge]
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• Autonomous vehicles 

[Slide credit: Sertac Karaman, MIT DARPA Urban Challenge]

Some Practical Examples…



28

• Autonomous vehicles 

Some Practical Examples…
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• Service robots 

[Image credit: IEEE Spectrum] [Image credit: SEAS UPenn]

Some Practical Examples…
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• Robot manipulators

[Video: Duke robotics]

Some Practical Examples…



Sampling-based Methods
• Key challenges: 
• How to best sample the configuration space?  
• Optimality? Completeness?

31
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The task of the satellite, modeled as a rigid cylindrical object
of radius 0.2 m and height 0.6 m, is to perform a collision-
free docking maneuver into the cargo bay of the space shut-
tle model amid a cloud of obstacles. Figure 12 shows
the trajectories explored during the planning process, and
Figure 13 shows a candidate solution found after 23,800 states



Probabilistic RoadMap (PRM Algorithm)

1. Sample N points uniformly at 
random from C

2. Connect each pair with a 
straight trajectory

3. Delete all vertices and edges 
that lie in the obstacle set Cobs

4. Return the remaining roadmap 
G=(V,E)
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Probabilistically complete!

Dynamic environments?

Narrow passages?

[Image credit: Sertac Karaman RSS]



PRM: Pros vs. Cons
• Probabilistically complete
• Probability of returning a solution approaches 1 as the number of 

samples increases

• But… performance (# samples needed) can be environment-
dependent

33
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PRMs: Pros and Cons
Advantages

1. Probabilistically complete
2. Easily applied to high-dimensional C-spaces
3. Supports fast queries (w/ enough preprocessing)

Many success stories in which PRMs have been
applied to problems previously thought intractable

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

Disadvantages

PRMs don’t work well for some problems:
– Unlikely to sample nodes in narrow passages
– Hard to connect nodes along constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst
? ? ?

Sampling Around Obstacles:
OBPRM [Amato et al. 1998]

start

goal

C-obst

C-obst

C-obst

C-obst

To navigate narrow passages we must sample inside them
Most PRM nodes placed where planning is easy, not where it’s hard

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
• We cannot explicitly construct the C-obstacles, but...
• We do have models of the (workspace) obstacles!

OBPRM Roadmap

[Image credit: Sertac Karaman RSS]



Incremental Sampling: Random Trees 

34
[Video source: Aaron Becker University of Houston]

What went wrong? 
How can we improve?



Rapidly-exploring Random Tree (RRT) 
Algorithm
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Rapidly-exploring Random Tree (RRT) 
Algorithm
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Rapidly-exploring Random Tree (RRT) 
Algorithm
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Rapidly-exploring Random Tree (RRT) 
Algorithm
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Rapidly-exploring Random Tree (RRT) 
Algorithm
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Rapidly-exploring Random Tree (RRT) 
Algorithm
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Rapidly-exploring Random Tree (RRT) 
Algorithm
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Rapidly-exploring Random Tree (RRT) 
Algorithm
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RRT Example
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Variants?
• Dynamically feasible 

paths
• Biasing the search

How might we 
improve?

[Video source: Aaron Becker University of Houston]



Probabilistic Completeness vs. Optimality

CS 286 44

• Q3: Is RRT optimal (i.e. does it produce the shortest path)?



Probabilistic Completeness vs. Optimality

CS 286 45

• [Sertac Karaman, PhD’12. Thesis Title: Sampling-based 
Algorithms for Optimal Path Planning Problems. (Advisor: 
Emilio Frazzoli)]

• [Brandon Luders, PhD’14. Thesis Title: Robust Sampling-
based Motion Planning for Autonomous Vehicles in 
Uncertain Environments (Advisor: Jonathan How)]

[Image credit: Sertac Karaman]



RRT* Algorithm: Intuitive Explanation
1. Sample

2. Select best parent node

3. Find new lower cost paths

4. Rewire the tree
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Minimize cost from the root



RRT* Example
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[Video source: Aaron Becker University of Houston]



Iterations of RRT vs RRT*
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[Simulation by  Yiqun Dong]



Variants
• Vehicle dynamics?

• Changing environments?
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[Video credit: RRT* FND Advanced Robotics and 
Mechatronics Systems Laboratory (ARMS)]



Variants
• High DOF?
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[Video credit: IROS ’11 Perez, Karaman, Shkolnik, Frazzoi, Teller, and Walter]



Next Time…

• Constraint Satisfaction Problems
• Reference readings R&N Ch. 6 (Sec 6.1-6.3)
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