CS 182 Lecture 4.
Motion Planning

Professors: Ariel Procaccia and Stephanie Gil

Email: sgil@seas.harvard.edu
Prof. Gil Office hours: Wednesdays 2:30-3:30p
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Last Time:

* Informed search
* Greedy best-first search
° A*
* Optimality of A*



This Time:

* Motion planning
* Discretizing an environment

» Searching for a path from start state to goal state (tie to previous lecture)
e Questions of optimality

* Practical motion planning
* Higher dimensions
e Some real-world problems and examples

e Reference reading: “Planning Algorithms” by Steven LaValle Ch. 5&6
(available online)



The Motion Planning Problem

* What series of motions will get the robot to the goal?

* Are there cases where there is no solution to this problem?
 Why would this happen?
* |s there a way to know this is the case?



Practicalities: Modeling the Problem

* Problem: find a series of valid configurations that move the object
from source to destination

Environment imposed:

.Va“dity?/Obstacle-free

\ Dynamics imposed:

Can my agent do that?



Planning Space

Configuration Space

Configuration Space

* |dea: focus on point robots — a point represents a
state (i.e. pose, manipulator position)
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Orientation (0) Orientation (p, v, 0)




Example: Configuration Space

[Video: Duke robotics]



Example: Manipulator Arm

L




Modeling the Problem (cont.)

* Given:
* A robot with configuration space C
* The set of obstacles: C,,,
* An initial configuration: q;,;
* A goal configuration qg,

* Problem: Find a path x:[0,1]--> C (a continuous function) such
that the path follows the requirements of
e Starts from the initial configuration x(0)=q;;;
* Reaches the goal configuration x(1)=0,,
* Avoids collision with obstacles x(s) & C,p forall s € [0,1]



Overview: State-space Search Methods
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* Depth-first search

A”

 Breadth-first search ‘4

e A* search

These approaches rely on an
assumption, what is it?

* Performance guarantees?



Common Performance Guarantee

* Performance guarantee of interest:

* An algorithm is complete if
1) it terminates in finite time and
2) it returns a solution when one exists or it returns failure otherwise



Discretizing the Space

Cell decomposition = going from free space to graph search

* Must satisfy the following properties:

1. Accessibility - Computing a path from one point to another inside a cell

must be trivially easy
* For example, if every cell is convex then any pair of points in a cell can be connected
by a line segment
2. Representation — Adjacency information for the cells can be easily
extracted to build the roadmap

3. Querying — For any two points g4 and g it should be efficient to
determine which cells contain them



Vertical Cell Decomposition

&,

C:free

Fig. 6.3 from LaValle text

1-ce

2-cell

Each cell is
convex so
accessibility
condition is
satisfied

Preserves
the
connectivity
of Cfree
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From Cells to a Graph

* Choose any vertex inside of a cell and connect adjacent cells in a way
that accessibility is preserved

 This is called a “roadmap” in motion planning

Fig. 6.4 from LaValle text
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Solving for a Path from a Query

* Solving for a path between two query points (g4, g ):

Fig. 6.4 from LaValle text

* Q1: Use 1) DFS expanding rightmost descendant first and 2) A* search
using distance as edge cost to find a path from g4 to q.
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Solving for a Path from a Query

* Solving for a path between two query points (g4, q¢):

Fig. 6.5 from LaValle text
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Visibility Graph — Another Type of Discretization

* A visibility graph results in the optimal
shortest path roadmap

* Two edge types:
» Reflex vertex - A polygonal vertex for which the
interior angle (in C;,..) is greater than

* Vertices of a convex polygon are reflex vertices —
draw an edge between these

* Bitangent edges — Mutually visible vertices are
connected

7
M

qa

Fig. 6.12 from LaValle text
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Shortest-Path Roadmap

* This idea of the shortest-path roadmap may be the first example of a
motion planning algorithm!

qr

# of edges in
Fig. 6.13 from LaValle text the roadmap

/
* Construction complexity (bitangent tests) is O(nlgn+m)

* This can be faster for certain types of environments
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Question of Optimality?

* For any path x:[0,1]--> C;,.,, it is always possible to find a shorter path
—> therefore the shortest path problem in C;,. is ill-poised!

* Consider the problem of determining the shortest path in cl(Cs )
* i.e.the agentis allowed to touch or graze obstacles

qr

qa

Fig. 6.13 from LaValle text +



Optimality Proof

Lemma - Consider a set S of disjoint polygonal obstacles, and start and
goal positions g; and q. respectively. Any shortest path between g, and
qc is a polygonal path where the inner vertices are vertices of §

Proof by contradiction — Assume that this is not the case and that the
shortest path goes through a point p in (the interior) Cy,..

Try a
Je > 0s.t. polygonal
ball(€) € Crree w path in Cree Q

A shorter path! Same argument
applies




Visibility Graph-based Path Finding

* Recap

A|gorithm; Visibility Graph Approach

> Create a graph: . '

» \ertex set: all vertices on polygonal ( (
obstacles A L

» Edge set: all vertex pairs that can
be connected by a straight collision
free path

» Return the shortest path on this
graph.

This algorithm returns the shortest
path (in 2D)! 21



Practicality of using Visibility Graphs?

* Q2 (polls everywhere): Can we scale-up to 3D?




Navigation in 3D is NP-hard

* Visibility graph only applies to 2D Euclidean spaces

* Intuition: in 3D, the optimal path does not have to go
through vertices, and might go through edges instead...

gy

* Optimal path planning in 3D is NP-hard
e Extensive computational issues (# obstacles, dimension of
the workspace, dynamics, etc.)



Recap on State-space Search Methods

* Rely on discretization of the configuration space

* Guarantees resolution completeness: the algorithm returns a solution
when one exists, if the resolution parameter is fine enough

* Exponential running time with increasing degrees of freedom



Sampling-based Methods

* Key idea:
* Sample the configuration space

* Connect samples with trajectories to infer the connectivity of the
free space

* Probabilistic RoadMap (PRM) and Rapidly-exploring Random
Trees (RRT) are two widely used variants of this method
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Some Practical Examples...

e Autonomous vehicles

A* Algorithm for Navigating through the Road Network

Navigator

Progress

Motion
Planner

Trajectory

\ 4

Controller

Steer, pedals

A 4

[Slide credit: Sertac Karaman, MIT DARPA Urban Challenge]
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Some Practical Examples...
 Autonomous vehicles

| Constraints
| Navigator t---, “ Sensors
A 1
G rogr '
oali Progress v P lu
Motion , ) erception
Planner : Grid Map [+ Algorithms
Trajeotoryl 1\
Car State
Controller |+ Estimation
Steer, pedals
Vehicle

[Slide credit: Sertac Karaman, MIT DARPA Urban Challenge]



Some Practical Examples...

e Autonomous vehicles
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Some Practical Examples...

 Service robots

- —
— : ‘ ‘ ‘ ‘. The living room
N

0
X [m]

[Image credit: IEEE Spectrum]

[Image credit: SEAS UPenn]




Some Practical Examples...

* Robot manipulators

e

DUKE ROBOTICS

Robot Motion Planning on a Chip

Duke

DUKE
COMPUTER ELECTRICAL
& COMPUTER
WRERNETS @ O [ L

[Video: Duke robotics]



Sampling-based Methods

* Key challenges:
* How to best sample the configuration space?
* Optimality? Completeness?
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Probabilistic RoadMap (PRM Algorithm)

Sample N points uniformly at

Probabilistically complete!
random from C

Connect each pair with a
straight trajectory

Delete all vertices and edges
that lie in the obstacle set C,,,

[Image credit: Sertac Karaman RSS]

Return the remaining roadmap Dynamic environments?
G=(V,E)

Narrow passages?
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PRM: Pros vs. Cons

* Probabilistically complete

* Probability of returning a solution approaches 1 as the number of
samples increases

* But... performance (# samples needed) can be environment-

dependent
P~ e ° gogl
e (C-obst C-obst \
A7 ’
\ . C-obst C-obst
o \ Py / ®

o
start
[Image credit: Sertac Karaman RSS]




Incremental Sampling: Random Trees

1 node, goal not yet reached

What went wrong?
How can we improve?

[Video source: Aaron Becker University of Houston]
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Rapidly-exploring Random Tree (RRT)
Algorithm




Rapidly-exploring Random Tree (RRT)
Algorithm




Rapidly-exploring Random Tree (RRT)
Algorithm
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Rapidly-exploring Random Tree (RRT)
Algorithm

-

q
Linit




Rapidly-exploring Random Tree (RRT)
Algorithm

Loz




Rapidly-exploring Random Tree (RRT)
Algorithm




Rapidly-exploring Random Tree (RRT)
Algorithm




Rapidly-exploring Random Tree (RRT)
Algorithm




RRT Example

1 node, goal not yet reached

[Video source: Aaron Becker University of Houston]

Variants?

e Dynamically feasible
paths

e Biasing the search

How might we
improve?
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Probabilistic Completeness vs. Optimality

* Q3:Is RRT optimal (i.e. does it produce the shortest path)?



[Im

Probabilistic Completeness vs. Optimality

Re: new video

Looks great!

At around 6:03 the bot drives forward and right for
an unknown reason -- any idea why?

age credit: Sertac Karaman]

[Sertac Karaman, PhD’12. Thesis Title: Sampling-based
Algorithms for Optimal Path Planning Problems. (Advisor:
Emilio Frazzoli)]

[Brandon Luders, PhD’14. Thesis Title: Robust Sampling-
based Motion Planning for Autonomous Vehicles in
Uncertain Environments (Advisor: Jonathan How)]
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RRT* Algorithm: Intuitive Explanation

1. Sample

2. Select best parent node
Minimize cost from the root

3. Find new lower cost paths

4. Rewire the tree
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RRT* Example

1 node, goal not yet reached

[Video source: Aaron Becker University of Houston]
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lterations of RRT vs RRT*
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[Simulation by Yiqun Dong]
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Variants

* Vehicle dynamics?

év f\%\? N A —‘ ]

* Changing environments? . | e
|

[Video credit: RRT* FND Advanced Robotics and
Mechatronics Systems Laboratory (ARMS)]
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Variants
* High DOF?

Planning for both arms

(12 Degrees of freedom)

> » o) 0:06/1:40

[Video credit: IROS '11 Perez, Karaman, Shkolnik, Frazzoi, Teller, and Walter]



Next Time...

e Constraint Satisfaction Problems
» Reference readings R&N Ch. 6 (Sec 6.1-6.3)



