
CS 182 Lecture 3:
Informed Search and

Local Search
Professors: Ariel Procaccia and Stephanie Gil
Email: sgil@seas.harvard.edu
Prof. Gil Office hours: Wednesdays 2:30-3:30p

mailto:sgil@seas.harvard.edu

Last Time:

• Problem representation
• States
• Actions
• Successor functions

• Uninformed search
• DFS
• BFS
• And variants like IDS

• Today: reference readings Russell and Norvig ch 3.5-
3.7, 4.1

Last Time: Breadth-first Search

• Is BFS optimal?
• Airline route example…

PHX

LAX HK

SINSFO

NY Frankfurt Tokyo

1 1
1

1 1

1

1 1

1

$$
$$

$

$$ $$

$ $
$$

Uniform-cost Search

• Idea: change the order of node expansion
• Uniform-cost search – expand the node 𝑛 with the

lowest path cost 𝑔(𝑛)
• Which path is returned by uniform-cost search on

the airline example?

PHX

LAX HK

SINSFO

NY Frankfurt Tokyo

1

1
1

1 1

1

1 1

1

$$
$$

$

$$ $$

$ $
$$

Uniform-cost Search Performance
• Is uniform-cost search optimal?
• Is uniform-cost search complete?
• Where can this go wrong?
• Idea: require every action to exceed some 𝜖 > 0

• Time and space complexity?
• Not only a function of b, d, m in this case! Depends on

the cost of the optimal solution C*

Uninformed vs. Informed Search

• Uninformed methods – Only generate successors
and distinguish goal from non-goal states

• Informed methods – Use strategies that know
whether one non-goal states is more promising
than another
• How? Usually by using some more information about

the problem!

Informed Search

• Evaluation function f(n)
• Example: distance to the goal
• Implemented as a priority queue that maintains the

fringe in ascending order of f-values

• Heuristic function h(n)
• Estimated cost of cheapest path from node n to a goal

node

Fig 3.2 Russell and Norvig

What is a good
candidate for h(n)
in this case?

Heuristic Functions

Characteristics of h(n):

1) Most common form in which additional knowledge of
the problem is imparted to the search algorithm

2) Should underestimate the cost to the goal
(admissible heuristics – more on this soon)

3) If n is the goal node then h(n)=0

Greedy Best-first Search

• Strategy: Expand the node closest to the goal. Uses
f(n)=h(n).
• Q1: Which path is returned by greedy search?

GREEDY SEARCH

• Strategy: Expand by ݄ ݔ = heuristic
evaluation of cost from ݔ to goal

ܽ

ܾܿ

݀

݁

1 3 2

51
1

݄ = 6 ݄ = 5

ܽ

݄ = 6

ܾ

݄ = 2

݀

݄ = 1

݁

݄ = 2

݀

݄ = 0

1

#1 #2 #3 #4 #5

݄ = 6 ݄ = 5 ݄ = 2 ݄ = 0

݄ = 1݄ = 6݄ = 7

ݏ ݐ

ݏ ݐ

Greedy Best-first Search

• Example: perform greedy best-first search to get
from Arad to Bucharest

Fig 3.2 Russell and Norvig

253

Greedy Best-first Search (cont.)

• Example: perform greedy best-first search to get
from Arad to Bucharest

Fig 3.2 Russell and Norvig

Fig 4.2 Russell and Norvig 2nd edition

Is the
solution
optimal?

Characteristics of Greedy Search

• Not optimal

• Incomplete (like DFS it can start down an infinite
path and never return to try others)

• Worse case time and space complexity is O(bm),
where m is the maximum depth of the search space

• A good heuristic can reduce complexity
substantially

A* Search

• Uses a different evaluation function
f(n) = g(n) + h(n)

• f(n): the estimated cost of the cheapest solution
through n

Ø Provided that the heuristic function h(n) satisfies
certain conditions, A* search is both complete and
optimal

A* Poll

• Strategy: Expand using lowest cost f(n)=h(n)+g(n)

• Q2 (polls-everywhere poll): Which node is
expanded fourth?

A* SEARCH

• Strategy: Expand by ݂ ݔ = ݄ ݔ + ݃ ݔ
• Poll 1: Which node is expanded fourth?

1. d
2. e
3. 9

4. c

ܽ

ܾܿ

݀

݁

1 3 2

51
1

1

݄ = 6 ݄ = 5 ݄ = 2 ݄ = 0

݄ = 1݄ = 6݄ = 7

݀

݁

ܿ

ݏ ݐ

ݐ

A* Termination
• Rule: expand nodes in order of lowest cost f(n) = g(n) + h(n)
• Q3: Should we stop when we enqueue a goal node?

S

A

G

B
2

h=3

2 2

3

h=2

h=1

h=0

Fringe f(n) Pop

Admissible Heuristics
• Admissible heuristic – h(n) never

overestimates the cost to reach the
goal

• Since g(n) is the exact cost to reach n,
an immediate consequence is that f(n)
never overestimates the true cost of a
solution through n
• What does this mean for missing an

optimal solution?
Fig 4.2 Greedy Search Russell and Norvig 2nd edition

Greedy search: Arad -> Sibiu -> Fagaras -> Bucharest
A*: Arad -> Sibiu -> Fagaras (f =140+99+176=415)

-> RV (f=140+80+193=413)

*RV indeed is the optimal choice

Admissibility and Optimality

• A heuristic h is admissible if for all nodes n,
ℎ 𝑛 ≤ ℎ∗(𝑛)

where h* is the cost of the optimal path to a goal
from n

• Theorem: A* tree search with an admissible
heuristic returns an optimal solution

Proof of Theorem
1) Let G2 be a suboptimal goal node (path) that

appears on the fringe, let the cost of the
optimal solution be 𝐶∗

2) Then

3) Consider a fringe node n on an optimal
solution path. If h(n) does not overestimate
the cost to complete the path we have that n

𝑓 𝐺! = 𝑔 𝐺! + ℎ 𝐺!

Suboptimal path G2
ending in goal state

𝑓 𝑛 = 𝑔 𝑛 + ℎ 𝑛
Optimal path ending
in goal state and
passing through n

= 𝑔 𝐺! > 𝐶∗

Design of Heuristics: 8 Puzzle

• What is a state for this game?
• 181,440 distinct states are reachable
• We need an admissible heuristic.

Figure 3.28 Russell and Norvig text

Hint: relax the problem

Two possible heuristics:
• h1= the number of

misplaced tiles

• h2= sum of the distances
of tiles from their goal
positions (Manhattan
distance)

• True solution = 26

Design of Heuristics: 8 Puzzle

Figure 3.28 Russell and
Norvig text

What is the ideal (best case) branching factor for a search algorithm?

• Two possible heuristics:
• h1= the number of misplaced tiles
• h2= sum of the distances of tiles from their goal positions

(Manhattan distance)

Search Cost (nodes
generated)

Effective Branching
Factor

d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22

12 3644035 227 73 2.78 1.42 1.24

Figure 3.29 Russell and Norvig text

Characteristics of A*

A* is complete (finds a solution if one exists) and
optimal (finds the optimal path to the goal) if:

• The branching factor is finite
• Arc costs are >0
• h(n) is admissible

• But A* is expensive in memory O(bd) (like BFS)

A* using Graph Search
• Rule: expand nodes in order of lowest f(n) cost, do not

expand the same node twice (use a “closed set”)
• Q4: Is A* using a graph search implementation optimal?

S

A

C

B
1

h=2

1 1

2

h=4

h=1

h=1

Fringe Closed Set

G
3

Pop

Optimality of Graph Search

• The graph-search algorithm always discards the
newly discovered path, even if it is shorter than the
first path discovered

• New idea: before discarding a path, check if newly
discovered path to a node is better than the
originally discovered path. If yes, revise depths and
path cost of node’s descendants.
• How to tell if a new path is better?...

A* and Graph Search

• The previous proof does not hold for graph search.
Why?

• Two ways around this

• Important concept, consistency

Extend graph search to discard the
more expensive of any two paths found
to the same node.

Ensure that the optimal path to any
repeated state is always the first one
followed.

Consistent Heuristics

• A heuristic h(n) is consistent if for every node n and
every successor n’ of n generated by action a, the
estimated cost of reaching the goal from n is no greater
than the step cost of getting to n’ plus the estimated
cost of reaching the goal from n’

• Example: Suppose that n’ is a successor of n
n’=RV
n = Sibiu

ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛' + ℎ(𝑛')

Exercise at home: Show that f(n) along any path is
nondecreasing such that f(n’)>= f(n) if h(n) is
consistent

Consistent vs Admissible Heuristic

• Q5: Is this heuristic admissible? Is it consistent?
ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛' + ℎ(𝑛')

Consistency in the Heuristic (cont.)

• This means that the first goal node selected for
expansion must be an optimal solution (since all
later nodes will be at least as expensive)
• This allows us to get around book-keeping!
• Note that we can arrive at the goal node via a

suboptimal path but this path won’t be expanded (e.g.
Bucharest example)

Fig 3.25 Russell and Norvig

Nodes inside a given
contour have f-costs
less than or equal to
the contour value

Optimality

• Tree Search:
• A* is optimal if heuristic is admissible

• Graph Search:
• A* is optimal if heuristic is consistent

• Consistency implies admissibility

Local Search

• Uses a single current state (rather than keeping track of
multiple paths) and generally move only to neighbors
of that state.

• Typically, the paths followed by the search are not
retained

• When to use:
1) Use very little memory (often use a constant amount)
2) Can often find reasonable solutions in a large or

infinite (i.e. continuous) state space for which
previous systematic algorithms are unsuitable

An Objective Function

• These algorithms aim to find the best state
according to an objective function (often replaces
the “goal test” and “path cost” of previous search
methods)
• The “goodness” of a state is described by a function

Fig 4.1Russell and Norvig

Hill Climbing

• Pitfalls
• Local maxima – may

not every find
solution
• Non-smooth function

• Stochastic variants
• Can escape local

maxima
• But still no guarantee

of finding global
maximum

Simple rule: pick the next state
such that it improves the
objective function

Next Time…

• Constraint Satisfaction Problems (Russell and
Norvig Ch. 6)

