

Fall 2022 | Lecture 21 Value Alignment Ariel Procaccia | Harvard University

THE THREE LAWS OF ROBOTICS

WHY ASIMOV PUT THE THREE LAWS OF ROBOTICS IN THE ORDER HE DID:

POSSIBLE ORDERING

- 1. (1) DON'T HARM HUMANS
- 2. (2) OBEY ORDERS
- 3. (3) PROTECT YOURSELF

CONSEQUENCES

[SEE ASIMOV'S STORIES]

BALANCED WORLD

- 1. (I) DON'T HARM HUMANS
- 2. (3) PROTECT YOURSELF
- 3. (2) OBEY ORDERS
- 1. (2) OBEY ORDERS
- 2. (1) DON'T HARM HUMANS 3. (3) PROTECT YOURSELF
- 1. (2) OBEY ORDERS
- 2. (3) PROTECT YOURSELF
- 3. (I) DON'T HARM HUMANS
- 1. (3) PROTECT YOURSELF 2. (I) DON'T HARM HUMANS
- 3. (2) OBEY ORDERS
- 1. (3) PROTECT YOURSELF 2. (2) OBEY ORDERS
- 3. (1) DON'T HARM HUMANS

FRUSTRATING WORLD

KILLBOT HELLSCAPE.

KILLBOT HELLSCAPE

TERRIFYING STANDOFF

KILLBOT **HELLSCAPE**

- Experiments performed by Winfield et al. [2014]
- Environment includes a robot (A for "Asimov"), a human (H), and a hole which can be sensed by the robot but not the human
- Robot can simulate the consequences of possible actions

```
IF for all robot actions, the human is equally safe
THEN (* default safe actions *)
        output safe actions
ELSE (* ethical action *)
        output action(s) for least unsafe human outcome(s)
```

 Compare with Asimov's first law of robotics: "A robot may not injure a human being or, through inaction, allow a human being to come to harm."

https://youtu.be/-e2MrWYRUF8?t=27m43s

[Winfield et al. 2014]

https://youtu.be/-e2MrWYRUF8?t=31m36s

The robot's dilemma: What should I do if there are two humans in danger?

[Winfield et al. 2014]

THE TROLLEY PROBLEM

Poll 1: Choose an action in each scenario

THE TROLLEY PROBLEM, REVISITED

The New Hork Times

Should Your Driverless Car Hit a Pedestrian to Save Your Life?

The issue of robotic morality has become a serious question for researchers working on autonomous vehicles who must, in essence, program moral decisions into a machine.

By John Markoff

June 23, 2016

MORNING MIX

What if your self-driving car decides one death is better than two — and that one is you?

By Sarah Kaplan

October 28, 2015 at 7:00 a.m. EDT

A member of the media test drives a Tesla Motors Inc. Model S car equipped with Autopilot in Palo Alto, California, U.S., on Wednesday, Oct. 14, 2015. (David Paul Morris/Bloomberg)

THE SOCIAL DILEMMA OF AVS

[Bonnefon et al. 2016]

THE SOCIAL DILEMMA OF AVS

Poll 2: Approve or disapprove different choices under various conditions

[Bonnefon et al. 2016]

MORAL MACHINE

What should the self-driving car do?

MORAL MACHINE

[Awad et al. 2018]

DECISION MAKING FRAMEWORK

The rest of the lecture based on: Noothigattu et al. 2018, Kahng et al. 2019, Lee et al. 2019

TWO DOMAINS

Autonomous Vehicles

If a fatal accident is inevitable, who should live and who should die?

Food Rescue

Which nonprofit organization should receive a food donation?

FOOD RESCUE

Donors

STEP 1: DATA COLLECTION

STEP 1: DATA COLLECTION

What should 412 Food Rescue do?

STEP 2: LEARNING

The Thurstone-Mosteller Model

STEP 3: AGGREGATION

True Profile

Noisy profile

Noisy profile

Noisy profile

Voting rule should be robust to noise:
Its output ranking from the true profile should coincide with the output ranking from the noisy profile

STEP 3: AGGREGATION

The Mallows Model is an unusually good fit with our setting!

STEP 3: AGGREGATION

Borda count

For any true profile, it is unlikely that two alternatives would be ranked differently when Borda count is applied to the true profile and the noisy profile

PMC Rules

There exists a true profile where, for any PMC rule f, it is likely that two alternatives would be ranked differently when f is applied to the true profile and the noisy profile

PERFORMANCE ON HISTORICAL DATA

Diversity of allocations

Efficiency of allocations

INTERFACE

Designed as a decision support tool

PARTICIPANT FEEDBACK

Seeing how the algorithm's construction was broken down "into steps [...] and just taking each one at a time" made it attainable.

"No matter what group or individuals we're feeding, [we] have the same regard for the food and the individuals we're serving."

"This seems quite [a bit] better. If organizations are literally getting forgot[ten] about [...] this is huge." "Certainly more fair than somebody sitting at a desk trying to figure it out on their own. [...] it should be the most fair you could get."

