

Fall 2022 | Lecture 20 Fairness Ariel Procaccia | Harvard University

UNFAIRNESS

- AI algorithms are supposedly unbiased
- But they are trained based on data that encodes societal biases, and may exacerbate those biases
- There is a large body of evidence for discrimination by AI algorithms

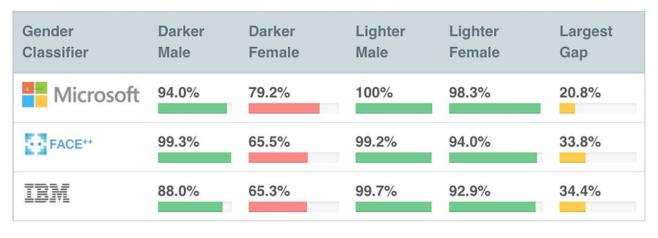
EXAMPLE: AD DELIVERY

Title	URL	Coefficient	appears in agents		total appearances	
			female	male	female	male
	Top ads for identifying the sim	ulated female	group			
Jobs (Hiring Now)	www.jobsinyourarea.co	0.34	6	3	45	8
4Runner Parts Service	www.westernpatoyotaservice.com	0.281	6	2	36	5
Criminal Justice Program	www3.mc3.edu/Criminal+Justice	0.247	5	1	29	1
Goodwill - Hiring	goodwill.careerboutique.com	0.22	45	15	121	39
UMUC Cyber Training	www.umuc.edu/cybersecuritytraining	0.199	19	17	38	30
	Top ads for identifying agents in the	ne simulated n	nale group			
\$200k+ Jobs - Execs Only	careerchange.com	-0.704	60	402	311	1816
Find Next \$200k+ Job	careerchange.com	-0.262	2	11	7	36
Become a Youth Counselor	www.youthcounseling.degreeleap.com	-0.253	0	45	0	310
CDL-A OTR Trucking Jobs	www.tadrivers.com/OTRJobs	-0.149	0	1	0	8
Free Resume Templates	resume-templates.resume-now.com	-0.149	3	1	8	10

[Datta et al. 2015]

EXAMPLE: CRIMINAL JUSTICE

EXAMPLE: FACIAL RECOGNITION



[Buolamwini, 2019]

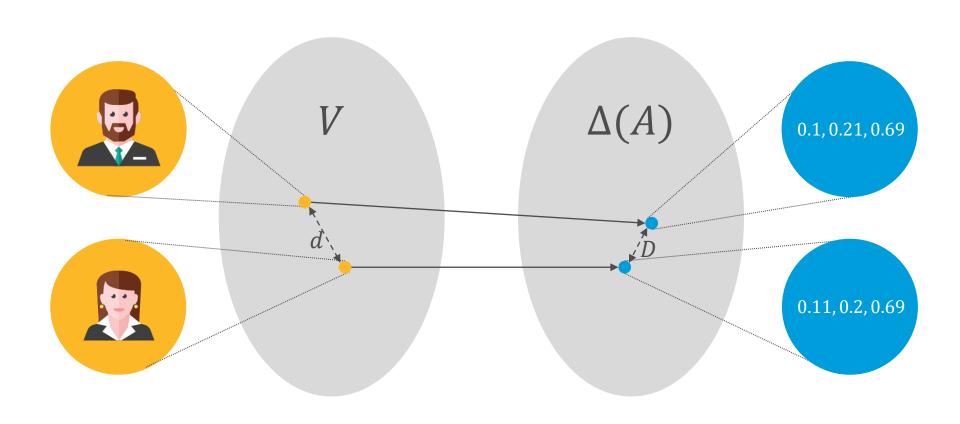
Cynthia Dwork

1958-

Professor of Computer Science at Harvard. In the last 15 years, played a pivotal role in the formation of differential privacy and fair AI.

- Set of individuals V and outcomes A
- Randomized classifier $M: V \to \Delta(A)$ where $\Delta(A)$ is distributions over outcomes
- Metric on individuals $d: V \times V \to \mathbb{R}^+$
- Metric *D* on distributions over outcomes
- M satisfies the Lipschitz property if for all $x, y \in V$,

$$D(M(x), M(y)) \le d(x, y)$$



- We can get a Lipschitz classifier by setting M(x) = M(y) for all $x, y \in V$
- But we want to minimize a loss function $L: V \times A \rightarrow \mathbb{R}^+$
- This leads to the optimization problem

$$\min \sum_{x \in V} \sum_{a \in A} \mu_x(a) \cdot L(x, a)$$
s.t. $\forall x, y \in V, D(\mu_x, \mu_y) \leq d(x, y)$

$$\forall x \in V, \mu_x \in \Delta(A)$$

- Various options for the metric *D*
- Example: total variation, defined for distributions
 P and Q as

$$D_{tv}(P,Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|$$

- When $D = D_{tv}$, the optimization problem is a linear program
- Poll 1 (brainstorming): Where would the similarity metric *d* come from?

ENVY-FREENESS, REVISITED

- Each $x \in V$ has a utility u_{xa} for each outcome $a \in A$
- A randomized classifier M is envy free if and only if for all $x, y \in V$,

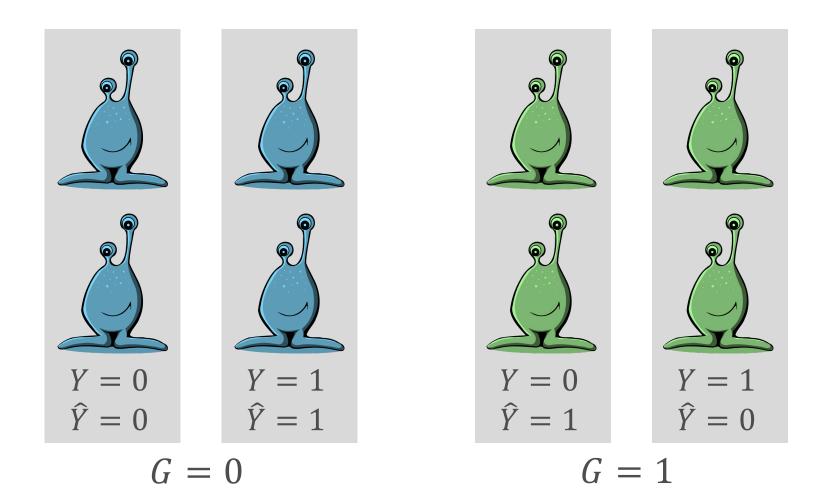
$$\mathbb{E}_{a \sim M(x)}[u_{xa}] \ge \mathbb{E}_{a \sim M(y)}[u_{xa}]$$

- This gives a completely different way of thinking about individual fairness
- But envy-freeness isn't useful in situations where there is a desirable and an undesirable outcome, like bail and loans

- Assume we are making a binary decision $\hat{Y} \in \{0,1\}$, and there is a legally protected attribute $G \in \{0,1\}$
- Demographic parity:

$$\Pr[\hat{Y} = 1 \mid G = 0] = \Pr[\hat{Y} = 1 \mid G = 1]$$

• May accept unqualified individuals when G = 0, and qualified individuals when G = 1!



This classifier satisfies demographic parity!

- \hat{Y} satisfies equalized odds with respect to protected attribute G if the groups have equal false positive and false negative rates
- That is, for all $y, \hat{y} \in \{0,1\}$, $\Pr[\hat{Y} = \hat{y} \mid G = 0, Y = y]$ $= \Pr[\hat{Y} = \hat{y} \mid G = 1, Y = y]$

RELATIONS BETWEEN PROPERTIES

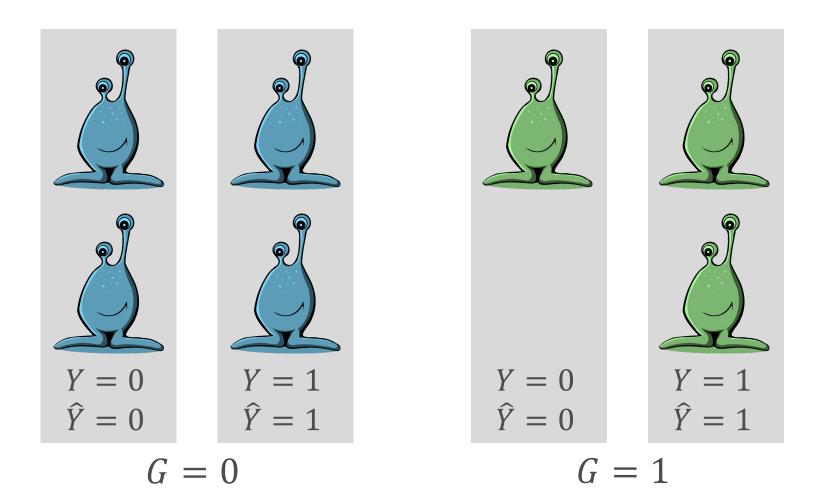
Demographic parity:

$$\Pr[\hat{Y} = 1 \mid G = 0] = \Pr[\hat{Y} = 1 \mid G = 1]$$

• Equalized odds: For all $y, \hat{y} \in \{0,1\}$,

$$\Pr[\widehat{Y} = \widehat{y} \mid G = 0, Y = y]$$
$$= \Pr[\widehat{Y} = \widehat{y} \mid G = 1, Y = y]$$

- Poll 2: Relation between demographic parity and equalized odds?
 - Demographic parity ⇒ equalized odds
 - Equalized odds ⇒ demographic parity
 - Incomparable

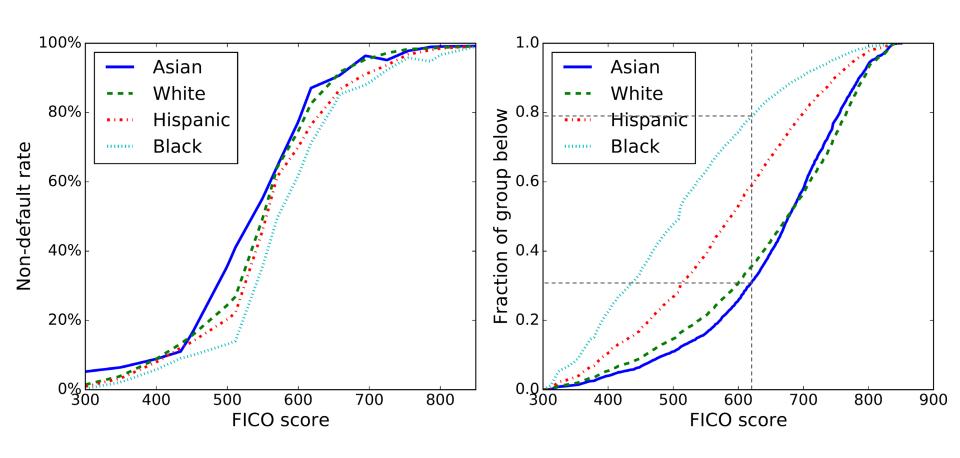


 $\hat{Y} = Y$ may not satisfy demographic parity!

EXAMPLE: FICO SCORES

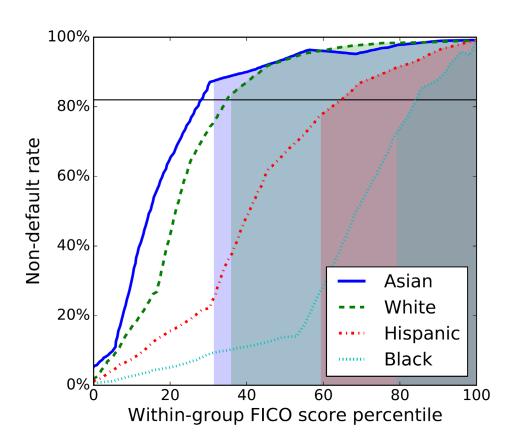
- FICO scores are a proprietary classifier widely used in the United States to predict credit worthiness
- Range from 300 to 850, where cutoff of 620 is commonly used for prime-rate loans, which corresponds to a default rate of 18%

EXAMPLE: FICO SCORES



[Hardt et al. 2016]

EXAMPLE: FICO SCORES



[Hardt et al. 2016]

IMPOSSIBILITY FOR RISK SCORES

- Each person has a feature vector σ
- p_{σ} denotes the fraction of people with feature vector σ and a true positive label
- A person in group $G \in \{0,1\}$ has a given probability of exhibiting feature vector σ
- A risk assignment is an assignment of people to bins, where each bin b is labeled with a score v_b seen as the probability of a positive label

IMPOSSIBILITY FOR RISK SCORES

- Calibration within groups is achieved when for each group G and each bin b, the expected number of members of group G in b who belong to the positive class is a v_b fraction of the expected number of members of group G assigned to b
- Equalized odds requires that the average score assigned to members of group 0 who belong to the negative (resp., positive) class would be the same as the average score assigned to people of group 1 who belong to the negative (resp., positive) class

IMPOSSIBILITY FOR RISK SCORES

- Can we achieve calibration together with equalized odds?
 - Perfect prediction: For each feature vector σ , either $p_{\sigma} = 0$ or $p_{\sigma} = 1$
 - Equal base rates: The two groups have the same fraction of members in the positive class
- Theorem: If a risk assignment satisfies calibration and equalized odds, the instance must allow for perfect prediction or have equal base rates

FAIRNESS IN INDUSTRY

