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Last Time:

Types of Problems and Environments:

• Fully vs. partially observable
• Deterministic vs. stochastic
• Episodic vs. sequential (i.e. what role does history play)

• Static vs. dynamic
• Discrete vs. continuous
• Single-agent vs. multiagent



Classical Planning Assumptions

• Finite state environment – set of states and actions is finite
• Changes occur only in response to actions
• i.e. if the actor does not act, the current state remains unchanged.
• Does not include the possibility of actions by other actors or 

exogeneous events

• Determinism – no uncertainty
• We assume that we can predict with certainty what state will be 

produced if action a is performed on state s
• Excludes accidents, execution error, or nondeterministic actions 

(such as rolling dice)



Pros and Cons

Pros
• Simple models to build
• Simple to reason with these models

Cons
• Does not always capture the full reality
• May introduce costly errors



This Time

• Problem representation
• Uninformed search
• Reference readings: Chapter 3.3-3.4 in Russel and 

Norvig text
• HW 0 is posted (due 9/12 @ 11:59pm)



Problem Formulation

• The process of deciding what actions and states to 
consider (i.e. that are relevant) given a goal

• We must know:
• What are the states
• What are the start state and goal states
• What are the actions
• Which actions lead to which states (referred to as the 

successor function)



Elements of a Well-Defined Problem

• What is a problem?

• Solution quality?
• Measured by the cost over the path
• An optimal solution has the lowest path cost among all 

solutions

Problem

Initial state: where is the agent starting?

Actions: <action, successor>

Goal test: is a given state the goal state?

Path cost: numeric cost of each path. 
Step cost is c(x,a,y) for x initial state, 
action a, and next state y



• States: agent is in one of two locations (L,R) which 
can be dirty or clean. How many states are there?

• Actions: Left/Right/Suck
• Goal: Clean up all the dirt.  How many states are 

goal states?

Example Formulation: Vacuum World

L R
Russel and Norvig text



State Space Graphs

• Must include:
• Nodes – abstracted world 

configurations
• Arcs – represent successors 

(action results)
• Start state – beginning state
• Goal test – set of goal nodes

Q1: Draw the state space graph for the Vacuum World 
problem?



Example Formulation: Vacuum World

• Successor Function: Generates the legal states 
resulting from trying the 3 actions <left,right,suck>
• Goal Test: Are all squares clean?
• Path Cost: Each step costs 1
• State Space:



A few important notes about state space graphs:
• In the state space graph each state occurs only once

• Does this mean that there is only one path to get to each 
state?  

• In practice, it is too big to draw, build, or fit into memory
• Example: size of the state space for tic-tac-toe?

Ø Much of this class is about solving problems without having 
to explore the entire state space

State Space Graphs



Real World Problems
Route-finding problem (e.g. routing in computer 
networks, military operations, airline travel planning 
system)



Real World Problems
Route-finding problem (e.g. routing in computer 
networks, military operations, airline travel planning 
system)
• States: Locations (and current time)
• Initial state: Problem dependent
• Successor Function: Returns the state resulting from 

taking any scheduled flight 
• Goal Test: Are we are the destination by some pre-

specified time?
• Path Cost: Can be monetary, wait time, flight time, etc.



Real World Problems (cont.)
• Touring problem – closely related to route-finding but has an 

important difference: visit each city only once.
• State space must include not only the current city but also previously 

visited cities
• How does the state space compare to that of route-finding?

• Traveling Salesman problem – a touring problem where the aim 
is to find the shortest tour 

• Robot Navigation – Generalization of the route-finding problem. 
Differences:
• Robot can move in continuous space with an infinite set of possible 

actions and states
• Robots must deal with errors in sensor readings and motor controls



Problem Formulation then What?

Now that we have the problem formulated correctly, 
what can we do next?

How do we generate a solution?

Search.



Automating the Solution Generation 
Part… Search
• Search strategy: choice of which state to expand 

(depends on choice of states compatible with the 
successor function)
• Measures of search performance
• Completeness – is the algorithm guaranteed to find a 

solution when there is one?
• Optimality – Does the strategy find the optimal solution?
• Time Complexity – How long does it take to find a 

solution?
• Space Complexity – How much memory is needed to 

perform the search?



Search

Repeated action in search: expand the current state (i.e. 
which states can the current state lead to?) and generate a 
new set of states

• Search steps:
1) Choose state
2) Goal test
3) Expand state

• Two termination conditions
1) Solution found
2) No more states left to be expanded



Search tree

• A few definitions…
• State
• Parent node
• Action
• Path
• Path cost g(n)
• Depth d
• Branching factor b 



From a State Graph to a Search Tree

State Space Graph Search Tree

Nodes in a tree correspond to “plans” not states!



Tree SearchTREE SEARCH
function TREE-SEARCH(݈ܾ݉݁݋ݎ݌, (ݕ݃݁ݐܽݎݐݏ
set of frontier nodes contains the start state 
of ݈ܾ݉݁݋ݎ݌
loop 
• if there are no frontier nodes then return 

failure
• choose a frontier node for expansion using 
ݕ݃݁ݐܽݎݐݏ

• if the node contains a goal then return the 
corresponding solution

• else expand the node and add the resulting 
nodes to the set of frontier nodes



Terminology for Tree Search

Search Tree

Goal node

• Frontier nodes

• Node chosen for expansion (how 
to choose this node?  Strategy)

• Goal node



From a State Graph to a Search Tree

• Complexity for uninformed search – described in terms 
of 3 quantities
• Branching factor b
• Depth d
• Maximum length of any path in the state space m

Fig 3.2 Russell and Norvig Fig 3.6 Russell and Norvig

b
d



Uninformed Search Strategies

When you have no idea of whether one “non-goal 
state” is better than another
Q2 (Polls Everywhere poll):
• If we have a finite # of states, must the search tree 

have a finite number of nodes? 
• Is the # of nodes in the search tree the same as the 

# of states?

Fig 3.2 Russell and Norvig



Breadth-first Search

• FIFO queue
• All nodes are expanded at a given depth in the 

search tree before any nodes at the next level are 
expanded
• Is BFS complete?
• Is BFS optimal?
• Airline route example…

PHX

LAX HK

SINSFO

NY Frankfurt Tokyo



Complexity of BFS

• Memory requirements of BFS? 
• Time complexity of BFS?
*Exponential complexity search problems cannot be 
solved by uninformed methods for any but the 
smallest problem instances 
• Depth of 2, 0.11 seconds
• Depth of 4, 11 seconds
• Depth of 8, 31 hours
• Depth of 10, 129 days….

[Russell and Norvig, ch 3]



Depth-first Search

• LIFO queue
• Explore tree down to the root using a rule (such as 

leftmost branch first) before backing up
• Is DFS complete?
• Is DFS optimal?
• Airline route example…

PHX

LAX HK

SINSFO

NY Frankfurt Tokyo



Depth-first Search

• LIFO queue (a stack)

Fig 3.16 Russell and Norvig



Depth-first Search (cont.)

• Stores only a single path from the root to a lead 
node, along with unexpanded sibling nodes for 
each node on the path
• What factors does memory depend on?
• Is DFS optimal? 
• Is DFS complete?
• What is the worst-case complexity? Better or 

worse than BFS?



Variations on BFS and DFS

• Depth-limited Search
• When is this a good idea?
• Definition of diameter of the graph: greatest length 

amongst the shortest path between two nodes

Fig 3.2 Russell and Norvig



Variations of BFS and DFS (cont)

• Iterative Deepening
• Combines the best of DFS (modest memory req) and BFS 

(complete for finite b, optimal for some problems)

[Fig 3.19 Russell 
and Norvig]



Iterative Deepening Search 

• Run DFS with depth limit l=1,2,…
• Combines the best properties of BFS and DFS
• What factors does memory depend on?
• Space complexity?
• Is IDS optimal? 
• Is IDS complete?
• What is the worst-case complexity? Better or 

worse than BFS?



Review of Search Strategies

Algorithm Complete? Optimal? Time Space

BFS Yes Under certain 
conditions

O(bd) O(bd)

DFS No No O(bm) O(b*m)

IDS Yes No O(bd) O(b*d)



The Problem of Repeated States

• We saw that desirable properties of BFS and DFS 
depend on finite branching factor and search tree 
depth

• Different ways this can happen
• Infinite states space or action space (e.g. continuous 

problems)
• Repeated states and cycles

Fig 3.2 Russell and Norvig



How to Avoid Repeated States?

• Problem: expanding states that have already been 
encountered and expanded before
• For some problems, repeated states are 

unavoidable
• Includes problems where actions are reversible 

• Idea: prune or avoid repeated states

Fig 3.2 Russell and Norvig

For this problem we 
considered Depth-limited 
Search with l=9 (the graph 
diameter) being the 
maximum path length



Repeated States (cont.)

• Depth-limited search may not always work – we 
don’t always have a good candidate for l
• Two (or more) distinct actions can lead to one 

distinct state (and not detecting this can lead to an 
exponential sized graph…)

Fig 3.18 Russell and Norvig (2nd edition)



Detection of Repeated States
• Detect repeated states before expanding – if a match is found 

then the algorithm has discovered two paths to the same state

• Get around this by keeping visited states in memory 
• Points to a fundamental tradeoff between space and time complexity

• Closed set – every expanded node and checks current node to 
closed list before expanding

• Open set – the fringe of discovered by unexpanded nodes

Ø New algorithm is called graph search instead of tree search



Graph Search

state

GRAPH SEARCH
function GRAPH-SEARCH(݈ܾ݉݁݋ݎ݌, (ݕ݃݁ݐܽݎݐݏ
set of frontier nodes contains the start state 
of ݈ܾ݉݁݋ݎ݌
loop 
• if there are no frontier nodes then return 

failure
• choose a frontier node for expansion using 
,ݕ݃݁ݐܽݎݐݏ and add it to the explored set

• if the node contains a goal then return the 
corresponding solution

• else expand the node and add the resulting 
nodes to the set of frontier nodes, only if 
not in the explored set

its state to the explored set

of visited states



Next Time…

• Informed search
• Relevant readings for reference: Ch 3.5, 3.6, 4.1


