
A I I S

US

Fall 2022 | Lecture 19
Neural Networks

Ariel Procaccia | Harvard University



DEEP LEARNING MILESTONES

2011 2012 2014 2020

AlexNet
Convolutional net 

wins image 
classification 
competitions

Cat Experiment
Google NN learns 

to identify cats 
from 10M 

unlabeled images

DeepFace
Facebook NN 

learns to identify 
faces with 97% 

accuracy

GPT-3
OpenAI’s

language model 
produces human-

like text



THE DEEP LEARNING REVOLUTION

Yoshua Bengio
University of Montreal

Geoff Hinton
University of Toronto and Google

… through the lens of Google Scholar 



⋯

LOGISTIC REGRESSION, REVISITED

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤𝑛𝑛

�𝑦𝑦



DEEP(ER) NEURAL NETWORK

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥5𝑥𝑥4

�𝑦𝑦

H
idden layers



ACTIVATION FUNCTIONS

• For now we will focus on feed-forward 
networks, which are acyclic

• Each node is called a unit
• A unit calculates the weighted sum of its 

predecessors and applies an activation function 
to it

• Poll 1: If each activation function was identity, 
the whole function would be:
◦ Linear
◦ Polynomial with degree bounded by the number of 

units
◦ Arbitrary if there are sufficiently many units



ACTIVATION FUNCTIONS: EXAMPLES
1

0.5

0
-6 -4 -2 0 2 4 6

𝜎𝜎 𝑧𝑧 = 1/(1 + 𝑒𝑒−𝑧𝑧)

6

3

0
-6 -4 -2 0 2 4 6

6

3

0
-6 -4 -2 0 2 4 6

ReLU 𝑧𝑧 = max{0, 𝑧𝑧}

softplus 𝑧𝑧 = ln 1 + 𝑒𝑒𝑧𝑧



TRAINING NEURAL NETWORKS

• A choice of network architecture 
(units, activation functions, and 
edges) defines a hypothesis space 
whose parameters are the weights 
on edges

• This hypothesis space is extremely 
expressive: With just two layers and 
nonlinear activation functions, 
neural networks can approximate 
any continuous function arbitrarily 
well

• Training can be done “as usual” 
using gradient descent

𝑥𝑥1 𝑥𝑥2

𝑤𝑤13 𝑤𝑤14 𝑤𝑤24

𝑤𝑤35 𝑤𝑤45

�𝑦𝑦



INPUT ENCODING

Categorial features are typically encoded 
using 1-hot encoding

ID 
#1
ID 
#2
ID 
#3

1 0 0

0 1 0

0 0 1



OUTPUT ENCODING

• For binary classification, a sigmoid output 
unit is often used, and its output is 
interpreted as the probability of the positive 
class

• For multiclass classification, we want 𝑑𝑑
output nodes representing probabilities 
summing up to 1, and this is typically done 
via a softmax layer, defined by

softmax 𝒛𝒛 𝑖𝑖 =
𝑒𝑒𝑧𝑧𝑖𝑖

∑𝑗𝑗=1𝑑𝑑 𝑒𝑒𝑧𝑧𝑗𝑗



CONVOLUTIONAL NETWORKS

• An image shouldn’t be thought of as a vector 
of pixels, because adjacency matters

• If there are 𝑛𝑛 pixels and 𝑛𝑛 units in the first 
hidden layer, and they’re fully connected, 
then we already have 𝑛𝑛2 weights

• Convolutional neural networks (CNNs) 
make use of two ideas
◦ To respect adjacency, each hidden unit receives 

input from a local region of the image
◦ Anything detectable in one local region would 

look the same in another local region



KERNELS AND CONVOLUTIONS

• A pattern of weights is called a kernel, and 
an application of the kernel is a convolution

• Assume for now a 1-D image represented as 
a vector 𝒙𝒙 of size 𝑛𝑛, and a vector kernel 𝒌𝒌 of 
(odd) size ℓ

• The convolution operation is denoted by 
𝒛𝒛 = 𝒙𝒙 ∗ 𝒌𝒌, and is defined by

𝑧𝑧𝑖𝑖 = �
𝑗𝑗=1

ℓ

𝑘𝑘𝑗𝑗𝑥𝑥𝑖𝑖−(ℓ+1)/2+𝑗𝑗



KERNEL: EXAMPLE

5 6 6 52 56

+1 +1-1 +1 +1-1 +1 +1-1

𝜎𝜎(5) 𝜎𝜎(9) 𝜎𝜎(4)

Kernel vector 𝒌𝒌 = 1,−1,1 that detects a lighter 
point, applied to 𝒙𝒙 = (5,6,6,2,5,6,5) with a stride of 
𝑠𝑠 = 2



PADDING

• Poll 2: If we have a 100 × 100 image and a 
5 × 5 kernel, applied with a stride of 1 
(vertically and horizontally), what is the 
resulting size of the image?
◦ 100 × 100
◦ 98 × 98
◦ 96 × 96
◦ 95 × 95

• It is often desirable to pad the image to 
avoid losing information at the boundaries



PADDING ILLUSTRATED

2 × 2 kernel with a stride 
of 𝑠𝑠 = 1

3 × 3 kernel with a stride 
of 𝑠𝑠 = 1



RECEPTIVE FIELD

The receptive field of a unit is the portion of the 
input that can affect the unit. It is ℓ in the first 
hidden layer but can be larger in deeper layers.



POOLING

• A pooling layer summarizes adjacent units 
from a preceding layer

• Like a convolution with kernel size ℓ and stride 
𝑠𝑠 but operation is fixed rather than learned and 
there’s no activation function

• Average pooling: 
◦ Computes the average value of inputs
◦ If ℓ = 𝑠𝑠, this downsamples the image by a factor of 
𝑠𝑠

• Max pooling:
◦ Computes the max value of inputs
◦ Acts like a logical disjunction, detecting a feature 

somewhere in the receptive field



POOLING: EXAMPLE

3 2 2 4
2 5 0 2
3 2 1 1
4 3 1 1

5 4
4 1

Max pooling with 2 × 2
filters and 𝑠𝑠 = 2

3 2 2 4
2 5 0 2
3 2 1 1
4 3 1 1

3 2
3 1

Average pooling with 
2 × 2 filters and 𝑠𝑠 = 2



CNN ARCHITECTURE

Dog (0.01)
Cat (0.01)

Beats me (0.98)

Convolution
+ activation

Pooling Convolution
+ activation

Pooling Fully
connected

Output
predictions

Different kernels correspond to different 
channels, and pooling is applied to each 
channel separately



SEQUENTIAL MEMORY

• Let us drop the assumption that the neural 
network is acyclic

• This will allow us to implement the idea of 
sequential memory

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Given a prefix, it’s easy for us to predict the next letter in the sequence

ZYXWVUTSRQPONMLKJIHGFEDCBA
Given a prefix, it’s hard for us to predict the next letter in the sequence



RECURRENT NETWORKS

• In a recurrent neural network (RNN), units 
take their own output as input, which 
simulates memory

• RNNs are typically used to analyze sequential 
data, just like HMMs

• As before, we make a Markov assumption: the 
hidden state 𝒛𝒛𝑡𝑡 captures the relevant 
information from previous inputs

• We update 𝒛𝒛𝑡𝑡 = 𝑓𝑓𝒘𝒘(𝒛𝒛𝑡𝑡−1,𝒙𝒙𝑡𝑡) for a parameter 
vector 𝒘𝒘

• The trained 𝑓𝑓𝒘𝒘 is assumed to capture dynamics 
that hold for all time steps



RECURRENT NETWORKS

𝒛𝒛

𝒙𝒙

𝒘𝒘𝑥𝑥𝑥𝑥

𝒚𝒚

𝒘𝒘𝑧𝑧𝑧𝑧

𝒘𝒘𝑧𝑧𝑧𝑧

Diagram of a basic RNN 
where the hidden layer 

has recurrent connections

𝒛𝒛1

𝒙𝒙1

𝒘𝒘𝑥𝑥𝑥𝑥

𝒚𝒚1

𝒘𝒘𝑧𝑧𝑧𝑧

𝒛𝒛2

𝒙𝒙2

𝒘𝒘𝑥𝑥𝑥𝑥

𝒚𝒚2

𝒘𝒘𝑧𝑧𝑧𝑧

𝒛𝒛3

𝒙𝒙3

𝒘𝒘𝑥𝑥𝑥𝑥

𝒚𝒚3

𝒘𝒘𝑧𝑧𝑧𝑧

𝒛𝒛0 𝒘𝒘𝑧𝑧𝑧𝑧 𝒘𝒘𝑧𝑧𝑧𝑧 𝒘𝒘𝑧𝑧𝑧𝑧

Same network unrolled over 
three time steps to create a 

feed-forward network



RECURRENT NETWORKS: EXAMPLE

Alphabet is {h,e,l,o}, we want to train an RNN to predict the 
word “hello” [Example from Andrej Karpathy]

Input chars

Target chars

Output layer 

Hidden layer

Input layer

1.0 0.5 0.1

0
0
0
1

0.9
-0.1
0.3

4.1
-3.0
2.2

e

h

0
0
1
0

0.1
0.3
1.0

1.2
-1.0
0.3

l

e

0
1
0
0

-0.3
-0.5
0.1

-1.1
1.9
0.5

l

l

0
1
0
0

0.7
0.9
-0.3

2.2
-0.1
-1.5
0.2

o

l


	Slide Number 1
	Deep learning Milestones
	The Deep learning revolution
	Logistic regression, revisited
	Deep(er) Neural network
	activation functions
	Activation functions: examples
	Training neural networks
	Input encoding
	Output encoding
	Convolutional networks
	Kernels and convolutions
	Kernel: example
	Padding
	Padding illustrated
	Receptive field
	Pooling
	Pooling: Example
	CNN architecture
	Sequential memory
	Recurrent Networks
	Recurrent networks
	Recurrent Networks: Example

