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LINEAR CLASSIFICATION
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Earthquakes and nuclear explosions in the Middle East and Asia, 1982-1990



LINEAR CLASSIFICATION

• A hypothesis is defined by 
ℎ𝒘𝒘 𝒙𝒙 = Threshold 𝒘𝒘 ⋅ 𝒙𝒙

where Threshold 𝑧𝑧 = +1 if 𝑧𝑧 ≥ 0 and 
Threshold 𝑧𝑧 = −1 if 𝑧𝑧 < 0

• A linear separator can be found via a linear 
feasiblity program

• But we want to learn online

find 𝒘𝒘
s.t. ∀𝑖𝑖 ∈ 𝒟𝒟+,𝒘𝒘 ⋅ 𝒙𝒙(𝑖𝑖) ≥ 0

∀𝑖𝑖 ∈ 𝒟𝒟−,𝒘𝒘 ⋅ 𝒙𝒙(𝑖𝑖) ≤ −𝜖𝜖
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ELECTRONIC BRAIN
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PERCEPTRON

𝒘𝒘

𝒙𝒙

𝒘𝒘 = (3,4)
𝒙𝒙, 𝑦𝑦 = 2,1 ,−1
𝒘𝒘 ⋅ 𝒙𝒙 = 10
𝒘𝒘 = 3,4 − 2,1 = (1,3)

Stage 𝑘𝑘 Stage 𝑘𝑘 + 1 Stage 𝑘𝑘 + 2

𝒘𝒘

𝒙𝒙

𝒘𝒘 = (1,3)
𝒙𝒙, 𝑦𝑦 = −3,−4 ,−1
𝒘𝒘 ⋅ 𝒙𝒙 = −15
𝒘𝒘 is unchanged

𝒘𝒘 = (1,3)
𝒙𝒙, 𝑦𝑦 = −4,−1 , 1
𝒘𝒘 ⋅ 𝒙𝒙 = −7
𝒘𝒘 = 1,3 + −4,−1 = (−3,2)

𝒘𝒘

𝒙𝒙

The Perceptron learning rule: For each example 
𝒙𝒙,𝑦𝑦 , classify �𝑦𝑦 = Threshold 𝒘𝒘 ⋅ 𝒙𝒙 and, If �𝑦𝑦 ≠ 𝑦𝑦, 

update 𝒘𝒘 = 𝒘𝒘 + 𝑦𝑦 ⋅ 𝒙𝒙



PERCEPTRON MISTAKE BOUND

Theorem: Given a dataset 𝒙𝒙 𝑖𝑖 ,𝑦𝑦 𝑖𝑖
𝑖𝑖=1
𝑚𝑚

, if 𝒙𝒙(𝑖𝑖) ≤ 𝑅𝑅
for all 𝑖𝑖, and there exists 𝒘𝒘⋆ such that 𝒘𝒘⋆ = 1 and 
𝑦𝑦(𝑖𝑖) 𝒘𝒘⋆ ⋅ 𝒙𝒙(𝑖𝑖) ≥ 𝛾𝛾 for all 𝑖𝑖, then the number of mistakes 
made by the Perceptron is at most (𝑅𝑅/𝛾𝛾)2



GENERALIZATION

Which separator would you expect to 
generalize better?



SUPPORT VECTOR MACHINES

Find a maximum margin separator, where 
the margin is defined by support vectors



SUPPORT VECTOR MACHINES

• Through tedious derivations one can find that, to 
maximize the margin, it suffices to solve the quadratic 
program

• We can recover the separator from this program’s 
solution

• It holds that 𝛼𝛼𝑗𝑗 ≠ 0 only for support vectors 𝒙𝒙 𝑗𝑗

max
𝜶𝜶

�
𝑗𝑗

𝛼𝛼𝑗𝑗 −
1
2
�
𝑗𝑗,𝑘𝑘

𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝑦𝑦(𝑗𝑗)𝑦𝑦(𝑘𝑘) 𝒙𝒙(𝑗𝑗) ⋅ 𝒙𝒙(𝑘𝑘)

s.t. �
𝑗𝑗

𝑦𝑦(𝑗𝑗)𝛼𝛼𝑗𝑗 = 0

∀𝑗𝑗,𝛼𝛼𝑗𝑗 ≥ 0



NON-SEPARABLE DATA

Linearly 
separable

Not linearly
separable

Poll 1: Would the Perceptron algorithm converge on 
non-separable data? 



APPROACH 1: HIGHER DIMENSIONS
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APPROACH 1: HIGHER DIMENSIONS

𝑥𝑥

𝑥𝑥2

Poll 2: What is the set of positively labeled points on the line 
that the above separator corresponds to?
• 0, 2
• 2,∞
• − 2, 2
• −∞,− 2 ∪ 2,∞



APPROACH 2: SOFT MARGIN

No mistakes
small margins

One mistake
Large margins

It’s possible to enable soft margins by introducing 
slack variables into the SVM objective and constraints



LOGISTIC ACTIVATION FUNCTION

1

0.5
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Threshold (step) function
(0/1 version)

Logistic (sigmoid) function
𝑓𝑓 𝑧𝑧 = 1/(1 + 𝑒𝑒−𝑧𝑧)

Another approach for enabling soft margins:



LOGISTIC REGRESSION

• True labels are 𝑦𝑦 ∈ {0,1}
• Denote the logistic function by

𝜎𝜎 𝑧𝑧 =
1

1 + 𝑒𝑒−𝑧𝑧
• A hypothesis is defined by 

ℎ𝒘𝒘 𝒙𝒙 = σ 𝒘𝒘 ⋅ 𝒙𝒙 =
1

1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙
• Interpreted as the probability that the label 

of 𝒙𝒙 is 1



LOGISTIC REGRESSION

• Probability of observing 𝒙𝒙 𝑖𝑖 ,𝑦𝑦 𝑖𝑖
𝑖𝑖=1
𝑛𝑛

under 𝒘𝒘 is

�
𝑖𝑖

𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑖𝑖 𝑦𝑦 𝑖𝑖
⋅ 1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑖𝑖

1−𝑦𝑦(𝑖𝑖)

• The log-likelihood function is

• Our goal is to maximize the concave function 𝐿𝐿𝐿𝐿(𝒘𝒘)

= �
𝑖𝑖

𝑦𝑦 𝑖𝑖 log 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑖𝑖 + 1 − 𝑦𝑦 𝑖𝑖 log 1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑖𝑖

𝐿𝐿𝐿𝐿 𝒘𝒘 = log �
𝑖𝑖

𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑖𝑖 𝑦𝑦 𝑖𝑖
⋅ 1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑖𝑖

1−𝑦𝑦(𝑖𝑖)



WORDS OF WISDOM



GRADIENT ASCENT, IN DETAIL

• If we take steps in the direction of the 
gradient, we eventually reach a local 
maximum

• Since our problem is convex, a local 
maximum is a global maximum

• The gradient ascent update step is 

𝑤𝑤𝑗𝑗
𝑡𝑡+1 = 𝑤𝑤𝑗𝑗

𝑡𝑡 + 𝛼𝛼𝑡𝑡
𝜕𝜕𝜕𝜕𝜕𝜕 𝒘𝒘 𝑡𝑡

𝜕𝜕𝑤𝑤𝑗𝑗
𝑡𝑡

where 𝛼𝛼𝑡𝑡 is the learning rate



GRADIENT ASCENT, IN DETAIL

• One can verify that 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜎𝜎 𝑧𝑧 = 𝜎𝜎 𝑧𝑧 1 − 𝜎𝜎 𝑧𝑧

• For a single example (𝒙𝒙,𝑦𝑦), we have

• We conclude that
𝜕𝜕𝜕𝜕𝜕𝜕 𝒘𝒘
𝜕𝜕𝑤𝑤𝑗𝑗

= �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦 𝑖𝑖 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑖𝑖 𝑥𝑥𝑗𝑗
𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕 𝒘𝒘
𝜕𝜕𝑤𝑤𝑗𝑗

=
𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗

𝑦𝑦 log𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 +
𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗

1 − 𝑦𝑦 log 1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙

=
𝑦𝑦

𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙
−

1 − 𝑦𝑦
1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗

𝜎𝜎(𝒘𝒘 ⋅ 𝒙𝒙)

=
𝑦𝑦

𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙
−

1 − 𝑦𝑦
1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙

𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑥𝑥𝑗𝑗

=
𝑦𝑦 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙

𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙
𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 1 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑥𝑥𝑗𝑗

= 𝑦𝑦 − 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 𝑥𝑥𝑗𝑗
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