

Fall 2022 | Lecture 18 Linear Classification Ariel Procaccia | Harvard University

LINEAR CLASSIFICATION

Body wave magnitude

Earthquakes and nuclear explosions in the Middle East and Asia, 1982-1990

LINEAR CLASSIFICATION

- A hypothesis is defined by
 - $h_{\boldsymbol{w}}(\boldsymbol{x}) = \operatorname{Threshold}(\boldsymbol{w} \cdot \boldsymbol{x})$ where $\operatorname{Threshold}(z) = +1$ if $z \geq 0$ and $\operatorname{Threshold}(z) = -1$ if z < 0
- A linear separator can be found via a linear feasiblity program

find
$$\mathbf{w}$$

s.t. $\forall i \in \mathcal{D}^+, \mathbf{w} \cdot \mathbf{x}^{(i)} \ge 0$
 $\forall i \in \mathcal{D}^-, \mathbf{w} \cdot \mathbf{x}^{(i)} \le -\epsilon$

But we want to learn online

The New York Times

July 13, 1958

Electronic 'Brain' Teaches Itself

puter named the Perceptron which, child learns. when completed in about a year, is When fully developed, the Perexpected to be the first non-living ceptron will be designed to rememmechanism able to "perceive, recog-ber images and information it has nize and identify its surroundings perceived itself, whereas ordinary without human training or control." | computers remember only what is Navy officers demonstrating a pre- fed into them on punch cards or liminary form of the device in magnetic tape. Washington said they hesitated to | Later Perceptrons, Dr. Rosenblatt much like a "human being without ple and call out their names. Printed life."

The Navy last week demonstrated recognize the difference between the embryo of an electronic com-right and left, almost the way a

call it a machine because it is so said, will be able to recognize pedpages, longhand letters and even

ELECTRONIC BRAIN

PERCEPTRON

The Perceptron learning rule: For each example (x, y), classify $\hat{y} = \text{Threshold}(w \cdot x)$ and, If $\hat{y} \neq y$, update $w = w + y \cdot x$

Stage k

$$w = (3,4)$$

$$(x,y) = ((2,1), -1)$$

$$w \cdot x = 10$$

$$w = (3,4) - (2,1) = (1,3)$$

Stage k + 1

$$w = (1,3)$$

 $(x,y) = ((-3,-4),-1)$
 $w \cdot x = -15$
 $w = (x,y)$

Stage
$$k + 2$$

$$w = (1,3)$$

$$(x,y) = ((-4,-1),1)$$

$$w \cdot x = -7$$

$$w = (1,3) + (-4,-1) = (-3,2)$$

PERCEPTRON MISTAKE BOUND

Theorem: Given a dataset $\{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})\}_{i=1}^m$, if $\|\boldsymbol{x}^{(i)}\| \leq R$ for all i, and there exists \boldsymbol{w}^* such that $\|\boldsymbol{w}^*\| = 1$ and $\boldsymbol{y}^{(i)}(\boldsymbol{w}^* \cdot \boldsymbol{x}^{(i)}) \geq \gamma$ for all i, then the number of mistakes made by the Perceptron is at most $(R/\gamma)^2$

GENERALIZATION

Which separator would you expect to generalize better?

SUPPORT VECTOR MACHINES

Find a maximum margin separator, where the margin is defined by support vectors

SUPPORT VECTOR MACHINES

 Through tedious derivations one can find that, to maximize the margin, it suffices to solve the quadratic program

$$\max_{\alpha} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{j,k} \alpha_{j} \alpha_{k} y^{(j)} y^{(k)} (x^{(j)} \cdot x^{(k)})$$
s.t.
$$\sum_{j} y^{(j)} \alpha_{j} = 0$$

$$\forall j, \alpha_{j} \geq 0$$

- We can recover the separator from this program's solution
- It holds that $\alpha_j \neq 0$ only for support vectors $\boldsymbol{x}^{(j)}$

NON-SEPARABLE DATA

Linearly separable

Not linearly separable

Poll 1: Would the Perceptron algorithm converge on non-separable data?

APPROACH 1: HIGHER DIMENSIONS

Not linearly separable

Linearly separable

APPROACH 1: HIGHER DIMENSIONS

Poll 2: What is the set of positively labeled points on the line that the above separator corresponds to?

- $\left[0,\sqrt{2}\right]$
- $\left[\sqrt{2},\infty\right]$
- $\left[-\sqrt{2},\sqrt{2}\right]$
- $\left[-\infty, -\sqrt{2}\right] \cup \left[\sqrt{2}, \infty\right]$

APPROACH 2: SOFT MARGIN

No mistakes small margins

One mistake Large margins

It's possible to enable soft margins by introducing slack variables into the SVM objective and constraints

LOGISTIC ACTIVATION FUNCTION

Another approach for enabling soft margins:

Threshold (step) function (0/1 version)

Logistic (sigmoid) function
$$f(z) = 1/(1 + e^{-z})$$

LOGISTIC REGRESSION

- True labels are $y \in \{0,1\}$
- Denote the logistic function by

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

A hypothesis is defined by

$$h_{w}(x) = \sigma(w \cdot x) = \frac{1}{1 + e^{-w \cdot x}}$$

• Interpreted as the probability that the label of \boldsymbol{x} is 1

LOGISTIC REGRESSION

• Probability of observing $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$ under w is

$$\prod_{i} \left[\sigma(\mathbf{w} \cdot \mathbf{x}^{(i)})^{y^{(i)}} \cdot \left(1 - \sigma(\mathbf{w} \cdot \mathbf{x}^{(i)}) \right)^{1 - y^{(i)}} \right]$$

The log-likelihood function is

$$LL(\mathbf{w}) = \log \left(\prod_{i} \left[\sigma(\mathbf{w} \cdot \mathbf{x}^{(i)})^{y^{(i)}} \cdot \left(1 - \sigma(\mathbf{w} \cdot \mathbf{x}^{(i)}) \right)^{1 - y^{(i)}} \right] \right)$$
$$= \sum_{i} \left[y^{(i)} \log \left(\sigma(\mathbf{w} \cdot \mathbf{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \sigma(\mathbf{w} \cdot \mathbf{x}^{(i)}) \right) \right]$$

• Our goal is to maximize the concave function LL(w)

WORDS OF WISDOM

GRADIENT ASCENT, IN DETAIL

- If we take steps in the direction of the gradient, we eventually reach a local maximum
- Since our problem is convex, a local maximum is a global maximum
- The gradient ascent update step is

$$w_j^{(t+1)} = w_j^{(t)} + \alpha_t \frac{\partial LL(\mathbf{w}^{(t)})}{\partial w_j^{(t)}}$$

where α_t is the learning rate

GRADIENT ASCENT, IN DETAIL

- One can verify that $\frac{\partial}{\partial z}\sigma(z) = \sigma(z)(1-\sigma(z))$
- For a single example (x, y), we have

$$\frac{\partial LL(\mathbf{w})}{\partial w_j} = \frac{\partial}{\partial w_j} y \log \sigma(\mathbf{w} \cdot \mathbf{x}) + \frac{\partial}{\partial w_j} (1 - y) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x}))$$

$$= \left[\frac{y}{\sigma(\mathbf{w} \cdot \mathbf{x})} - \frac{1 - y}{1 - \sigma(\mathbf{w} \cdot \mathbf{x})} \right] \frac{\partial}{\partial w_j} \sigma(\mathbf{w} \cdot \mathbf{x})$$

$$= \left[\frac{y}{\sigma(\mathbf{w} \cdot \mathbf{x})} - \frac{1 - y}{1 - \sigma(\mathbf{w} \cdot \mathbf{x})} \right] \sigma(\mathbf{w} \cdot \mathbf{x}) (1 - \sigma(\mathbf{w} \cdot \mathbf{x})) x_j$$

$$= \left[\frac{y - \sigma(\mathbf{w} \cdot \mathbf{x})}{\sigma(\mathbf{w} \cdot \mathbf{x}) (1 - \sigma(\mathbf{w} \cdot \mathbf{x}))} \right] \sigma(\mathbf{w} \cdot \mathbf{x}) (1 - \sigma(\mathbf{w} \cdot \mathbf{x})) x_j$$

$$= [y - \sigma(\mathbf{w} \cdot \mathbf{x})] x_j$$

We conclude that

$$\frac{\partial LL(\mathbf{w})}{\partial w_j} = \sum_{i=1}^n [y^{(i)} - \sigma(\mathbf{w} \cdot \mathbf{x}^{(i)})] x_j^{(i)}$$