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SUPERVISED LEARNING

• We are given a training set of 𝑛𝑛 examples 
𝑥𝑥(1),𝑦𝑦(1) , … , 𝑥𝑥 𝑛𝑛 ,𝑦𝑦 𝑛𝑛 where each pair was 

generated by an unknown function 𝑦𝑦 = 𝑓𝑓 𝑥𝑥
• The goal is to find a hypothesis ℎ ∈ ℋ that 

approximates 𝑓𝑓, where ℋ is called the 
hypothesis space

• ℎ is chosen to be a best-fit function for which 
each ℎ 𝑥𝑥 𝑖𝑖 is “close” to 𝑦𝑦(𝑖𝑖)

• ℎ generalizes well if it gives accurate 
predictions on a fresh test set



CLASSIFICATION

• Classification is the task of learning 𝑓𝑓 whose 
range is a discrete, finite set

• Such a function is called a classifier
• When the cardinality of the range is 2 then 

the task is known as binary classification, 
otherwise it’s called multi-class 
classification



EXAMPLE: IMAGE CLASSIFICATION

𝒙𝒙 1 ,𝑑𝑑𝑑𝑑𝑑𝑑 𝒙𝒙 2 , 𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙 3 ,𝑑𝑑𝑑𝑑𝑑𝑑 𝒙𝒙 4 ,𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓 𝒙𝒙 =?



EXAMPLE: SPAM FILTER

𝒙𝒙 1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒙𝒙 2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑓𝑓 𝒙𝒙 =?



EXAMPLE: RESTAURANT WAITING

Example
Input Features Output

𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹 𝐻𝐻𝐻𝐻𝐻𝐻 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝒙𝒙(1) 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑌𝑌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $$$ 𝑁𝑁 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 0-10 𝑦𝑦(1) = 𝑌𝑌

𝒙𝒙(2) 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑁𝑁 𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 30-60 𝑦𝑦(2) = 𝑁𝑁

𝒙𝒙(3) 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $ 𝑁𝑁 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0-10 𝑦𝑦(3) = 𝑌𝑌

𝒙𝒙(4) 𝑌𝑌 𝑁𝑁 𝑌𝑌 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑌𝑌 𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 10-30 𝑦𝑦(4) = 𝑌𝑌

𝒙𝒙(5) 𝑌𝑌 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $$$ 𝑁𝑁 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 >60 𝑦𝑦(5) = 𝑁𝑁

𝒙𝒙(6) 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝑌𝑌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $$ 𝑌𝑌 𝑌𝑌 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0-10 𝑦𝑦(6) = 𝑌𝑌

𝒙𝒙(7) 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 $ 𝑌𝑌 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0-10 𝑦𝑦(7) = 𝑁𝑁

𝒙𝒙(8) 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑌𝑌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $$ 𝑌𝑌 𝑌𝑌 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0-10 𝑦𝑦(8) = 𝑌𝑌

𝒙𝒙(9) 𝑁𝑁 𝑌𝑌 𝑌𝑌 𝑁𝑁 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑌𝑌 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 >60 𝑦𝑦(9) = 𝑁𝑁

𝒙𝒙(10) 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $$$ 𝑁𝑁 𝑌𝑌 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0-30 𝑦𝑦(10) = 𝑁𝑁

𝒙𝒙(11) 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 $ 𝑁𝑁 𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0-10 𝑦𝑦(11) = 𝑁𝑁

𝒙𝒙(12) 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑁𝑁 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 30-60 𝑦𝑦(12) = 𝑌𝑌



DECISION TREES

Yes

Patrons?

WaitEstimate?No

Alternate? Hungry?No Yes

Reservation? Fri/Sat? Yes Alternate?

YesNoBar? Yes Raining?Yes

YesNo YesNo

None Some Full

>60 30-60 10-30 0-10

No Yes No Yes

No Yes No Yes No Yes

No Yes No Yes



DECISION TREES

• A decision tree reaches an output (in the 
leaves) through a sequence of tests on the 
input attributes (in internal nodes)

• Decision trees can represent any classifier, but 
some may require a large tree

• Poll 1: Which of the following Boolean 
functions can be represented via a tree of size 
linear in the number of features?
◦ Unanimity
◦ Parity
◦ Majority
◦ None of the above



SPLITTING ON FEATURES
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LEARNING DECISION TREES

function LEARN-DT(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
if 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∅ then return PLURALITY-VALUE(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑒𝑒𝑒𝑒amples)
else if all 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 have the same label then return
that label
else if 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∅ then return PLURALITY-VALUE(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 
else

𝐴𝐴 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎∈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓IMPORTANCE(𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← new decision tree with root test 𝐴𝐴
for each value 𝑣𝑣 of 𝐴𝐴 do

𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ← {𝑒𝑒 ∈ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 𝑒𝑒.𝐴𝐴 = 𝑣𝑣}
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←LEARN-DT(𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∖ 𝐴𝐴 , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
add branch to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with label 𝐴𝐴 = 𝑣𝑣 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

return 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡



Mathematician and electrical engineer, 
father of information theory.  

Claude Shannon
1916-2001



INFORMATION GAIN

• To instantiate the IMPORTANCE function we will use the 
notion of entropy, which is measured in bits

• The entropy of random variable 𝑉𝑉 that takes each value 𝑣𝑣
with probability 𝑃𝑃 𝑣𝑣 is

𝐻𝐻 𝑉𝑉 = �
𝑣𝑣

𝑃𝑃 𝑣𝑣 log
1

𝑃𝑃 𝑣𝑣
= −�

𝑣𝑣

𝑃𝑃 𝑣𝑣 log𝑃𝑃(𝑣𝑣)

• The entropy of a fair coin flip is 1 bit:
𝐻𝐻 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = −(0.5 log 0.5 + 0.5 log 0.5) = 1

• The entropy of a biased coin with 99% heads is:
𝐻𝐻 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = −(0.99 log 0.99 + 0.01 log 0.01) ≈ 0.08

• Denote the entropy of a Bernoulli random variable that is 
true with probability 𝑞𝑞 by

𝐵𝐵 𝑞𝑞 = − 𝑞𝑞 log 𝑞𝑞 + 1 − 𝑞𝑞 log 1 − 𝑞𝑞



INFORMATION GAIN

• If a training set contains 𝑝𝑝 positive examples and 𝑛𝑛 negative examples, 
the entropy of the output variable is

𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐵𝐵
𝑝𝑝

𝑝𝑝 + 𝑛𝑛
• Feature 𝐴𝐴 with 𝑑𝑑 values divides the training set into 𝑑𝑑 subsets, each 

with 𝑝𝑝𝑘𝑘 positive examples and 𝑛𝑛𝑘𝑘 negative examples
• The entropy after testing 𝐴𝐴 is 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴 = �
𝑘𝑘=1

𝑑𝑑
𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘
𝑝𝑝 + 𝑛𝑛

𝐵𝐵
𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘

• The information gain from testing 𝐴𝐴 is

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴 = 𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴

• In LEARN-DT, we can measure IMPORTANCE based on information gain



INFORMATION GAIN: EXAMPLE
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LEARNING DECISION TREES: EXAMPLE

Yes

Patrons?

Hungry?No

Type?No

Fri/Sat? Yes

YesNo

None Some Full

No Yes

Fr It Th

No Yes

NoYes

Bu

The output of LEARN-DT is simpler than the original tree!



EARLY STOPPING

Should we stop LEARN-DT when the information gain 
is low? We may miss situations where combos of 
features are informative! 

Example
Input features Output

𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧 ⊕ 𝑧𝑧𝑧

𝒙𝒙(1) 𝑡𝑡 𝑡𝑡 𝑓𝑓

𝒙𝒙(2) 𝑡𝑡 𝑓𝑓 𝑡𝑡

𝒙𝒙(3) 𝑓𝑓 𝑡𝑡 𝑡𝑡

𝒙𝒙(4) 𝑓𝑓 𝑓𝑓 𝑓𝑓

2 3

1 4

2

1

3

4

𝑧𝑧

𝑧𝑧𝑧𝑧𝑧𝑧

21 43

𝑡𝑡 𝑓𝑓

𝑡𝑡 𝑓𝑓 𝑡𝑡 𝑓𝑓

YesNo Yes No



MODEL SELECTION

Linear Sinusoidal Piecewise linear Degree 12 polynomial

Da
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Degree 12 polynomials exhibit overfitting



MODEL SELECTION

• Let us think of the quality of the “fit” of 
hypothesis ℎ as error rate, i.e., the 
probability that ℎ 𝒙𝒙 ≠ 𝑓𝑓(𝒙𝒙)

• We divide the data into three sets: 
1. Training set to train candidate models
2. Validation set to choose among different 

models or hypothesis classes
3. Test set to perform an unbiased evaluation of 

the best model



MODEL SELECTION

• We refer to the “complexity” of the hypothesis 
class (e.g., number of nodes in a decision tree) as 
the model size

• Poll 2: As the model size grows (check all 
possible options):
◦ Training error decreases, validation error decreases 
◦ Training error decreases, validation error increases
◦ Training error increases, validation error decreases
◦ Training error increases, validation error increases



MODEL SELECTION
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The graph on the right is an example of one of the 
great mysteries of deep learning!
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