

Fall 2022 | Lecture 17 Decision Trees Ariel Procaccia | Harvard University

SUPERVISED LEARNING

- We are given a training set of n examples $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$ where each pair was generated by an unknown function y = f(x)
- The goal is to find a hypothesis $h \in \mathcal{H}$ that approximates f, where \mathcal{H} is called the hypothesis space
- h is chosen to be a best-fit function for which each $h(x^{(i)})$ is "close" to $y^{(i)}$
- h generalizes well if it gives accurate predictions on a fresh test set

CLASSIFICATION

- Classification is the task of learning f whose range is a discrete, finite set
- Such a function is called a classifier
- When the cardinality of the range is 2 then the task is known as binary classification, otherwise it's called multi-class classification

EXAMPLE: IMAGE CLASSIFICATION

 $(x^{(2)}, cat)$

 $(x^{(3)}, dog)$

 $(x^{(4)}, dog)$

f(x) = ?

EXAMPLE: SPAM FILTER

 $(x^{(2)}, spam)$

EXAMPLE: RESTAURANT WAITING

F	Input Features										Output
Example -	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	- Wait
$x^{(1)}$	Y	N	N	Y	Some	\$\$\$	N	Y	French	0-10	$y^{(1)} = Y$
$x^{(2)}$	Y	N	N	Y	Full	\$	N	N	Thai	30-60	$y^{(2)} = N$
$x^{(3)}$	N	Y	N	N	Some	\$	N	N	Burger	0-10	$y^{(3)} = Y$
$x^{(4)}$	Y	N	Y	Y	Full	\$	Y	N	Thai	10-30	$y^{(4)} = Y$
$x^{(5)}$	Y	N	Y	N	Full	\$\$\$	N	Y	French	>60	$y^{(5)} = N$
$x^{(6)}$	N	Y	N	Y	Some	\$\$	Y	Y	Italian	0-10	$y^{(6)} = Y$
$x^{(7)}$	N	Y	N	N	None	\$	Y	N	Burger	0-10	$y^{(7)} = N$
$x^{(8)}$	N	N	N	Y	Some	\$\$	Y	Y	Thai	0-10	$y^{(8)} = Y$
x ⁽⁹⁾	N	Y	Y	N	Full	\$	Y	N	Burger	>60	$y^{(9)} = N$
$x^{(10)}$	Y	Y	Y	Y	Full	\$\$\$	N	Y	Italian	0-30	$y^{(10)} = N$
$x^{(11)}$	N	N	N	N	None	\$	N	N	Thai	0-10	$y^{(11)} = N$
$x^{(12)}$	Y	Y	Y	Y	Full	\$	N	N	Burger	30-60	$y^{(12)} = Y$

DECISION TREES

DECISION TREES

- A decision tree reaches an output (in the leaves) through a sequence of tests on the input attributes (in internal nodes)
- Decision trees can represent any classifier, but some may require a large tree
- Poll 1: Which of the following Boolean functions can be represented via a tree of size linear in the number of features?
 - Unanimity
 - Parity
 - Majority
 - None of the above

SPLITTING ON FEATURES

LEARNING DECISION TREES

```
function LEARN-DT(examples, features, parent_examples)
   if examples = Ø then return Plurality-Value(parent_examples)
    else if all examples have the same label then return
    that label
    else if features = \emptyset then return PLURALITY-VALUE(examples)
    else
       A \leftarrow argmax_{a \in features} IMPORTANCE(a, examples)
        tree \leftarrow new decision tree with root test A
        for each value v of A do
            new\_examples \leftarrow \{e \in examples : e A = v\}
            subtree \leftarrow LEARN-DT(new\_examples, features \setminus \{A\}, examples)
            add branch to tree with label A = v and subtree
        return tree
```


Claude Shannon

1916-2001

Mathematician and electrical engineer, father of information theory.

INFORMATION GAIN

- To instantiate the IMPORTANCE function we will use the notion of entropy, which is measured in bits
- The entropy of random variable V that takes each value v with probability P(v) is

$$H(V) = \sum_{v} P(v) \log \frac{1}{P(v)} = -\sum_{v} P(v) \log P(v)$$

• The entropy of a fair coin flip is 1 bit:

$$H(Fair) = -(0.5 \log 0.5 + 0.5 \log 0.5) = 1$$

- The entropy of a biased coin with 99% heads is: $H(Biased) = -(0.99 \log 0.99 + 0.01 \log 0.01) \approx 0.08$
- Denote the entropy of a Bernoulli random variable that is true with probability q by

$$B(q) = -(q \log q + (1 - q) \log(1 - q))$$

INFORMATION GAIN

If a training set contains p positive examples and n negative examples,
 the entropy of the output variable is

$$H(Output) = B\left(\frac{p}{p+n}\right)$$

- Feature A with d values divides the training set into d subsets, each with p_k positive examples and n_k negative examples
- The entropy after testing *A* is

Remainder(A) =
$$\sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B\left(\frac{p_k}{p_k + n_k}\right)$$

• The information gain from testing *A* is

$$Gain(A) = H(Output) - Remainder(A)$$

In Learn-DT, we can measure IMPORTANCE based on information gain

INFORMATION GAIN: EXAMPLE

$$Gain(Type) = 1 - \left[\frac{2}{12} B\left(\frac{1}{2}\right) + \frac{2}{12} B\left(\frac{1}{2}\right) + \frac{4}{12} B\left(\frac{2}{4}\right) + \frac{4}{12} B\left(\frac{2}{4}\right) \right] = 0$$

$$Gain(Patrons) = 1 - \left[\frac{2}{12}B\left(\frac{0}{2}\right) + \frac{4}{12}B\left(\frac{4}{4}\right) + \frac{6}{12}B\left(\frac{2}{6}\right)\right] \approx 0.541$$

LEARNING DECISION TREES: EXAMPLE

The output of LEARN-DT is simpler than the original tree!

EARLY STOPPING

Evample	Input fo	Output		
Example -	Z	z'	$z \oplus z'$	
$x^{(1)}$	t	t	f	
$x^{(2)}$	t	f	t	
$\boldsymbol{x}^{(3)}$	f	t	t	
$x^{(4)}$	f	f	f	

Should we stop LEARN-DT when the information gain is low? We may miss situations where combos of features are informative!

Degree 12 polynomials exhibit overfitting

- Let us think of the quality of the "fit" of hypothesis h as error rate, i.e., the probability that $h(x) \neq f(x)$
- We divide the data into three sets:
 - 1. Training set to train candidate models
 - 2. Validation set to choose among different models or hypothesis classes
 - 3. Test set to perform an unbiased evaluation of the best model

- We refer to the "complexity" of the hypothesis class (e.g., number of nodes in a decision tree) as the model size
- Poll 2: As the model size grows (check all possible options):
 - Training error decreases, validation error decreases
 - Training error decreases, validation error increases
 - Training error increases, validation error decreases
 - Training error increases, validation error increases

The graph on the right is an example of one of the great mysteries of deep learning!